
The ASIST User’s Guide

Version 9.6
Fall 2005

Believe it or not, this is an official NASA document.

About the cover:

This Arctic Ground Squirrel (aka gopher or sik-sik) is taking yet another predator-check on a lovely July day at
Denali National Park, in Alaska. If it can double its weight by September, while evading eagles, falcons, ravens, foxes,
and grizzly bears, it shall relax in deep hibernation for seven or eight months.

Although the sik-sik has the same middle name as the ASIST Ground System, the two are only distant relations. While
ASIST and the gophers are alike in many of their behaviors, taxonomically ASIST is in the same family as Gnomes
and the True Elves, which, of course, is an arcane branch of the order Morlock.

(Photo: Daniel Grogan)
ASIST Users Guide–Version 9.6 i

ii ASIST Users Guide–Version 9.6

Table of Contents

About This Document ... About-xix
Who Should Use This Document .. About-xx
Conventions .. About-xxi

CHAPTER 1 System Overview

CHAPTER 2 User Interface

Overview .. 2-1
Starting and Stopping the System .. 2-2

How to start ASIST: ... 2-2
How to stop ASIST: ... 2-2

ASIST's Permanent Windows .. 2-3
ASIST Status Window Menus .. 2-3
ASIST Status Window Body .. 2-6

Time Section .. 2-6
Spacecraft Status Section .. 2-6
FOP-1 Status .. 2-7
GSE Status ... 2-8
ASIST Logo Section .. 2-9

SAMMI Command Window .. 2-10
Events Window ... 2-10
STOL Window .. 2-11

Terminal Windows for Command-Line Linux .. 2-12
How to open a Terminal (Linux/unix shell) Window .. 2-12

Telemetry Pages ... 2-13
How to control telemetry pages .. 2-13
How to get information about the contents of a field on a telemetry page ... 2-14

CHAPTER 3 STOL

STOL Overview ... 3-1
What is it? ... 3-1
Structure .. 3-1
What's next ... 3-1

STOL Basics .. 3-2
Data types & constants ... 3-2
Creating and using STOL variables .. 3-3
Accessing and using telemetry points ... 3-4

Interactive STOL ... 3-5
Expressions ... 3-5
Simple interactive directives ... 3-5
ASIST Users Guide–Version 9.6 iii

WRITE ... 3-5
Assignment .. 3-6
Command ...3-6
EXIT .. 3-7

Recalling a Previous Entry ... 3-7
Compiled STOL ... 3-8

Saving and Using Sequences of Directives (procedures) ... 3-8
Statements ... 3-8
How to write a procedure .. 3-9

Using the procedure editor ... 3-9
PROC/ENDPROC statements ... 3-9
Creating local and global variables in a procedure .. 3-10
Referencing parameters within a procedure .. 3-13
Making decisions - using IF/THEN/ELSE .. 3-13
Repeating a block of statements - using DO, WHILE, or FOR .. 3-14
Waiting for an event .. 3-15
Exiting your procedure ..3-16

How to run a procedure .. 3-17
Compiling a procedure ..3-17
Using the START directive ...3-17
Monitoring procedure execution .. 3-18
How to halt the current procedure ...3-19
Resuming execution of a procedure .. 3-19
Repositioning inside a procedure ... 3-19
Leaving a procedure .. 3-20

Advanced topics .. 3-20
Procedure execution during ASIST start-up .. 3-20
Passing arguments to STOL Procedures .. 3-21
Computing variable names .. 3-21
 Commands in Procedures ... 3-22
Defining new directives ... 3-23
Using regular expressions .. 3-27
User defined functions ... 3-30
Debugging STOL procedures and foreign directives ..3-32
Formatted printing ... 3-34
STOL arrays ... 3-34
Disposing of arrays, foreign directives, or functions in STOL .. 3-37
Creating and using unusual names in STOL ... 3-38
STOL internal variables ... 3-39
Sending a directive from a page .. 3-40
Sending a directive from the keypad ... 3-41
Using files .. 3-42
Getting out of trouble ... 3-45
Integrated compiling and editing ... 3-45
Unexpected procedure halts ...3-47
Error handling .. 3-48
Defining a state machine ... 3-49

Parallel STOL ...3-50
Event Logging ... 3-51
Commanding ...3-51
Event-driven tasks ... 3-51
iv ASIST Users Guide–Version 9.6

Scheduling ... 3-52
Task control ... 3-52

STOL Reference Guide ... 3-55
Compiler Options ... 3-55

Preprocessing Procedure Files ... 3-55
Definition Files .. 3-55

Operators ... 3-56
Built-In Functions ... 3-58
Built-in Directives .. 3-65
Status Variables .. 3-73

CHAPTER 4 Telemetry Database Compiler

Overview .. 4-1
Tools Overview .. 4-2
Language Overview ... 4-3
Language Reference .. 4-4

Grouping Constructs ... 4-4
DATABASE .. 4-4
PACKET .. 4-5

Aggregate Data Types: ... 4-7
RECORD ... 4-7
UNION .. 4-8

Scalar Data Types: .. 4-10
Naming Method ... 4-10

Type Definitions ... 4-20
Modifying Telemetry Declarations or Type Definitions .. 4-21
Default SFDU Name ... 4-22
Pseudo-Telemetry Definitions .. 4-22

Periodic Pseudo-Telemetry ... 4-22
Syntax of Pseudo-Telemetry Statements .. 4-23
Operators within Pseudo-telemetry Equations ... 4-26
Functions Supported in Pseudo-telemetry Equations ... 4-26

Periodic Pseudo-Telemetry Examples ... 4-31
Event-Driven Pseudo-Telemetry ... 4-32
Enabling and Disabling Pseudo-Telemetry Equations .. 4-33
Execution quotas on equations .. 4-34
Data quality inheritance ... 4-34

Dynamic Reloadable Pseudo-Telemetry .. 4-34
Special Constructs .. 4-35

Comments .. 4-35
Delimiters .. 4-35
C Preprocessor Directives ... 4-35

Predefined Names .. 4-36
Telemetry RDL Examples .. 4-37

Defining types based upon records and unions ... 4-37
Defining and using arrays of records and unions .. 4-38

Constant numeric expressions .. 4-40
String concatenation ... 4-41

Tools Reference ... 4-42
ASIST Users Guide–Version 9.6 v

How to syntax check telemetry definitions ... 4-42
How to create a telemetry database ..4-42
Automatic Database ID Stamping .. 4-43
How to generate a telemetry database report .. 4-44

CHAPTER 5 Command Database Compiler

Overview ..5-1
Tools Overview ..5-2
Language Overview ...5-3
Language Reference ...5-4

Grouping Constructs ... 5-4
DATABASE .. 5-4
CLASS ... 5-5

Command/Directive Definitions ...5-6
CMD(S), DIR(S) and SFDUs .. 5-6

Parameter Definitions ... 5-9
Type Definitions ..5-16
Modifying User-defined Types ..5-17
Computed Parameters .. 5-17
Command Defaults .. 5-19

Aggregate Data Types .. 5-19
RECORD ...5-20
UNION .. 5-20
BITFIELD .. 5-21

Special Constructs ...5-24
Comments .. 5-24
Delimiters .. 5-24
C Preprocessor Directives .. 5-24

Predefined Names ... 5-24
Include files ... 5-25

Constant numeric expressions .. 5-25
String concatenation ... 5-26

Tools Reference ... 5-27
How to syntax check ..5-27
How to create a database .. 5-27
Automatic Database ID Stamping .. 5-28
How to generate a command database report ... 5-29

CHAPTER 6 Editing Telemetry Pages

Page Concepts and Terminology ... 6-2
Page Editor Quick-Start .. 6-3
Starting the Page Editor .. 6-3

Basic Editing Operations ... 6-5
Create a new page ... 6-5
Change Your Page Properties ... 6-5
Save Your Page ...6-6
Add text labels to your page ... 6-7
vi ASIST Users Guide–Version 9.6

Add a telemetry DDO to your page .. 6-8
Save your page and open it in the runtime ASIST ... 6-10
Background pictures and layers .. 6-11
Add Sammi buttons to your page ... 6-13

Dismisser Button ... 6-13
Sammi Toggle Button .. 6-13

Connecting Pages to STOL .. 6-15
STOL interface example ... 6-15
Add a STOL text input field ... 6-16
Add a STOL button to send Page Local Variable entries to STOL .. 6-17
Cautions about stol_server .. 6-18

How to read and write DDO libraries (Composite Objects) .. 6-19
Add a fully-loaded Trend Composite to your page .. 6-19
Add a fully-loaded Plot Composite to your page ... 6-21
Create your own Composite Library .. 6-21

How to Delete Pages and Exit the Editor .. 6-22
 Data Quality (Runtime Annotations) in Telemetry Fields .. 6-23

Checklist for Displaying RTAs .. 6-23
More Details About Read Keys ... 6-24

Single-Value Read Keys ... 6-24
Multi-Value Read Keys .. 6-25
Array Display in Pages with %slice() Readkeys .. 6-26

How to implement %slice() in a readkey: ... 6-26
Limitations: .. 6-26

Page Editor Reference ... 6-27
Page Editor Menus .. 6-27

File Menu ... 6-27
Edit Menu .. 6-28
View Menu .. 6-28
Arrange Menu .. 6-29
Draw Menu .. 6-29
Dynamics Menu ... 6-30
 ... 6-30
Libraries Menu .. 6-30
Style Menu ... 6-30
 ... 6-30

CHAPTER 7 Event Message Handling

Overview .. 7-1
Event message characteristics .. 7-2
Format of an event message ... 7-4
Where do event messages go? ... 7-5

Filtering event messages ... 7-5
Event Filter Pages ... 7-6

Event Printer output ... 7-7
Defining your own Event Types .. 7-8
Closing and reopening the current event log ... 7-10
Event log viewers ... 7-11

Tailing the Current Event Log .. 7-11
ASIST Users Guide–Version 9.6 vii

Setting Up Color Event Log Filters ..7-11
Additional Color Event Viewing Programs ... 7-12

Normal (monochrome) event log filters: .. 7-13
How to Tail the Event Log for Programmers ... 7-15

How to Make ASIST’s Main Event Page Color ..7-16

CHAPTER 8 Telemetry Processing

How a telemetry SFDU is processed ...8-2
How a telemetry point is interpreted .. 8-3

Processed vs. Swapped vs. Raw ...8-3
Conversion to swapped ... 8-3
Conversion to Processed ...8-3
Putting values back into the CVT ... 8-4
Scalar Data Types ... 8-4
Data Swapping .. 8-6
User-Defined Data Representation ... 8-7

Physical Channel Control ... 8-8
Real-Time Acquisition .. 8-8
Archival .. 8-8
Playback .. 8-9

Archive Tools ... 8-11
Limit Checking ..8-20

Turning Limit Checking On ... 8-20
Enabling Limits for Telemetry Points .. 8-20
Is limit checking on? ... 8-21
What do limits mean? ... 8-21
What happens at limit boundaries? ... 8-21
What order are the states in? ... 8-22
Use of Intervals and Ranges ... 8-22
What Types of Limits are Available? ... 8-23
When Limits are Exceeded ... 8-23
Assigning multiple limits to a single telemetry point ... 8-24
Rail Limits ..8-25

Turning it on and off .. 8-25
Indications of being "Railed" ... 8-25
What is the rail? ... 8-25
Changing default for rail checking .. 8-25
Rail Notes .. 8-25
Triggering event-driven pseudo-telemetry on RAIL states: .. 8-26
Types of limit-failure messages ... 8-26

Trending ... 8-27
Sampling ..8-31
Time and Telemetry ...8-33

Packet Time and Sequence Count .. 8-33
Telemetry Point Time ... 8-34

Packet Quality .. 8-35
Data Quality ...8-37

What is data quality? ... 8-37
How is data quality used? ... 8-37
viii ASIST Users Guide–Version 9.6

Where is data quality used? .. 8-38
How is NEUTRAL quality used? ... 8-39

Telemetry Statistics .. 8-40
Supercommutation ... 8-41
Subcommutation .. 8-43

Using Subcommutation for distributing encapsulated packets ... 8-45
Why would you want to set these? .. 8-45

Data Collection in HDF Files .. 8-47
Telemetry from External Ground Support Equipment .. 8-49

Introduction ... 8-49
Step by Step Instructions .. 8-49
Defining Your Own SFDU Types .. 8-49

CHAPTER 9 Commanding

Overview .. 9-1
Command Sequence .. 9-2

Command conversion ... 9-2
Creation of an SFDU (Standard Formatted Data Unit) .. 9-3
Sending the SFDU to the Command Handler ... 9-4
Command Source Enable/Disable .. 9-5
Command Validation .. 9-5
Command Backsolving ... 9-5
User Screening .. 9-7
Hazardous and Critical Command Screening ... 9-7
Command Handler Sends the Command to the Front End ... 9-9
Two Step Commanding .. 9-9
Command Pre-verification .. 9-9
Telemetry Verification of Commands .. 9-10
Controlling Telemetry Verification .. 9-11
Blocks of Commands .. 9-13

Failover of the Primary and the FEDS command link ... 9-15
Changing the Primary ... 9-15
Changing the Front-End Machine (for commanding) .. 9-15

Changing the Front-End Machine (for telemetry) ... 9-15
Overriding Directive Destinations ... 9-16
Commanding Constellations .. 9-17

Configuration .. 9-17
Setting up the current spacecraft to command .. 9-17
Overriding the current spacecraft ... 9-17

Receiving STOL Directives from External Clients ... 9-18

CHAPTER 10 Front End Data System

Overview ... 10-1
Spacecraft Commanding Protocol ... 10-1
Raw Commanding .. 10-2
Starting up a spacecraft ... 10-3
Command Processor Operational Modes ... 10-3
ASIST Users Guide–Version 9.6 ix

The UPLINK Directive ... 10-5
Syntax ..10-6
Typical Use .. 10-6

Additional FEDS Command Directives ... 10-7
Recovering from Commanding Problems .. 10-7

Ground Station Interface .. 10-11
Setting the Current Ground Station ..10-11
Command Side of the FEDS–Ground Station Interface ... 10-11

FEDS-to-FEDS Command Gateway ... 10-12
Telemetry Side of the FEDS–Ground Station Interface ... 10-12

Information available in telemetry and pseudo-telemetry ... 10-12
Useful things you can do with ground station information ... 10-14
Pages showing information about the FEDS–Ground Station interface10-14

CHAPTER 11 Image and Table Management

Overview ..11-1
Description ... 11-2
Load/Dump Example ... 11-3
CITM System Variables ... 11-4
Table Handling Directives ... 11-6

What the table directives allow you to do: ... 11-6
Defining Tables In Your Telemetry RDL: ... 11-6
The directives: ...11-6

CREATE_LOAD ... 11-6
CREATE_PARTIAL_LOAD .. 11-7
DUMP_TO_CVT .. 11-8
LOAD_TO_CVT ... 11-9

An Example: ... 11-9
CVT_TO_FILE .. 11-10
FILE_TO_CVT .. 11-10

View Dump Utility ...11-12
Configuring the LOAD and DUMP directives .. 11-13

Configuring Load/Dump Command Options from STOL ... 11-18

CHAPTER 12 Stored Command Sequence Processor

Overview ..12-1
Introduction .. 12-2
Statement Types ... 12-4

Table Definitions .. 12-4
Assignments .. 12-4
Command constraints ... 12-5
Events, triggers and activities ... 12-6
File inclusion and conditional compilation ... 12-7
Commands and delays .. 12-7

Source File Structure .. 12-9
Output ... 12-10

Load file .. 12-10
x ASIST Users Guide–Version 9.6

Reports .. 12-10
Statement reference .. 12-12

Absolute delay .. 12-12
Activity definition ... 12-12
Activity reference ... 12-13
Command sequence assignment ... 12-13
Command sequence constraint ... 12-13
Command time delay constraint ... 12-14
Command time dependency constraint ... 12-14
Event ... 12-15
Export ... 12-15
Expression ... 12-16
Global constraint assignment .. 12-17
Mnemonic command .. 12-18
Raw command .. 12-18
Relative delay ... 12-19
Table range definition (ATS) .. 12-19
Table range definition (RTS) .. 12-19
Table state definition .. 12-20
Table start definition ... 12-20
Table tail sequence definition (ATS) .. 12-21
Table tail sequence definition (RTS) .. 12-21
User assignment .. 12-22
Trigger .. 12-22

Usage ... 12-24
Running the compiler ... 12-24

Configuration ... 12-26
Stored command packets .. 12-26
Supported fields .. 12-27

Utilities ... 12-28
SCP to Activity Definition Utility .. 12-28
UDAP to SCP Conversion Utility .. 12-29

CHAPTER 13 Environment

Login Account(s) .. 13-1
Directory Structure ... 13-1
Inheritance .. 13-2
Promote and Redline ... 13-3
Obtaining Local Directories ... 13-4
Example of RDL Inheritance .. 13-4
Configuration Files ... 13-5
User-Configurable UNIX and X-Window Environment .. 13-5

CHAPTER 14 System Configuration

The Location of Configuration Files ... 14-2
Preparing to Modify a Configuration File ... 14-3
System Configuration File ... 14-4
ASIST Users Guide–Version 9.6 xi

Mission Configuration File .. 14-6
User Screening Database ... 14-7

CHAPTER 15 General Purpose Interface Bus (GPIB)

Overview ..15-1
GPIB Setup .. 15-2

Hardware Setup ...15-2
System Level Setup .. 15-2
User Setup/Login Symbols ... 15-2
User Setup/Telemetry Database .. 15-2
User Setup/Example STOL Procedures .. 15-4

Generic GPIB Directives ... 15-6
Simple example: ... 15-7

Low-Level GPIB Directives .. 15-9
Directives: ... 15-9

CHAPTER 16 Decommutated Sequential Telemetry
Streams (TSDS)

Overview ..16-1
Description ... 16-2
How do I use it? ... 16-3
TSDS Clients Provided with ASIST .. 16-4

SEQ PRINT .. 16-4
Usage ... 16-4
Description ...16-4
Format of generated data ... 16-5
Warning ... 16-6
Example ... 16-6

SEQ TIMED ... 16-9
Usage ... 16-9
Description ...16-9
Example ... 16-9

SEQ GNU ... 16-10
Usage ... 16-10
Description ...16-10
Format of generated data ... 16-10
Example ... 16-10

SEQ PACKET .. 16-12
Usage ... 16-12
Description ...16-13
Example ... 16-13

SEQ INTERACTIVE ... 16-14
Usage ... 16-14
Description ...16-14
Format of generated data ... 16-15
Example ... 16-15
xii ASIST Users Guide–Version 9.6

SEQ LIST ... 16-18
Usage ... 16-18
Description .. 16-18
Example ... 16-18

Standalone Sequential Print Generator .. 16-19
Usage .. 16-19
Description .. 16-19
Example .. 16-20
Notes: .. 16-21

Error Handling in TSDS Client Programs ... 16-23

CHAPTER 17 Database Query Tool

Overview .. 17-1
Database information ... 17-2
Queries ... 17-3

Simple Queries .. 17-3
Complex Queries .. 17-3
Functions in complex queries ... 17-6
Ordering the results of a query ... 17-7

Generating Reports .. 17-8
Default output ... 17-8
Adding a report header ... 17-8
Adding a report footer .. 17-9
Modifying the size of the page ... 17-10
Changing column formatting .. 17-10
More report formatting ... 17-14
Computing group values for a report .. 17-16
Modifying other features .. 17-17
Redisplaying data .. 17-18
Saving reports to a file .. 17-18
Creating a data file .. 17-19
Generating output in HTML ... 17-19

Additional Features .. 17-20
Expressions in a SELECT attribute list .. 17-20
Searching more than one table with SELECT .. 17-20
The SET Function ... 17-22

Restrictions: ... 17-22
XML Functions ... 17-22
Numbering the output rows .. 17-24
Executing canned procedures ... 17-25
Displaying Prompts .. 17-26
Executing operating system commands .. 17-26
Displaying the available tables ... 17-27
Displaying the attributes in a table ... 17-27
Termination and help .. 17-28

How to use TDQ .. 17-29
Starting TDQ .. 17-29
Entering queries from the TDQ command line .. 17-29
Entering queries from the shell ... 17-30
ASIST Users Guide–Version 9.6 xiii

CHAPTER 18 Page Specification Language

Overview ..18-1
PSL Language Reference ... 18-2

Page Specification ...18-2
Object Layout and Position Expressions .. 18-4
Automatic Page Layout .. 18-6
Design Objects .. 18-7

Using PSL .. 18-14
Supported Colors .. 18-14
Supported Fonts .. 18-15

CHAPTER 19 EGSE Interface

Overview ..19-1
Data Center .. 19-2

Configuration Prior to Startup .. 19-2
Controlling Data_Center ...19-2

Open ... 19-3
Close .. 19-4

What Data Center Does .. 19-4
Usage/Examples ... 19-5

Example 1: Reading UDP Telemetry ... 19-5
Example 2: UDP Commands and Telemetry, Data_Center in server mode 19-5
Example 3: Connect to a TCP-server providing telemetry in SFDUs, and broadcast that to multiple ASIST clients
19-6

Glossary

APPENDIX A Directives

Introduction ...A-1
Using On-line Help ..A-1

List of Directives ...A-2
Directive Descriptions ...A-7

APPENDIX B Editing Files with EMACS

The EMACS Window .. B-1
X windows mouse actions ... B-2
Issuing a Command Multiple Times .. B-6

APPENDIX C Decommutated Telemetry Stream Interface Control Document

Introduction .. C-1
Physical Interface ... C-1
xiv ASIST Users Guide–Version 9.6

Sessions ... C-1
Protocol .. C-1
Application Interface ... C-2

APPENDIX D Tools and Utilities

Limit Viewer .. D-1
How to access it ... D-1
Overview .. D-1

Window to JPEG ... D-2
How to access it ... D-2
Overview .. D-2

Telemetry Database Browser ... D-2
How to access it ... D-2
Overview .. D-3
Text Field Adjustment ... D-4
To adjust the size of a text field, left click on the vertical bar at the end of the field label and drag it left to shorten,
right to lengthen the field. .. D-4
TLM Browse Options Panel .. D-4

Datatypes and Used-defined Datatypes .. D-5
Command Database Browser .. D-6

How to access it ... D-6
Overview .. D-6
CMD Report Panel .. D-7
CMD Options Panel ... D-8

Easy Plot .. D-9
Easy Archive .. D-9
Easy Playback .. D-10
Page Crank ... D-10
Local Time Clock .. D-11
Procedure listing utilities ... D-11
Environment Monitor (OGSE) .. D-11

Overview .. D-11
Operation ... D-12
Changing the Monitor’s Defaults .. D-13
CVT Variables Used by the Environment Monitor ... D-13

APPENDIX E Printf

Why is this here? ...E-1
printf for Beginners ...E-1
printf for the Inquisitive ..E-3

APPENDIX F Access to Database Attributes

Introduction ..F-1
How to Access Database Object Attributes ...F-2

Telemetry Attribute Access ..F-2
ASIST Users Guide–Version 9.6 xv

Command Attribute Access ..F-6

APPENDIX G C-Preprocessor

Why is this here? ..G-1
Introduction ..G-1
File Inclusion ...G-3
Macro Definition and Substitution ..G-5
Conditional Compilation ...G-7

APPENDIX H Load and Dump Files

ASIST Standard Load File Format ...H-1
ASIST Standard Dump File Format ..H-4

APPENDIX I ASIST Y2k Contingency Plan

Introduction ..I-1
Background ...I-2
Procedure ..I-3

APPENDIX J Front End Data System/Digital History Data Store

Introduction .. J-1
Running the FEDS ... J-3

Logging on to the System ... J-3
Starting the FEDS/DHDS ... J-3
Stopping FEDS/DHDS ... J-3

Interacting with the Digital History Data Store (DHDS) ... J-4
How to connect to the DHDS (for ASIST Users) ... J-4
How to connect to the FEDS/DHDS (for non-ASIST based IGSE Users) .. J-4

Connecting to the telemetry ports .. J-4
Logging on to the system ... J-4

FEDS/DHDS Main User Interface Window ... J-5
Quitting the FEDS/DHDS ... J-5
Playback of telemetry data from the FEDS/DHDS ... J-5

Example One–A closed interval playback ... J-6
Example two (‘now and forever’ playback): .. J-7

Viewing the Current Distribution File ... J-8
Editing the Distribution File ... J-8

Playing current data from the S/C ... J-9
Playing decoupled current data from the S/C .. J-9
Index of telemetry data files .. J-9

FEDS Internals ... J-11
FEDS Telemetry Processing Displays .. J-11

AOS Activity Display .. J-11
AOS Use Display ... J-12
Reed-Solomon Display .. J-13
xvi ASIST Users Guide–Version 9.6

Exp(erimenter) Activity Displays ...J-14
Telemetry Frame Processing Display ...J-16

FEDS Setup Utility ..J-17
Changing telemetry processing parameters: ..J-18
Using Default Configuration Files: ...J-19
Changing the Commanding Configuration ..J-26
How to Change the APID selection for packet distribution ..J-27
Starting and Stopping only the Command Handling Portion of the FEDS ...J-27

Index
ASIST Users Guide–Version 9.6 xvii

xviii ASIST Users Guide–Version 9.6

About This Document

This document provides information about running the Advanced Spacecraft Integration and System Test (ASIST) soft-
ware. The portions of the ASIST system covered in this manual include the Spacecraft Test and Operations Language
(STOL) parser, the Telemetry Page Display and Graphical Page Editor (DPD), and the Telemetry and Command Database
Compilers. Some sections also deal with defining the command and telemetry database using Record Definition Language
(RDL) files and with writing STOL procedures. Where possible, examples are given to show the structure and compo-
nents of the language.

This document is the complete user documentation set for ASIST.
ASIST Users Guide–Version 9.6 xix

Who Should Use This Document

This document is for anyone who wishes to use ASIST. To use this document effectively, you should be familiar with
Consultative Committee for Space Data Systems (CCSDS) telecommanding and telemetry standards. You should also be
familiar with the STOL concepts as well as your subsystem requirements.
xx ASIST Users Guide–Version 9.6

Conventions

The following conventions are used in this document:

Example:

PRINT filename [TITLE=titlename]

PRINT is the command to print a file, filename is the user supplied file name to be printed and TITLE and titlename is an
optional keyword and value that may or may not be supplied by the user as a title for the print job. A sample PRINT com-
mand could be:

print test.c title=mytestprogram

BOLD Identifies commands, keywords, files, directories, and other items whose names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed, exam-
ples of program code similar to what you might write as a programmer, messages from the system, or infor-
mation you actually type.

, Commas are delimiters between keywords and/or certain other statements.

[…] Brackets denote optional keywords in statements.

| OR bars indicate that one of a set of keywords is either required or valid. One is required if the list is not in
brackets.

%x This indicates that the number is in hexadecimal format

%b This indicates that the number is in binary format

%o This indicates that the number is in octal format
ASIST Users Guide–Version 9.6 xxi

xxii ASIST Users Guide–Version 9.6

AS
CHAPTER 1 System Overview
ASIST is a real-time command and control system which supports the development, integration and on-orbit operation of
spacecrafts, their component subsystems and instruments, and external control/support equipment needed to support these
efforts. All operations within ASIST can be driven from either a scriptable user command line or via the built-in Graphical
User Interface. The system can be scaled to support many configurations, from a single-workstation lab which supports a
single spacecraft subsystem to a large observatory or control center running up to 32 ASIST workstations which are con-
nected via network (for instance, in one mission, we support a network of workstations distributed across the United
States). ASIST is CCSDS-compatible and is upward-compatible with the Advanced Orbital Systems (AOS) extensions of
CCSDS as well as advanced commercial networks. It features advanced graphics and text page display capabilities, a
STOL language driven decommutation application, and integrated history archives. It may be configured to store the com-
plete I&T command and telemetry history with convenient access to archived test data for off line analysis.

As part of this configuration ASIST can connect with two different classes of systems:
Spacecraft Interface Systems (SIS) and Instrument Ground Support Systems (IGSE):.

Spacecraft interface systems allow ASIST to send spacecraft commands and receive
spacecraft telemetry. ASIST connects to these systems via TCP/IP over ethernet. There
are presently two different spacecraft interface systems: the Front End Data System
(FEDS) and the spacecraft simulator. The FEDS is used when a spacecraft processor is
available and the spacecraft simulator is used when a spacecraft processor is not avail-
able. Both of these systems interact with ASIST using the same protocol. The only dif-
ference from the user’s perspective is that the spacecraft simulator does not execute
directives that control the FEDS command and telemetry links.

Instrument Ground Support Systems (IGSEs) provide a commanding path for instru-
menters and allow them to receive telemetry. ASIST is connected to these systems via
ethernet and, like the spacecraft interface systems, the IGSEs interact with ASIST using
the same protocol. Unlike the spacecraft interface systems, however, ASIST is com-
pletely in control of the IGSE command link. All commands sent by an IGSE are pro-
cessed through ASIST. Each command from an IGSE may be filtered based on APID/
function code, hazardous/critical level, or source.

ASIST itself consists of one or more test conductor workstations (TCWs). All configu-
rations contain a single primary test conductor workstation (PTCW) and zero or more associate test conductor worksta-
tions connected via ethernet.

FIGURE 1-1. An example of
the different systems that
ASIST supports
IST Users Guide–Version 9.6 1-1

CHAPTER 1
The smallest configuration is a single PTCW connected to a space-
craft interface system for commanding and telemetry and to zero or
more IGSEs for instrument commanding. All functions are contained
in this one workstation. Although each IGSE can send commands to
their instruments, only the test conductor at the PTCW may command
the spacecraft.

To allow several test conductors to command simultaneously, one or
more ATCWs may be connected to the PTCW. Each separate work-
station represents an additional command stream to the spacecraft.
Note that, like IGSEs, the PTCW is in complete control of the com-
mand link between ATCWs and the spacecraft. All commands from
an ATCW may be filtered based on APID/function code, hazardous/
critical level, content, or source attributes.

An additional option may be chosen when connecting multiple
TCWs. If a common command and telemetry database is desired,
each ATCW may share disk space with the PTCW using the Network
File Server (NFS) option. This allows all ATCWs to access the same
databases in a transparent fashion. When a database is updated on the
PTCW it is automatically visible to all ATCWs.

ASIST can run up to 7 extra displays (consoles) on X-termi-
nals attached to a host PC. The host can be a primary or an
associate workstation. Remote consoles have their own status
window and an optional event window, but no STOL window.
When a console is running, you can open and close pages on
the X-terminal from the X-terminal or from the host machine.

ASIST’s hardware is comprised of a PC workstation (which
includes a system unit, color monitor, keyboard, and mouse)
running RedHat Linux and a PostScript compatible laser
printer. The standard workstation configuration contains 256
MB of memory and 30GB of disk storage. Each workstation
may also include a DOS compatible 3.5 inch floppy disk
drive (for ease in moving software and data).

ASIST's software contains three major components: a data-
base management system, a display system, and the Systems
Test and Operations Language (STOL) interpreter.

The database management component allows the user to cre-
ate and modify the command database and the telemetry data-
base, the two main databases that ASIST uses. The command
database defines all spacecraft commands and options that
can be sent by an operator. The telemetry database defines
each telemetry point that can be received. The Current Value
Table (CVT), which contains the current value of all teleme-
try points, is derived from the telemetry database.

FIGURE 1-2. A single Primary Test

FIGURE 1-3. A multiple Associate Test Conductor
Workstation configuration.
1-2 ASIST Users Guide–Version 9.6

System Overview
The display system, which manages the screen
resources available to the user, is based upon a com-
mercial product called SAMMI. It allows the user to
create and modify graphic and textual telemetry pages.
Each page is updated at periodically (up to once per
second) and may be displayed, removed, or printed
either from the keyboard, from a STOL script, or via
pull-down menu.

The STOL language interpreter provides the keyboard
interface for the user. Spacecraft commands may be
entered which are then formatted into CCSDS com-
mand packets according to definitions in the command
database and sent to the spacecraft interface system for
transmission to the spacecraft. Commands for control-
ling ASIST, called directives, may also be entered and
executed. These directives provide the framework for
spacecraft integration and operation and are specifi-
cally designed to allow test conductors to create scripts
to simplify spacecraft operations. These scripts may be
submitted to STOL which executes them automati-
cally. STOL also allows the user to access and display
the contents of the CVT and to compute new values
and place them in STOL local storage

.

ASIST is comprised of other subsystems as well. The Initialization Moni-
tor (IMON) starts ASIST and maintains its correct operation. The Event
Handler (GEVH) captures and writes to disk events generated within
ASIST. The Image and Table Manager (CITM) sends spacecraft processor
loads to the spacecraft, and receives processor dumps from the spacecraft.
The Telemetry I/O processor (TIO) receives telemetry data from the space-
craft interface system, routes it to the local archive, performs limit check-
ing on it, and places it in the CVT. The Pseudo-Telemetry Processor
(SPTP) processes equations stored in the telemetry database once each sec-
ond and deposits the results into the CVT. The Environment Monitor
(OGSE) checks system resources (i.e. memory or disk usage) periodically
and informs the operator when resources are running low.

FIGURE 1-4. A typical workstation.

FIGURE 1-5. The interaction between
major components within ASIST.
ASIST Users Guide–Version 9.6 1-3

CHAPTER 1
1-4 ASIST Users Guide–Version 9.6

AS
CHAPTER 2 User Interface
Overview

ASIST is easy for new operators to use and yet powerful and flexible enough to meet the demands of spacecraft integra-
tion and testing. It presents an easy-to-use and visually appealing interface similar to ones widely employed on worksta-
tions and personal computers for all kinds of applications. A windows style interface, known as a Graphical User Interface
(GUI), lets you perform many operations in a complex system by using only a mouse and a small number of keyboard
commands.

This chapter describes ASIST's user interface. It begins with a discussion about how to start and stop ASIST. Next follows
a look at ASIST's permanent windows: the ASIST Status Window, the Events Window, and the STOL Window. Last
comes a sample telemetry page, Paletteer, which demonstrates some of the capabilities of telemetry pages.
IST Users Guide–Version 9.6 2-1

CHAPTER 2
Starting and Stopping the System

How to start ASIST:

When the workstation powers up, you will see shadowman, in the red hat, and
the Gnome login window. Enter your username and password to begin. After
the login completes you will see an icon labeled ASIST. It may be a picture of
the Soyuz spacecraft, or Cubist Jake, as shown here. Double-click on the icon
to open the Question window.

After you press Yes, the screen will flicker briefly as a
unix window is opened and immediately minimized (or
iconized). This is the parent window that runs all
ASIST programs. If you happen to open it, it looks
something like this window on the right. Notice the
title, “Do not mess around in here”. Please do not
attempt to close or otherwise use this window. It is
required by the ground system at all times.

As the start-up progresses, ASIST's permanent windows will appear – first the Events Window, then the SAMMI Com-
mand Window, the ASIST Status Window, and then the STOL Window.

Wait until you see the message “Procedure ASIST_STARTUP completed” in the Events Window before you
enter STOL commands or directives.

How to stop ASIST:

ASIST must be shut down correctly or special interven-
tion will be required to restart it later. Follow these steps:

• Enter QUIT or EXIT on the STOL command line.

• When the prompt “EXIT STOL! Are you
sure?” appears, confirm by entering “Y” on the
STOL command line.

Login here.

Select Yes to startDouble-click.
2-2 ASIST Users Guide–Version 9.6

User Interface

b

c

a

ASIST's Permanent Windows

ASIST presents these permanent windows after it starts: the ASIST Status Window (a), the Events Window (b), and the
STOL Window (c). Also, the display manager’s (SAMMI’s) Command Window is hidden behind the Status Window.

If you run ASIST as an X-terminal console you will not have a STOL window. You may or may not have an Events Win-
dow, depending on your start-up options. See the START_XTERM directive (Appendix A) for more details.

ASIST Status Window Menus

The ASIST Status Window, shown across the top of the next two pages, is located at the top of the screen. It contains a
menu bar of user commands and displays STOL and FEDS-related status information. The menu bar has five pull down
menus named Windows, Editors, Information, Tools, and Diagnostics.
ASIST Users Guide–Version 9.6 2-3

CHAPTER 2
T
h
e
W
i
n
d
T

The Windows Menu provides access to telemetry pages.

The Editors Menu lets you open various editors:

The Information Menu provides help pages, tutorials, and sample telemetry pages.

Menu Item Action

Add-Window Displays a menu of telemetry pages that can be added. To add a page, select first the
directory (eg /s/opr/accounts/global/sam/fmt) and then click on the page name with
the left mouse button.

Delete-Window Displays a menu of all currently displayed telemetry pages that can be deleted. To
delete a page, click on the name with the left mouse button. Iconized pages must be
restored before they can be deleted. ASIST permanent windows cannot be deleted.

Recall-Window Recalls a deleted telemetry page if it has not yet been purged from memory.

Page by Name Opens a window allowing you to open or clear a page by typing its name (no longer of
much use).

Customize SNAP Opens a page which allows you to customize the hardcopy output used by the STOL
directive SNAP.

Hardcopy Creates and prints a graphic hard copy of any displayed window. This selection opens
a page that gives you 4 ways to print a page: positive or negative image, with or with-
out rotation to get the largest possible image on paper. This will produce results differ-
ent from those of the SNAP directive from STOL.

Menu Item Action

Page Editor Starts the ASIST Page Editor.

Emacs Starts the emacs editor in text-editing mode.

Procedure Editor Edits files in your procedure directory with the emacs editor.

Database Editor Edits files in your RDL directory with the emacs editor.

Menu Item Action

Example Pages Opens a button-list of pages demonstrating many features of ASIST, Sammi, and the
Page Editor

About Quick Displays helpful information about how to use the Quick Buttons on the Command
Window.

About ASIST Displays information about and credits for the current ASIST version.
2-4 ASIST Users Guide–Version 9.6

User Interface
T
h
e

T
h
e

The Tools Menu provides a set of utilities that make using ASIST easier (see APPENDIX D: “Tools and Utilities” for
more information).

The Diagnostics Menu gives you access to system internal functions.

If you’re running an X-terminal console session, the Status Window has an additional menu item to the right of “Diagnos-
tics”, labeled “QUIT–Session”. Click this button when you are ready to end the X-terminal console session. The console
can be shutdown from the host workstation with the STOP_XTERM directive (Appendix A for more details).

Menu Item Action

TLM db Browser Opens a tool which browses the telemetry database and interfaces with other windows
that view raw packet data, lookup full database information, or inspect a telemetry
point value. An options button allows you to select from several fields for browsing
and to sort the list alphabetically or by APID.

CMD db Browser Opens a tool which browses the command database and interfaces with the off-line
command report utility to view summaries of commands. An options button allows
you to sort the list alphabetically or by APID.

Easy Plot Opens a window interface to the Plot directive (Appendix A), which opens real-time
plots of telemetry points vs. time.

Easy Archive Opens a window interface to the Archive directive (Appendix A) which allows you to
archive the telemetry you receive.

Easy Playback Opens a window interface to the Acquire Playback directive (Appendix A) which
allows you to playback a local archive.

Local Time Clock Puts a clock with the local time on the ASIST menu bar above the ASIST logo.

Menu Item Action

ConsoleSummary Like “console” button under the ASIST logo (shows summary of X-term consoles).

Sammi Errors Opens a page cataloging exception condition codes received from Sammi. Positive
counts do not necessarily indicate problems.

Sammi view-log Opens a browser page containing the output from Sammi’s view_log command.

Logical Servers Displays a submenu with items used for debugging purposes. Further information is
available in the SAMMI Users Guide.

Runtime Keys Opens a telemetry page in which you can view and edit SAMMI runtime keys.
ASIST Users Guide–Version 9.6 2-5

CHAPTER 2
ASIST Status Window Body

The body of the Status Window is subdivided into five sections. From left to right these sections are: time, spacecraft sta-

tus, FOP-1 status1 (i.e., commanding status), GSE status, and the ASIST logo.

Time Section

Within the time section, the GSE UTC field displays the ASIST system Universal
Coordinated Time (UTC), the S/C UTC field displays the spacecraft UTC as derived
from telemetry, and the S/C MET field displays the spacecraft Mission Elapsed
Time (MET) as derived from telemetry.

In the bottom half of the time status section are three buttons:

Spacecraft Status Section

The spacecraft status section is set aside for you to display information
about your spacecraft's current status. It contains three rows of four
fields whose values and labels you can supply in pseudo-telemetry.
Below are the telemetry points for the labels:

and the names of the corresponding values:

Each name ends in a 2-digit sequence which is a row-column index pair, and each field is nine characters wide.

Additionally, a field is set aside for the mission name (e.g. MIDEX1), using the pseudo-telemetry point gmissionname.

EXAMPLE: To set the third value and label in row two to “ESS BUS I”, use this pseudo-telemetry equation shown below.

1. Named for Frame Operation Procedure of the CCSDS command protocol. Formerly labeled FEDS Status.

Button Action

Purges the system memory cache of all deleted windows, meaning that any windows
added after this point will be read from the disk. This is most useful when designing
pages.

Opens a telemetry page containing push-buttons which mimic the operation of the
numeric keypad in STOL.

Opens the Telemetry-Point Inspector, which allows you to enter a read-key and imme-
diately see the results, without having to edit and save a page.

gsescstatlbl11 gsescstatlbl12 gsescstatlbl13 gsescstatlbl14

gsescstatlbl21 gsescstatlbl22 gsescstatlbl23 gsescstatlbl24

gsescstatlbl31 gsescstatlbl32 gsescstatlbl33 gsescstatlbl34

gsescstatval11 gsescstatval12 gsescstatval13 gsescstatval14

gsescstatval21 gsescstatval22 gsescstatval23 gsescstatval24

gsescstatval31 gsescstatval32 gsescstatval33 gsescstatval34
2-6 ASIST Users Guide–Version 9.6

User Interface
EQUATION=BLOCK
gsescstatlbl23="ESS BUS I"
IF P@ESS_BUS_VOLTAGE <> 0.0 THEN

gsescstatval23=P@ESS_BUS_PWR / P@ESS_VOLTAGE
ELSE

gsescstatval23=0.0
ENDIF

ENDBLOCK

FOP-1 Status

The FOP-1 status section pro-
vides information from the
Front End about the current
command verification status.
counter fields indicating the
current spacecraft and ground
frame counters (used in FOP-1
command verification)

Command State Current Command
Status

Time remaining before
 command verification

“Times Out”

Spacecraft
Command
Counter

Ground
Command
Counter

Button to open More
FEDS Command
Information Pages
ASIST Users Guide–Version 9.6 2-7

CHAPTER 2
GSE Status

The GSE status section is laid out in four subsections, Telemetry, STOL, Miscellaneous, and a Button Row. Several of the
fields in this area are invisible unless relevant to the current situation (such as STOL Wait Mode).

Here are the descriptions for the Telemetry, STOL, and Miscellaneous sub-sections:

Subsection Item Meaning

Telemetry Telemetry Source Where telemetry is coming from. Possible values are FEDS, DHDS, or Local Archive.

I SFDU Count The number of I channel telemetry messages received.

Q SFDU Count The number of Q channel telemetry messages received.

I Status Whether the I channel telemetry source connection is Up, Down, or Unknown.

Q Status Whether the Q channel telemetry source connection is Up or Down, or Unknown.

STOL Procedure The current procedure being run by STOL.

Line The current procedure line being run by STOL.

Wait Mode Shows when STOL is in wait mode.

Execution Mode Indicates when STOL is in a non-execution mode (Search or Error).

Miscellaneous Type and SFID Shows this machine's type (Primary or Associate) and its SFID (if it is an associate).

CMD Link Whether this workstation’s command link is up (connected) or down (unconnected)

Acquiring Which telemetry channels have receipt of telemetry enabled.

Archiving Which telemetry channels are currently being archived.

STOL Section

Telemetry
Section

Misc. Section

Button Row for quick display of
ground system information pages
2-8 ASIST Users Guide–Version 9.6

User Interface
There are several buttons in the GSE Status Section for quick display of ground subsystem information pages:

ASIST Logo Section

Using Quick Buttons: The 6 numbered Quick Buttons are provided so you can attach pages that you need
frequently. The buttons will open any telemetry pages that you assign to them from STOL using the
pseudo-telemetry names Quick1 through Quick6.

You can set the buttons in your user start-up procedure like this:

QUICK1=”link_stat"
QUICK2="STOLSTAT"

Or you can assign them from STOL when you wish. Be sure to use quoted strings.

The status of on-going table
and image loads and dumps.

Graphical over-
view of the status
of the ground
system.

A detailed status
of STOL

A summary
of telemetry
received.

The packet header from
the most recently received
telemetry packet.

Commanding status of
primary workstation.

Status of telemetry
verification

Shows database
compilation specs

STOL
procedure
stack

Disk space
monitor

Shows current state of limit
checking; pressing this button
toggles that state.

Opens a page which summa-
rizes the states of the displays
currently being served.

The version of
ASIST you are
running.

Displays the total
percent of CPU
capacity currently
used.

Displays how often
telemetry pages are
updated (in seconds).The console ID of this status

window (which display or X-
term is this?). 1=host console,
2..8=X-term connection.

6 User-definable Quick
Buttons (numbered1-6).

Opens a page for assign-
ing actions to quick but-
tons.

Access the four
SAMMI event pages.

Open a page which
allows you to set filter
settings for event pages.
ASIST Users Guide–Version 9.6 2-9

CHAPTER 2
Once the QUICK names are assigned you must click on the “Quick” button to open the QuickSetup page and click on the
UPDATE button to install the buttons for use.

Using the Event Page Buttons: The numbered Event Page Buttons provide access to the four SAMMI
events pages. Additionally, a set of pages which set event filters for any event destination area are avail-
able by selecting the Event Pages button. From this window, you can either open a page to set filters for

the desired event page (or line printer), show the current filter settings in the event window, or open one of the SAMMI
event pages (E1 - E4).

SAMMI Command Window

The SAMMI Command Window is hidden
beneath the ASIST Status Window. It contains
the SAMMI command line interface and any
error messages from SAMMI (such as “Invalid
Format - VB_OBJ sizes differ. Format unload/
load required.”).

To make the SAMMI command line visible:

• Move the mouse cursor to the vicinity of the S/C Status section of the ASIST Status Window.

• Hold the alt key down and left-click the mouse.

The SAMMI command entry area is the one-line, light gray box. SAMMI commands may be entered here by placing the
mouse cursor within any portion of the rectangle and typing the desired command (such as, “aw _example_pages”). For
further information about SAMMI commands, see the SAMMI Users Guide.

To push the SAMMI Command Window back down alt-left click on it.

Events Window

The Events Window appears below
the Status Window. This window
displays event messages from the
various subsystems within ASIST
and events from the spacecraft flight
system received in telemetry. The
SETLOG directive allows you to
filter events appearing in this win-
dow.

When ASIST needs to send a message to you, or store a message for future lookup, it sends an event. Events come from
subsystems within ASIST and from the spacecraft flight system through telemetry. You can view events either as they
happen on event pages or afterwards in the event log file (in which all events are written).

ASIST provides five event pages: the X events window shown above, which is always open, and Events Pages 1-4, which
can be opened by using the PAGE directive or by selecting an Event Page button from the ASIST Status Window. Each
page can view a different subset of events as determined with the SETLOG directive.

Sammi messages appear hereType Sammi commands here
2-10 ASIST Users Guide–Version 9.6

User Interface
STOL Window

The STOL window appears in the lower left corner of
the ASIST screen. Here you type STOL commands and
directives and read output from STOL.

This window is subdivided into three major sections
called panes. The topmost pane, labeled Procedure
Input, contains the text for each command or directive
executed in a procedure. The middle pane, labeled
Operator Output, contains output generated by STOL
directives. The bottom pane, labeled Operator Input, is
subdivided into two sections. The top section contains
the last one hundred lines entered and the lower section
is where you type directives.

The Operator Input pane supports both command line recall and command line editing. To recall a previously entered line,
press Ctrl-p (hold down the Ctrl key while pressing the p key) until the desired line is displayed. Pressing Ctrl-n reverses
direction and moves forward through the recalled input lines. Once recalled, a command line may be edited using the left
and right arrow keys and various Ctrl character combinations. The following table lists these commands:

Each of the three panes may be increased in size independently by clicking and dragging the small button on the lower
right side of the pane. The entire contents of each pane may be viewed by clicking and dragging the scroll bar on the left
side of each pane.

Keys Action

Ctrl-a Move cursor to beginning of line

Ctrl-b Move cursor left one character

Ctrl-d Delete character to right of cursor

Ctrl-e Move cursor to end of line

Ctrl-f Move cursor right one character

Ctrl-k Delete all characters to right of cursor

Ctrl-l Redisplay input line

Ctrl-n Recall next command in history list

Ctrl-p Recall previous command in history list

Ctrl-u Delete all characters to left of cursor
ASIST Users Guide–Version 9.6 2-11

CHAPTER 2
Terminal Windows for Command-Line Linux

How to open a Terminal (Linux/unix shell) Window

Place your mouse pointer any-
where in the background area of
your monitor and press the right
mouse button. A menu like the
one here will open. Select New
for another menu, and choose

Terminal from that menu.1 You
will see Welcome to the ASIST
ground system plus version IDs
for Red Hat, ASIST, and
Sammi. The default prompt
shows your hostname and the
current directory.

1. Different versions of Red Hat may have different menu choices; among them is terminal.
2-12 ASIST Users Guide–Version 9.6

User Interface
Telemetry Pages

How to control telemetry pages

What you can do How to do it

Design or Change Select the Editors – Page Editor from the main menu
– OR –
Enter start_format_editor at the UNIX prompt.

Open (Add) Select Windows – Add-Window from the main menu
– OR –
Enter the PAGE directive from STOL.

Close Select Windows – Delete-Window from the main menu
– OR –
Enter the CLEAR directive from STOL
– OR –
Double-Left-Click on the upper left hand corner of the Window Menu Button of the
page you wish to delete.

Print Select Windows – HardCopy from the main menu
– OR –
Enter the SNAP directive from STOL.
ASIST Users Guide–Version 9.6 2-13

CHAPTER 2
How to get information about the contents of a field on a telemetry page

Each page is made up of a number of fields which ASIST puts telemetry values into, called telemetry fields or Dynamic
Data Objects (DDOs) in the Page Editor. You can get information about the telemetry point assigned to any field by posi-
tioning the mouse cursor over the field and clicking a mouse button.

The next two pages show samples of the information pages opened from the DDO Query window. The first is the informa-
tion window for an analog telemetry point, and the second is the information window for a discrete telemetry point.

Action Result

Left-Click
(Select)

Opens a dialog box labeled DDO
Query (or Selected DDO), from
which you can:

• Select the Database Info button
to open a page containing infor-
mation about the telemetry point
(shown on the next two pages);

• Select the Inspect Value button to
open a page displaying the data-
base item’s current value;

• Select the Inspect Readkey button
to open a page displaying the
readkey’s current value;

• Select the Wide button to expand
the readkey and database name
fields (and Narrow to see less
thereafter);

• Select the Strip-Chart Read-Key
button to open a page containing
a strip chart of this telemetry point versus time;

• Select the Dismiss button to close this dialog box.

Middle-Click Opens the Display Server’s quick-message page and shows the DDO’s name, the name of the
page, its console ID, and its read key. Select the Dismiss button to close it.

Right-Click
(Menu)

Opens an option menu, if one has been defined for this field (see the Page Editor Chapter for
more details).
2-14 ASIST Users Guide–Version 9.6

User Interface
FIGURE 2-1. Information window for analog telemetry point FLOAT1
ASIST Users Guide–Version 9.6 2-15

CHAPTER 2
FIGURE 2-2. Information window for discrete telemetry point MDTFWDLINK
2-16 ASIST Users Guide–Version 9.6

User Interface
This example page _APE_paletteer shows most of the graphic data types available in ASIST for telemetry display.

FIGURE 2-3. The telemetry page Paletteer, which demonstrates many of the field types available on telemetry
pages. This page is available under the Example Pages option of the Information menu on the ASIST menu bar.
ASIST Users Guide–Version 9.6 2-17

CHAPTER 2
2-18 ASIST Users Guide–Version 9.6

AS
CHAPTER 3 STOL
STOL Overview

What is it?

STOL (Systems Test and Operations Language) is a language used to communicate with the ground system or the space-
craft. It allows you to collect your commands, save them in scripts, and execute them later. Finally, it has features common
to most programming languages, like IF-THEN-ELSE, WHILE loops, and FOR loops.

Structure

STOL is implemented in two pieces: a compiler and a run-time monitor. Whenever you type a directive into the STOL
window on ASIST, you are communicating with the run-time monitor. The run-time monitor is responsible for communi-
cating with the user, the event logger, the command handler, and all the other ASIST subsystems. It also manages the exe-
cution of your scripts.

The compiler is a stand-alone program which converts your scripts into a more easily executed form. It also verifies that
any telemetry point or command used is valid and that the general syntax of your script file is correct.

What's next

The remainder of this chapter is devoted to explaining the basics of STOL followed by more advanced features. The last
portion of the chapter is a reference guide which exhaustively covers every detail of the syntax and semantics of STOL.
IST Users Guide–Version 9.6 3-1

CHAPTER 3
STOL Basics

Data types & constants

STOL supports a number of different data types, including integers, reals, times, and character strings. Integers range
from -2,147,483,647 to +2,147,483,648 (unsigned integers from 0 to +4294967295) and can be specified in decimal,
binary, octal, or hexadecimal:

37 -1 B'100101' O'45' X'FAB4' 0xfab4

Reals are stored internally in double precision with a range of approximately -4.9e-324 to +1.8e+308; they can be written
in a variety of ways (“D” and “E” are accepted interchangeably for the exponent):

1.0 -879.5 2.25D03 3.6E-01

Character strings should be enclosed in double quotes; a double quote can be inserted in a string by typing two consecu-
tive double quotes:

"S/C Attitude" "OFF" "She said, ""Hello there"""

Absolute times are used to specify the moment an event occurred. They are expressed in the form [yy]yy-ddd-
hh:mm:ss.MMM, where the fields are year, day of year, hour, minutes, seconds, and milliseconds, respectively. The year
range is 1938-2037, the day range is 1-366, the hour range is 0-23, the minutes is 0-59, the seconds range is 0-59, and the
milliseconds range is 0-999. When entering time constants, embedded blanks are not permitted. One or more fields in a
time constant may be omitted in accordance with the following rules:

1. A colon must be present in order for the constant to be recognized as a time constant.

2. Only leading and trailing fields may be omitted.

3. If leading or trailing fields have been omitted, the corresponding delimiters must be omitted as well.

4. If leading and trailing fields have been omitted and it is unclear whether the time constant is hh:mm or mm:ss, STOL
chooses hh:mm.

Any missing fields are supplied by STOL: the year and day default to the current year and day; the remaining fields
default to zero. The year field is interpreted as 1938 through 1999 if specified as “38” through “99” and 2000 through
2037 if specified as “00” through “37”. Some examples:

96-299-13:44:23.109 1995-001-08:22 14:10.25 1:03

Relative times are used to specify a time relative to a known event like T-10 or L+02. Use the following syntax for posi-
tive relative times:

\+yy-ddd-hh:mm:ss.MMM

 or

\yy-ddd-hh:mm:ss.MMM

 and negative relative times use:

\-yy-ddd-hh:mm:ss.MMM

Remember, absolute times start at day 1 (Jan. 1) but relative times always start at day 0. For example, three hours from
now can be represented in STOL as:
3-2 ASIST Users Guide–Version 9.6

STOL
%GMT+\+00-000-03:00:00

while 15 minutes ago can be expressed by:

%GMT+\-00-00-00:15:00

Logical constants can be written in a number of forms:

true false .TRUE. .FALSE. .T. .F. 1 0

Regardless of the form, TRUE is 1 and FALSE is 0.

Creating and using STOL variables

STOL variables are storage locations for data values which are known to STOL. STOL variables names must be com-
posed of one or more letters, digits or underscores (“_”). The first character of a variable name must be a letter or an
underscore. Only the first 31 characters of a name are used. For example:

MY_VAR WA909 __9 This_is_a_very_long_variable_name

STOL variables come in two varieties: global or local.

Global STOL variables are accessible in all procedures, functions, and foreign directives (on a given workstation) and are
created with the GLOBAL directive. For example:

global SUN_DIRECTION, AZIMUTH

creates two new global variables, SUN_DIRECTION and AZIMUTH. If these two variables already exist, the directive
has no effect.

Local STOL variables are accessible only in the current procedure or function, or in any foreign directive the current pro-
cedure or function invokes. Local variables are created with the LOCAL directive. For example:

local CURRENT_SUM

creates a new local variable, CURRENT_SUM. Like the GLOBAL directive, if CURRENT_SUM already exists, the
directive has no effect.

Both local and global STOL variables may contain any data type at any time. It is perfectly legal to assign a character
string to a variable and then later on assign an integer to the same variable. For example:

CURRENT_SUM = 0
 …
CURRENT_SUM = "A new assignment"
 …
CURRENT_SUM =56-078-17:20

Note that STOL variables are accessible only within STOL and not accessible on telemetry pages.
ASIST Users Guide–Version 9.6 3-3

CHAPTER 3
Accessing and using telemetry points

Telemetry points are named data values that are transmitted in groups (called telemetry packets) to ASIST. When teleme-
try packets are received, ASIST stores them in the Current Value Table (CVT). The CVT can be accessed by all processes
in ASIST, so any change to a telemetry point is immediately visible to all processes.

Telemetry point names are formed in the same manner as STOL local and global variables, and are accessed in the same
way. A telemetry point can also be indexed if it is declared to be an array in the telemetry database. For example:

GSE_MISSION_EPOCH ASIST_VERSION[2] WABPATPY

Two special modifiers can be applied to a telemetry point: the engineering unit conversion modifier P@ and the raw
telemetry modifier R@.

The engineering unit conversion modifier applies a mathematical function to the value of a telemetry point. This is useful
for converting a telemetry point value to different units, such as mapping thermistor readings to temperature. The P@
modifier is placed before the telemetry point name. For example:

P@HAH1I P@PAPCU2I P@MBSSC3T[4]

The raw telemetry modifier converts the telemetry point value into a string containing the exact hexadecimal representa-
tion of the value as it was received by ASIST. This is useful for determining exactly how a telemetry point was sent from
the spacecraft. Like the P@ modifier, the R@ modifier is placed before the telemetry point name. For example:

R@MBASMBULKT R@PBPCU1TMP2T R@EAIPCSMLWR[2]

If neither modifier appears, ASIST returns the telemetry point value in counts.
3-4 ASIST Users Guide–Version 9.6

STOL
Interactive STOL

Expressions

An expression is a sequence of operands (STOL variables, telemetry points, or function calls) separated by operators.
Expressions are used to compute a value.

STOL can be used as a high-powered calculator by entering an expression that contains any STOL-supported operator.
STOL will calculate the result and display it.

STOL provides a variety of operators and functions for expressions. The operators can be separated into several catego-
ries: arithmetic, string, logical, and relational.

The arithmetic operators are addition (+), subtraction (-), multiplication (*), division (/), modulus (MOD), remainder
(REM), and exponentiation (**).

Only a single string operator is available, string concatenation (&).

The logical operators are AND, OR, XOR, and NOT. In an expression that uses logical operators, a numeric operand that
evaluates to zero is considered false and an operand that evaluates to non-zero is considered true. Times are treated differ-
ently, if the time operand precedes or is equal to the current time it is considered true, otherwise false.

The relational operators are equal (=), not equal (<>), greater than (>), less than (<), greater than or equal (>=), and less
than or equal (<=).

When you use these operators, you don't need to worry about the data types of the operands, since STOL tries to convert
them to a single type that preserves maximum precision. For example, adding 12 and 3.75 yields 15.75 (a real) instead of
15 (an integer) or multiplying “3” by 2 yields 6 (an integer) not “6” (a character string).

Simple interactive directives

A directive is a command to STOL. The format of a directive is:

directive-name [directive-argument …]

The directive-name is a keyword which tells STOL which directive is to be executed. The directive-name is followed by
any required arguments.

You may put more than one directive on a line by placing a vertical bar (|) between each directive.

The following sections discuss the most fundamental and most frequently used directives. Any of these directives may be
entered in the STOL window.

WRITE

The WRITE directive displays the value of an expression. This value is output to the STOL Operator Output window and
the event log. The format of the WRITE directive is:

write expression [, expression …]
ASIST Users Guide–Version 9.6 3-5

CHAPTER 3
For example, if you want to see the current ASIST version number:

write ASIST_VERSION

or, if you want to display whether limit checking is enabled or disabled:

write "Limit checking is ",P@GSE_LIMITCHECK

Observe that if more than one expression is supplied, the WRITE directive appends the result of each expression without
any spaces or separators.

Assignment

The assignment directive evaluates an expression and assigns the result to a STOL local variable, STOL global variable,
or a telemetry point. The format of an assignment is:

target-variable = expression

If target-variable is not defined as a STOL variable or as a telemetry point, it is automatically created as a STOL local
variable.

If target-variable is a telemetry point, it may be assigned either in counts (by specifying the telemetry point name) or in
engineering units (by prefixing the telemetry point name with P@). When assigning values in engineering units, ASIST
internally converts it to counts and this count value is assigned to the CVT variable. In situations where there is more than
one solution (i.e. polynomials of degree greater 1), a solution is picked at random.

For example, to assign the product of 3.141592 and the square of 6 to local variable AREA use:

AREA = 3.141592 * (6**2)

or, to create local variable, MY_NAME, and assign “Jim” to it, enter:

MY_NAME = "Jim"

or, to assign a value in engineering units to a telemetry point, enter:

P@FLOAT1 = 50.5

Note that you can break a long computation down into several steps by evaluating pieces of the computation, assigning
each piece to a local variable, and then combining the local variables in a shorter expression. For example:

PI = 3.141592
R_SQUARED = 6**2
AREA = PI * R_SQUARED

Command

A command causes a bit string to be created and sent to the spacecraft or a foreign command destination (such as a ground
station or an external piece of controllable ground support equipment). The event log displays the bit string actually sent
and the destination's response to the command. The format of a command is:

/command-name [parameter | parameter=value] …
3-6 ASIST Users Guide–Version 9.6

STOL
The command-name and parameter arguments are defined in the ASIST command database and are usually unique for
each destination. The value argument may be specified as a simple constant or as an expression (see CHAPTER 5-“Com-
mand Database Compiler” to learn how to define commands).

For example, (using XTE spacecraft commands) to send a noop command use:

/SNOOPCMD

to start absolute time sequence B in the attitude control system, use:

/ASCSTARTA ATSB

to set the spacecraft clock to 1200 seconds, enter:

/STCJAMCLK TSEC=1200

or to copy 64 words from standby processor RAM location 1000 to 8000, use:

/SYSMMCOPY RAM FROM=1000 TO=8000 NWORDS=64

EXIT

The EXIT directive exits STOL and shuts down the entire ground system. You will be prompted with:

 EXIT STOL! Are you sure?

If you enter “y” or “ye” or “yes”, STOL will exit. If you enter anything else, the EXIT directive is ignored and STOL con-
tinues to accept directives.

Recalling a Previous Entry

STOL provides an entry recall mechanism that makes it easy to correct a mistyped directive or to repeat a command sev-
eral times. In addition to recalling previous entries, STOL has simple editing capabilities. The recall and editing features
are activated by these keystrokes:

Warning - these keys are case sensitive so make certain that CAPS LOCK is not in effect when using them.

TABLE 3-1. Keystrokes for recalling and editing previous entries in STOL

Key Action

Up Arrow Recalls previous entry

Down Arrow Recalls next entry

Left Arrow Moves cursor left one character

Right Arrow Moves cursor right one character

^a Moves cursor to the beginning of line

^e Moves cursor to the end of line

Backspace Delete character to the left of the cursor

^d Delete character under the cursor
ASIST Users Guide–Version 9.6 3-7

CHAPTER 3
Compiled STOL

Saving and Using Sequences of Directives (procedures)

Normally, when you test a spacecraft component or operate a spacecraft, you must send many commands and display
many values. Entering many directives into the STOL window is error-prone and time-consuming. Instead, the sequence
of directives can be placed in a file (called a procedure file) and then executed over and over again. This method of storing
and reusing a sequence of directives is discussed in the following sections.

Statements

Before we discuss how to create a procedure file, we will describe the structure of a single statement in a procedure file.
The format of a statement is:

[label:] directive [arguments] [;comments]

where

label identifies the line for later use as the target of a GOTO directive. Labels are composed of one or more letters,
digits or underscores (“_”). The first character of a label must be a letter or an underscore. For example:

RESTART: ;Restart entry point
Show_Data: page stolstat ;Display page "stolstat"

directive is a keyword that instructs STOL to perform some action. It can be a built-in STOL directive or a user-
defined directive. For example:

acquire i on ;Start receiving telemetry
Show_Data: page stolstat ;Display page “stolstat”

arguments are a list of parameters that the directive needs to perform the requested action. The parameters can be sep-
arated by spaces, tabs, or commas. For example:

acquire i on ;Start receiving telemetry
Show_Data: page stolstat ;Display page "stolstat"

comment is user annotation of the directive. All characters after the semicolon are ignored.

acquire i on ;Start receiving telemetry
Show_Data: page stolstat ;Display page “stolstat”

Statements can be continued on successive lines by typing two semicolons. Anything after the two semicolons is consid-
ered a comment. For example:

seqprint on item1 using %f ;;
 item2 using %d ;; This is an integer
 item3 to “myfile.dat”

Warning - a single STOL statement, including all continuation lines, must not exceed 1024 characters. An error will occur
if you exceed this length. You may put more than one directive on a line by placing a vertical bar (|) between each direc-
3-8 ASIST Users Guide–Version 9.6

STOL
tive. This is subject to the constraint that a command must be the first directive on the line. Do not place while loops, for
loops, do loops, or conditional waits on a single line with a vertical bar.

How to write a procedure

Using the procedure editor

In order to create a procedure, you must first start the procedure editor. Enter the following in the STOL window:

EMACS procedure-name.prc

Note that any procedure you create must have the .prc file type and that procedure-name must be a valid STOL name
(composed of letters, digits, or underscores; the first character must be a letter or underscore).

Once the editor window is displayed, selecting the window and then typing causes text to be entered into the procedure
file. The following editor keystrokes are probably the most useful:

For more details,see APPENDIX B-“Editing Files with EMACS” .

PROC/ENDPROC statements

The first thing you must do is to identify this file as a procedure file. You do this by entering a PROC statement as the first
line of the file (comments may precede the PROC statement if you like). The format of the PROC statement is:

TABLE 3-2. Common editing keystrokes in the procedure editor (^ means control-key)

Keystroke Action

Up arrow Move cursor up one line

Down arrow Move cursor down one line

Left arrow Move cursor left one character

Right arrow Move cursor right one character

^a Move cursor to beginning of line

^e Move cursor to end of line

Esc < Move cursor to top of file

Esc > Move cursor to bottom file

Backspace Delete character to the left of the cursor

^d Delete character under the cursor

^k Delete line from cursor to end of line

^Space Start select region

^w Cut select region to paste buffer

Esc w Copy select region to paste buffer

^y Paste contents of paste buffer

^s Search for a string

^x^s Save file

^x^c Exit editor
ASIST Users Guide–Version 9.6 3-9

CHAPTER 3
PROC procedure-name ([parameter-list])

procedure-name should be the same as the file name (without the .prc). You may also supply a list of comma-separated
names for parameter-list. The parameter-list is used to pass data values from an invoking procedure to this procedure.

After the PROC statement, you can enter any number of directives you like. At the end of all your directives, you must
enter an ENDPROC statement. The format of an ENDPROC statement is:

ENDPROC

An ENDPROC statement may be followed by comments only.

The simplest procedure you can write is:

PROC the_simplest()
ENDPROC

A slightly more complex procedure is:

PROC slightly_more_complex()
WRITE "Hi mom"

ENDPROC

Creating local and global variables in a procedure

Your procedure may require temporary variables in order to store intermediate results. You can create temporary variables
that are accessible in your procedure only, by using the LOCAL directive:

LOCAL name [[array-bound(s)]] [= initial-value(s)] [,name …]...

where:

For example in:

PROC local_vars
LOCAL a, b=3, c=b*2

Element Meaning

name the name of the local variable that is created.

array-bound(s) the bounds for an array (may be up to three dimensions). This is a comma-separated list of up to three array
bounds, in the form:

 [lower-bound ..] upper-bound

where lower-bound and upper-bound define the ranges of the array (i.e. A[4..6] has three elements, A[4],
A[5], and A[6]). If no lower-bound is defined, the default is 1.

For example:

 LOCAL OneDimensional[4..6], TwoDimensional[0..4,0..8],
 ThreeDimensional[5,5,5]

initial-value(s) the initial value of name. For a scalar, this is an expression (i.e. 3, b*2, “Hello TC”). For arrays, this is a
comma-separated list of expressions, contained in brackets (or nested brackets for multi-dimensional arrays),
with one initial value for each element of the array (i.e. A[3]=[4,5,6] or B[2,3]=[[2,3], [4,6], [3,7]]).

If no initial-value is specified, the value (or each member for an array) is initialized to the null string (““).
3-10 ASIST Users Guide–Version 9.6

STOL
a = c * 2.71828
WRITE “A = “,a

ENDPROC

The local variable a is created and assigned the null string, b is created and assigned the initial value of 3, and c is created
and assigned the initial value of 6. Once this procedure has completed, the local variables a, b, and c are destroyed and
are inaccessible. If the procedure is reexecuted, its local variables are created and initialized all over again.

or

PROC local_arrays
LOCAL not_much[2]
LOCAL array[4] = [1,2,3,4]
LOCAL vector[0..1,-1..1] = [[2,6,8],[3,7,9]]
…

ENDPROC

The arrays array (a four-element array whose bounds are 1..4) and vector (a two-dimensional array) are created and
assigned the indicated initial values, while not_much (a two element array whose bounds are 1..2), is created with each
element assigned the null string (““). Like the previous example, these variables are destroyed and inaccessible when the
procedure has completed.

NOTE: For the purposes of array assignment, the actual array bounds are not important–only the length of each dimension
and the number of dimensions. So that two arrays created like this:

LOCAL array1[-1..1,-1..1], array2[3,3]

can be assigned like this:

array1 = array2

If a procedure contains more than one LOCAL directive and the same name occurs in different LOCAL directives, then
as long as the second LOCAL directive does not contain an initialization expression, the directive does not disturb the
contents of the variable.

You may also want to use variables that continue to exist even after the procedure in which they were created has exited.
You can create variables like, this using the GLOBAL directive:

GLOBAL name [[array-bound(s)]] [= initial-value(s) [READONLY]] [,name …]...
ASIST Users Guide–Version 9.6 3-11

CHAPTER 3
where:

Similar to the local variables above, each name is created and optionally assigned the initial-value(s). If no expression is
given, the newly created variable is assigned the null string. For example:

PROC global_vars
GLOBAL current_value
LOCAL previous_value
previous_value = current_value
current_value = previous_value + 1
WRITE “Current value = “,current_value

ENDPROC

In this procedure, the global variable current_value is created and initially assigned the null string. Later in the pro-
cedure, a new value is assigned to current_value. Once the procedure has completed execution, the local variable is
destroyed, but the global variable retains its value and can be referenced again when this procedure or some other proce-
dure is executed. Remember, all procedures that wish to reference this global variable must include a GLOBAL directive
for it.

Providing an initialization expression in the GLOBAL directive is generally not recommended because the initialization
will occur every time the directive is executed.

Both the LOCAL and GLOBAL directive may occur anywhere in your procedure that you like. Of course, they must
appear prior to the use of any variables contained in them. Usually, LOCAL and GLOBAL directives are placed immedi-
ately after the PROC directive.

Element Meaning

name the name of the local variable that is created.

array-bound(s) the bounds for an array (may be up to three dimensions). This is a comma-separated list of up to three array
bounds, in the form:

 [lower-bound ..] upper-bound

where lower-bound and upper-bound define the ranges of the array (i.e. A[4..6] has three elements, A[4],
A[5], and A[6]). If no lower-bound is defined, the default is 1.

For example:

 LOCAL OneDimensional[4..6],TwoDimensional[0..4,0..8],

 ThreeDimensional[5,5,5]

initial-value(s) the initial value of name. For a scalar, this is an expression (i.e. 3, b*2, “Hello TC”). For arrays, this is a
comma-separated list of expressions, contained in brackets (or nested brackets for multi-dimensional arrays),
with one initial value for each element of the array (i.e. A[3]=[4,5,6] or B[2,3]=[[2,3], [4,6], [3,7]]).

If no initial-value is specified, the value (or each member for an array) is initialized to the null string (““).

READONLY specifies that this variable is read-only, meaning that it can only be assigned in the definition. Any attempts to
assign it later will cause an error (this also applies to any GLOBAL directive which might attempt to reini-
tialize it).
Note that you can make a variable read-only only if it is initialized.
3-12 ASIST Users Guide–Version 9.6

STOL
Referencing parameters within a procedure

You can increase the usefulness of your procedures by specifying a parameter list in the PROC directive. The names you
specify in the parameter list can be used just like local variables in your procedure. For example, to create a procedure that
adds two numbers and prints the sum, enter:

PROC add_two(n1, n2)
WRITE "The sum of ",n1," and ",n2," is ",n1+n2

ENDPROC

or, to create a procedure that computes the area and circumference of a circle, enter:

PROC circle_data(radius)
LOCAL area, circumference
circumference = 3.141592 * 2.0 * radius
area = 3.141592 * (radius ** 2)
WRITE "The circumference is ",circumference
WRITE "The area is ",area

ENDPROC

Making decisions - using IF/THEN/ELSE

You will rarely write procedures that start from the first directive and execute each directive one after another. Instead,
you will test the value of a telemetry point or perhaps a STOL variable and then conditionally execute a selected group of
directives. The IF directive is used for this purpose.

The IF directive is available in two forms: a single line form and a multi-line form. The single line form is:

IF condition-expression directive

When this form of the IF directive is executed, condition-expression is evaluated and if the result is true, then directive is
executed. If the result is false, directive is ignored and execution continues with the next statement. Note that directive
may not be a command. For example:

IF (solar_panel_temp > 14.5) WRITE "Solar panel overheated"

The multi-line form of the IF directive is:

IF if-expression THEN

if-directives

ELSEIF elseif-expression THEN

elseif-directives

ELSEIF elseif-expression THEN

more-elseif-directives …

ELSE

else-directives

ENDIF

When this second form of the IF directive is executed, if if-expression evaluates to true, then all of if-directives are exe-
cuted and execution resumes with the statement after ENDIF. If if-expression evaluates to false, then each elseif-expres-
sion is evaluated. If any elseif-expression evaluates to true, then the corresponding elseif-directives are executed and
ASIST Users Guide–Version 9.6 3-13

CHAPTER 3
execution continues with the statement after the ENDIF statement. Finally, if each elseif-expression evaluates to false,
then all else-directives are executed. For example:

IF (case = 1) THEN
sum = sum * 10
WRITE "sum * 10 = ", sum

ELSEIF (case = 2) THEN
sum = sum - 5
WRITE "sum - 5 = ",sum

ELSEIF (case = 3) THEN
sum = sum / 2
WRITE "sum / 2 = ",sum

ELSE
WRITE "case value is invalid"

ENDIF

Note that both the ELSEIF clause and the ELSE clause are optional.

Repeating a block of statements - using DO, WHILE, or FOR

In addition to using IF to conditionally execute directives, you may also want to execute a group of directives more then
once. There are three directives for this purpose: the DO directive, the WHILE directive, and the FOR directive.

All three of these directives allow you to execute a block of directives repeatedly, but in a slightly different manner. The
DO directive looks like this:

DO [UNTIL expression]

directives

ENDDO

The DO directive begins by evaluating expression. If expression is true, then execution resumes with the statement after
ENDDO. If it is false, then each directive in directives is executed and the process is repeated by reevaluating expression.
If no UNTIL clause is specified, then the loop never terminates. Examples:

DO UNTIL i > 10
i = i + 1

ENDDO

or

DO
i = i + 1
WRITE "I = ",i

ENDDO

The WHILE directive looks like this:

WHILE expression DO

directives

ENDDO
3-14 ASIST Users Guide–Version 9.6

STOL
Similar to the DO directive, the WHILE directive begins by evaluating expression. If expression is false, then execution
resumes with the statement after ENDDO. If expression is true, all directives are executed and the process is repeated by
reevaluating expression. For example:

WHILE i < 10 DO
WRITE "i = ", i
 i = i + 1

ENDDO

Finally, the FOR directive looks like this:

FOR variable = low [DOWN] TO high [STEP incr] DO

directives

ENDDO

 The FOR directive begins by evaluating low and assigning the value of low to variable. The value of variable is then
tested to determine whether it is greater than the value of high (less than, if DOWN is used). If it exceeds high, then exe-
cution resumes with the statement after ENDDO. If not, then each directive in directives is executed and the value of incr
(1, if no STEP is specified) is added to variable. This process is repeated until variable exceeds high. Some examples:

FOR i = 1 to 10 DO
WRITE "I = ",i

ENDDO

or

FOR j = 20 DOWN TO 5 step -2 DO
product = telemetry_array[j] * j
WRITE "PRODUCT= ",product

ENDDO

Waiting for an event

You may need to pause your procedure to wait indefinitely, for a specific amount of time or for an event to occur. The
WAIT directive provides all of these features. It comes in three forms: indefinite wait, timed wait, and conditional wait.

The format of an indefinite wait is:

WAIT

When an indefinite wait is encountered in your procedure, it pauses immediately and waits for a directive to be entered.
You may type GO to resume your procedure.

The format of a timed wait is:

WAIT expression

where expression is the amount of time in seconds and, optionally, milliseconds to wait. Upon encountering a timed wait
in your procedure, the procedure is halted until you enter a directive which changes the state of STOL (like GO or POSI-
TION) or until the specified number of seconds has elapsed.

The format of a conditional wait is:

WAIT UNTIL expression
ASIST Users Guide–Version 9.6 3-15

CHAPTER 3
where expression is the condition your procedure is waiting on. When STOL executes a conditional wait, expression is
evaluated once every second. If expression evaluates to TRUE, the procedure continues with the next line. You may over-
ride a conditional wait by entering a directive which changes the state of STOL (like GO).

The following example illustrates the use of each wait directive:

PROC take_picture
; First turn camera on
/CAMERA POWER=ON

; Enter GO when camera is powered up
WAIT

; Now enable the flash unit
/CAMERA FLASH=ARMED

; Wait 10 seconds and 20 milliseconds for flash to charge
WAIT 10.020

; All set, expose the film
/CAMERA TRIP_SHUTTER

; Wait for shutter to open and close
WAIT UNTIL SHUTTER_STATE="OPEN"
WAIT UNTIL SHUTTER_STATE="CLOSED"

; Turn off camera
/CAMERA POWER=OFF

ENDPROC

Exiting your procedure

Normally, you don't need a special directive at the end of your procedure. When the ENDPROC statement is reached,
control is returned automatically to the invoking procedure. However, occasionally you may need to terminate the execu-
tion of a procedure prematurely. The RETURN directive causes a procedure to exit immediately. The form of the
RETURN directive is:

RETURN

The RETURN directive can appear anywhere inside of your procedure file. For example:

PROC divide_some(n1, n2)
IF (n2 = 0) THEN

WRITE "The divisor must not be 0"
RETURN

ENDIF
WRITE "The quotient is ",n1 / n2

ENDPROC
3-16 ASIST Users Guide–Version 9.6

STOL
How to run a procedure

Compiling a procedure

Once you have entered your procedure and exited from the editor, you must compile it. Compiling does two things, it val-
idates the syntax of your procedure and converts it to an executable form. To compile your procedure enter the following
in the STOL window:

STOL_COMPILER procedure-name

procedure-name is the name of the file that contains the procedure. For example, if you have a procedure file called
“useful_proc.prc” then you compile it with:

STOL_COMPILER useful_proc

After you have entered this line, the “STOL Compiler” window appears and displays something like this:

STOL compiler version 3.22

Compilation Summary
0 error(s)
0 warning(s)
2 file(s) processed
460 lines processed

In this example, the file compiled with no errors. If your procedure contains errors, they will be displayed in the following
format:

"source-file", line source-line: [ERROR] error-message

For example:

"buggy.prc", line 34: [Error] Command CANCEL is not defined

If more than a single screen full of messages is present, you can select the “STOL Compiler” window and press the space
bar to see the next screen. You can also press b to backup a screen. To delete this window press q.

If errors are found in your procedure file, you must correct them and recompile your file. The STOL compiler does not
produce an executable file when there are errors.

Using the START directive

To execute a compiled STOL file, enter a START directive in the STOL window (it may also be used in your procedure
file to start other procedures). The form of the START directive is:

START procedure-name [(arguments)]

procedure-name is the name of the procedure file you want to execute, while arguments is a comma-separated list of argu-
ments to pass to the procedure. For example, to start a procedure named OBSON with no arguments:

START OBSON

or, to start a procedure named CIRCLE_DATA with one argument, use:

START CIRCLE_DATA(2.3)
ASIST Users Guide–Version 9.6 3-17

CHAPTER 3
Once you have started a procedure, it will execute until the end of the procedure is reached or a RETURN directive is
executed.

If you start a procedure from the STOL window, there are two additional options available - the AT clause and the
UNTIL clause. Both of these options follow the START directive.

The AT clause lets you specify a label or line number to begin execution with. For example, using the following proce-
dure:

PROC powerup ;line #1
; ;line #2
; Powerup instrument 1 ;line #3
; ;line #4
power_on_1: ;line #5
/psduon channel=1 normal ;line #6
instrument_1_on = TRUE ;line #7
; ;line #8
; Powerup instrument 2 ;line #9
; ;line #10

power_on_2: ;line #11
/psduon channel=2 normal ;line #12
instrument_2_on = TRUE ;line #13

ENDPROC ;line #14

To start this procedure at the label POWER_ON_2 without executing any preceding statements, enter:

START powerup AT power_on_2

or, using a line number:

START powerup AT 11

The UNTIL clause lets you specify a line number in the procedure to pause at. For example, to start procedure POW-
ERUP and execute until it has reached line number 11, enter:

START powerup UNTIL 11

You can combine both the AT clause and the UNTIL clause. For example, to execute line number 12 of procedure POW-
ERUP, use:

START powerup AT 12 UNTIL 13

Monitoring procedure execution

After you've started a procedure, you can monitor its execution by displaying the STOLSTAT page. Clicking on the button
marked STOL in the ASIST status window displays the STOLSTAT page (alternatively, an abbreviated status area is
always visible directly beneath the STOL button).

The STOLSTAT page is divided into three sections. The upper section displays general information from STOL. The mid-
dle section of the STOLSTAT page contains mode fields which describe various STOL execution states and the lower sec-
tion contains settings for several local internal variables (note that the PROCEDURE ECHO, STORED ECHO, and
HISTORY LINES fields are no longer used).
3-18 ASIST Users Guide–Version 9.6

STOL
How to halt the current procedure

As a procedure is executing, you can pause it indefinitely by using the WAIT directive. The WAIT directive looks like:

WAIT

You can enter the WAIT directive at any time. As soon as the WAIT directive is entered, the procedure wait state changes
from “none” to “indefinite wait”.

Once the current procedure wait state is “indefinite wait” (or any wait state other than “none”) you have several choices.
You can:

• execute any legal directive from the STOL window,

• start another procedure,

• resume execution,

• reposition to another line in the procedure,

• leave the procedure.

Resuming execution of a procedure

You may resume a procedure that is waiting by using the GO directive. The format of the GO directive is:

GO [UNTIL line-number]

The optional UNTIL clause lets you specify a line number to pause the procedure at. For example, to resume a procedure
that is waiting, type:

GO

or, if you want pause at line 43 then use:

GO UNTIL 43

Repositioning inside a procedure

Occasionally, when you have paused a procedure, you may want to resume execution at a different line. There are two
directives for this - the GOTO directive and the POSITION directive.

The GOTO directive starts execution immediately at the given label or line number. The form of the GOTO directive is:

GOTO label | line-number [UNTIL until-line-number]

The label or line-number specifies where execution is to resume. The UNTIL clause lets you specify the number of a line
to pause at. For example, to resume execution at line number 87 use:

GOTO 87

or, to resume execution at the line labeled INSTRUMENT_STARTUP and then pause at line 53, enter:

GOTO INSTRUMENT_STARTUP UNTIL 53

The POSITION directive changes the current line to the specified label or line number, execution does not resume until
you enter GO or GOTO. The format of the POSITION directive is:
ASIST Users Guide–Version 9.6 3-19

CHAPTER 3
POSITION label | line-number

The label or line-number tells STOL where to position the current line to. For example to reposition to line 12, enter:

POSITION 12

or, to position to the line containing the label START_6, enter:

POSITION START_6

Leaving a procedure

If, after pausing a procedure, you decide that further execution is not useful, you can leave the procedure by entering the
KILLPROC directive. The format of the KILLPROC directive is:

KILLPROC [ALL]

The KILLPROC immediately terminates the current procedure. If the current procedure was invoked by another proce-
dure, STOL positions the current line to the line after the invoking START directive and changes the procedure wait state
to “indefinite wait”. If the optional ALL argument is specified, all active procedures are terminated. For example, to leave
the current procedure, use:

KILLPROC

or, to exit all active procedures enter:

KILLPROC ALL

Advanced topics

This section discusses topics which you need to be familiar with if you plan on writing lots of STOL procedures.

Procedure execution during ASIST start-up

If there are global variables or foreign directives you must define or there are commands or other actions which need to be
performed during ASIST start-up, you can write a user start-up procedure that is executed immediately after the ASIST
start-up procedure. To be executed, this procedure must be named user_startup and it must exist in the $WORK/prc
directory.

The user start-up procedure is called with no arguments. A simple user start-up procedure is:

PROC user_startup
GLOBAL user_startup_executed
GLOBAL startup_time
GLOBAL instruments_powered_off
IF not user_startup_executed THEN

startup_time = %gmt
instruments_powered_off =TRUE
UPLINK RESET
UPLINK MISSION FEDEX
UPLINK RETRIES 0

ENDIF
3-20 ASIST Users Guide–Version 9.6

STOL
;CYCLE (RESET) S/C PROCESSOR A, UPLINK PULSE 1
DIRECTIVE '/CSPARST'(keyword) IS
BEGIN

IF keyword = "" THEN
WRITE "/CSPARST MUST BE FOLLOWED BY A or B"

ELSEIF keyword = "A" THEN
FRAME 2069080600C101

ELSEIF keyword = "B" THEN
FRAME 2069080600C141

ENDIF
END
user_startup_executed = TRUE

ENDPROC

Passing arguments to STOL Procedures

If you write a STOL procedure, you need to be aware of the method used to pass arguments from the calling procedure to
the called procedure. STOL passes the value of each argument into the called procedure. This method is known as call-by-
value. For example:

START my_proc(12)

begins execution of the procedure MY_PROC, with the first parameter assigned the value 12.

An argument may be a constant or an expression. As in the example, if a constant is passed, its value is assigned to the
corresponding parameter in the called procedure. If an expression is passed, the expression is evaluated and the resulting
value is assigned to the parameter. For example, using the following procedure:

PROC call_by_value(p1, p2, p3)
write "Parameter #1 = ",p1
write "Parameter #2 =",p2
write "Parameter #3 = ",p3

ENDPROC

and if called by:

START call_by_value(77.5, bus_power, (2 * 4))

then:

• P1 is assigned the value 77.5,

• P2 is assigned the value of BUS_POWER,

• P3 is assigned the value 8.

Computing variable names

STOL allows you to reference a variable or command whose name you compute as your procedure is executed. There are
two reasons why you need this ability: to build variable names in STOL, or to select telemetry points and commands
based on some common characteristic (e.g. a redundant component).

A computed variable name is signified by the use of the %NAME function. The format of the %NAME function is:

%NAME(expression)
ASIST Users Guide–Version 9.6 3-21

CHAPTER 3
where expression is any valid expression that evaluates to a string. This may be shortened to { expression } if you like. For
example to reference a STOL variable named COUNTS that is suffixed with the variable LOC use:

{ "COUNTS" & loc } or %NAME("COUNTS" & loc)

If LOC is assigned the value 3, then the result of evaluating the above expression is the name COUNTS3. The expression
%NAME("COUNTS" & loc) can usually be used anywhere that you can use the name COUNTS3.

As an extended example, lets initialize 5 variables, named VAR1, VAR2, VAR3, VAR4, and VAR5, to 0:

FOR i = 1 to 5 DO
%NAME("VAR" & I) = 0

ENDDO

After this fragment of code executes, there will be five STOL variables, named VAR1, VAR2, VAR3, VAR4, VAR5, all
initialized to 0.

The situations in which you can use computed variable names are restricted. They are:

1. as a STOL variable or telemetry point name in an expression,

2. as a STOL variable or telemetry point name which is the target of an assignment,

3. as a command name in a command,

4. as a parameter name in a command,

5. in a LIMIT, LIMIT DEF, LIMIT UNDEF, POLY, or TREND directive as the telemetry point name,

6. in a LOCAL or GLOBAL directive as the STOL variable name,

7. in a non-standard foreign directive argument list.

8. as a target of a GOTO directive.

 Commands in Procedures

If you place a command in a procedure and execute that procedure, the command is first sent to the ASIST command han-
dler. The STOL runtime monitor waits for an acknowledgment from the command handler before proceeding. This wait is
referred to as a “local wait” since STOL is waiting for a response from the local system. The number of seconds that
STOL will wait is controlled by the LOCAL_TIMEOUT local internal variable (See “STOL internal variables” on
page 3–39.). If no response is detected in this amount of time, STOL reports a local response time-out error. This is usu-
ally a very serious ground system error and should be reported to the ASIST support team as soon as possible.

If a local response is received and indicates that the command was not rejected, then the STOL runtime monitor waits for
an acknowledgment from the command destination (usually the spacecraft). This wait is referred to as an “end-to-end
wait”. The number of seconds STOL will wait for this response is controlled by the END_TO_END_TIMEOUT local
internal variable. If no response is detected in this amount of time, then STOL reports an end-to-end response time-out
error. This can happen for a variety of reasons–telemetry from the destination is turned off (in the case of COP-1 proto-
col), the destination is in the wrong configuration, a ground system component is in the wrong configuration, or the desti-
nation is very busy and has not yet been able to respond to your command.

If the end-to-end response is received and indicates that the command was not rejected, then STOL resumes execution
with the next statement in the procedure.

You can modify this behavior in four ways:
3-22 ASIST Users Guide–Version 9.6

STOL
1. setting the local internal variable END_TO_END_WAIT to FALSE (or 0) causes STOL to resume execution after
sending a command without waiting for the end-to-end response (it still waits for the local response);

2. setting the local internal variable SEND_COMMANDS to FALSE (or 0) causes STOL to print the command’s bit
string in the event log but not actually send the command;

3. setting the local internal variable COMMAND_POST_VERIFIER to the name of a foreign directive causes STOL to
invoke this directive when a successful end-to-end response is received. The foreign directive is passed a single argu-
ment, the command name.

4. Using the SYNCHRONIZE MANUAL directive causes information about each command to be saved and then
allows the procedure to resume execution without waiting for the end-to-end response. When you want to wait for the
end-to-end responses on all prior commands use the SYNCHRONIZE NOW directive. You cannot have more than
100 commands outstanding.

You can use the SHOW PENDING directive to display the state of commands sent from STOL. The state of a command
can be observed until an end-to-end response is received, or an error occurs.

The SHOW PENDING output looks like this:

Tag State Command
12 LRES /SCINOOP

The TAG field contains the command id number and can be used to trace the command in the event log. The STATE field
displays the current state of the command from the following list:

The COMMAND field contains the text of the command. A command that contains an asterisk before the leading / has
been sent by the operator from the STOL command line.

Defining new directives

In addition to allowing you to collect sequences of statements into a procedure file, STOL lets you create your own direc-
tives. Directives that you write are called foreign directives and are similar to procedure files because they are composed
of sequences of statements. However, when a foreign directive executes, it acts like a built-in STOL directive - each line is
not echoed as it is executed and any error causes the directive to be exited immediately.

To create your own foreign directive use:

DIRECTIVE directive-name [(parameter-list)] IS

 [directive-attributes]

BEGIN

STATE What it means

LRES Waiting for a local response

LHAZ Waiting for a hazardous command response

LWAI Waiting for a proceed response

ERES Waiting for an end-to-end response

EACC Command accepted by destination

EREJ Command rejected by destination

ETRA Command cancelled by destination

UNKN Command in unknown state
ASIST Users Guide–Version 9.6 3-23

CHAPTER 3
directive-statements

END

where directive-name is the name of the directive, parameter-list is a comma-separated list of identifiers, directive-
attributes are zero or more lines of attributes, and directive-statements are one or more lines of valid STOL statements. A
simple example of a foreign directive is:

DIRECTIVE pretty_simple(stuff,fluff) IS
BEGIN

WRITE "This is stuff: ",stuff
WRITE "and this is fluff:",fluff

END

The directive attributes allow you to specify different names for the same directive or to indicate how the arguments to the
directive are to be processed.

The ALIAS attribute lets you specify a comma- separated list of alternate names for a foreign directive. This is useful if
you want to abbreviate the name, for example:

DIRECTIVE pretty_simple(stuff,fluff) IS
ALIAS pretty, pre, new_stuff

BEGIN
WRITE "This is stuff: ",stuff
WRITE "and this is fluff:",fluff

END

could be invoked using PRETTY, PRE, or NEW_STUFF.

The STANDARD attribute (which is the default) tells STOL to evaluate arguments before passing them to the directive.
Each argument is passed to the corresponding parameter in the body of the directive. Arguments are separated by either a
space, comma, or tab when calling this directive.

Evaluation of arguments in a directive is different from argument evaluation when starting a STOL procedure (using the
START directive). Constants and parenthesized expressions are evaluated and the value is passed, but single identifiers
are passed as character strings. Using this example:

DIRECTIVE pretty_simple(stuff,fluff) IS
ALIAS pretty, pre, new_stuff
STANDARD

BEGIN
WRITE "This is stuff: ",stuff
WRITE “and this is fluff:”,fluff

END

and entering:

pretty_simple 22,33

displays:

This is stuff: 22
and this is fluff: 33
3-24 ASIST Users Guide–Version 9.6

STOL
while entering:

pretty good stuff

displays:

This is stuff: GOOD
and this is fluff: STUFF

and entering:

new_stuff (45+2),(45-2)

displays:

This is stuff: 47
and this is fluff: 43

The NOT STANDARD attribute tells STOL to collect all the directive arguments together into a single string and pass
the string to the first directive parameter. Using this directive:

DIRECTIVE quote_this(rest_of_line) IS
NOT STANDARD

BEGIN
WRITE """",rest_of_line,""""

END

and entering:

quote_this save the chihuahuas, our children need them

yields:

"save the chihuahuas, our children need them"

Note that if both the STANDARD and NOT STANDARD attributes appear, the directive will be NOT STANDARD.

The NOT STANDARD attribute is used so frequently that foreign directives with this attribute are referred to as non-
standard foreign directives.

If you do write your own foreign directives, the STOL compiler must know about them before you use them in a proce-
dure. There are two ways to inform the STOL compiler: by completely defining the foreign directive before it is used in
your procedure file, or by using a FORWARD directive definition before calling the foreign directive. The first method
looks like this:

DIRECTIVE flag_start IS
ALIAS fs

BEGIN
WRITE "Starting at ",%gmt

END
PROC do_it

WRITE "Step 1"
flag_start
.
.

ASIST Users Guide–Version 9.6 3-25

CHAPTER 3
.
ENDPROC

The second method looks like:

DIRECTIVE flag_start IS
ALIAS fs

FORWARD

PROC do_it
WRITE "Step 1"
flag_start
.
.
.

ENDPROC

Notice in this method that the FORWARD keyword completely replaces the BEGIN-END sequence.

When using the second method, you must still provide the complete foreign directive definition somewhere. Perhaps you
might place it in a separate file of foreign directive definitions which are loaded prior to "do_it.prc" or you might place it
in the user start-up procedure.

If you do place foreign directive definitions in the user start-up procedure, you can create a file of FORWARD definitions
that will be automatically included with any procedure file you compile. This file (called a user definition file) must be
placed in the $WORK/prc directory and must be named user.def. It can be created automatically by the compiler using
the -d option. For example, if you have several directives defined in the user start-up procedure, user_startup.prc, you
can create a user definition file with:

STOL_COMPILER -i -d user user_startup.prc

Foreign directive definitions (and FORWARD definitions) may appear in a file that contains only foreign directives, in a
procedure file grouped before the procedure, or in a procedure file embedded within the procedure.

If you use local variables in your foreign directive you must declare them using the LOCAL directive. If you don't, you
may modify local or global variables in the invoking procedure or foreign directive. This is because the scope of local
variables declared in a procedure includes all foreign directives that it invokes. This means that a foreign directive can
access any local variable in the calling procedure. For example, if this procedure:

PROC multi_countdown
LOCAL i

i = 0
WHILE i >= 5 DO

single_countdown 10
i = i + 1

ENDDO
ENDPROC

 invokes this foreign directive:

DIRECTIVE single_countdown(seconds) IS
BEGIN
3-26 ASIST Users Guide–Version 9.6

STOL
i = seconds
WHILE i >= 0 DO

WRITE i,"..."
WAIT 1
i = i - 1

ENDDO
END

then the procedure, instead of counting down from 10 five times, never completes, because the variable i referenced in
the foreign directive is the same i declared in the procedure. To correct this problem change the directive to:

DIRECTIVE single_countdown(seconds) IS
BEGIN

LOCAL i ;Declared "i" to fix bug!
i = seconds
WHILE i >= 0 DO

WRITE i,"..."
WAIT 1
i = i - 1

ENDDO
END

This feature can sometimes be handy. Suppose you want a foreign directive that displays the value of a variable in decimal
and hexadecimal, you can use the following directive:

DIRECTIVE showme(v) IS
BEGIN

WRITE v," = ",%name(v)," (0x",%hex(%name(v),2),")"
END

If the variable filler is defined and contains 255 then:

 showme filler

displays:

FILLER = 255 (0xFF)

No matter where you invoke showme and no matter which variable you use, it always displays the value of the variable
from the calling context.

Using regular expressions

Although using non-standard foreign directives allows you to pass any arguments you like to a directive, it also requires
that you extract those arguments yourself. For example, suppose you have written a new directive named SEND that has
keyword/value arguments like TO=name, MSG=text, and CC=cc-name, and you want to invoke it by:

SEND TO=bsmith MSG='Hi there'
 or
SEND TO=jdowling CC=dgrogan MSG='All done!'

When started this way, a non-standard foreign directive collects all the arguments into a single string and passes them as:

"TO=bsmith MSG='Hi there'"
ASIST Users Guide–Version 9.6 3-27

CHAPTER 3
 or
"TO=jdowling CC=dgrogan MSG='All done!'"

Your job is to validate the keyword/value pairs and separate the keywords from the accompanying values (this is called
parsing). You might be able to do this using the %locate and %substring functions, but STOL provides a better tool for
this, the %lex function or its cousin %rex. The %lex function is used to extract data values from an input string while the
%rex function is used to match an input string against a list of possible choices.

The %lex function (we'll discuss %rex later), allows you to check for each type of keyword/value pair and extract each
value in one neat operation. It's called this way:

%lex(input, regular-expr [,retval0 [,retval1 …]] [,rest])

The input argument is the input string you want to parse, in our example TO=bsmith MSG='Hi there'. The regu-
lar-expr argument is a string which tells %lex what to look for. The retval0 through retval9 arguments are the names of

variables that will receive the extracted values defined in regular-expr, hopefully for us these will be bsmith and 'Hi
there'. Finally, the rest argument is the name of a variable that will receive any remaining text in input that follows that
last character sequence matched by regular-expr.

The key to using %lex effectively is learning how to write the string which controls the parsing. This control string is
called a regular expression and it allows you to specify the sequence of characters which are valid in your input string.

Regular expressions work by attempting to match each character in the control string with a corresponding character in
the input string. This match may occur anywhere in the input string. So, for example, the regular expression “cat” matches
“cate” but not “bats” or “cut”. Regular expressions can be much more powerful than this by allowing you to specify entire
classes of characters, the number of times they may appear, and exactly where they must start and end. The following
operators may be used:

TABLE 3-3. Single-character regular expression operators

Operator What it does

. This operator matches one occurrence of any character. So, "c.t" matches any string that contains a “c” fol-
lowed by any single character followed by a “t”, such as “cite” or “scots”, but not “cane”.

^ This operator matches the beginning of the input string. This is called an anchored match. So, “^cat” matches
any string beginning with “cat”, such as “catty” or “catcher” but not “scat”.

$ This operator matches the end of the input string. This is another anchored match. So, “bat$” matches any
string that ends with “bat”, such as “fruitbat” or “baseball bat” but not “abate”.

[characters] This operator matches one occurrence of any character listed between the brackets (a set). Characters can be
specified literally “[abc]” or as a range [a-z]. So, “[bcd]at” matches any string that contains a “b”, “c”, or “d”
followed by “at”, such as “batter” or “scat”, but not “frat”.

[^characters] This operator matches one occurrence of any character not listed between the brackets. So, “[^bcd]at”
matches any string that contains a three character sequence that does not start with a “b”, “c”, or “d” and is
followed by “at”, such as “prate” and “latter”, but not “acrobat”.

[:class:] This operator matches one occurrence of any character in the named class. The classes can be “upper” ([A-
Z]), “lower” ([a-z]), “alpha” ([A-Za-z]), “digit” ([0-9]), “xdigit” ([A-Fa-f0-9]), “alnum” ([A-Za-z0-9]),
“space” ([\t\n\r\f]), and “punct” ([^A-Za-z0-9 \t\n\r\f]). So, “[:upper:]ab” matches any string that contains a
single upper case letter followed by “ab”, such as “Cab” or “Tab”, but not “lab” or “cab”.

[^:class:] This operator matches one occurrence of any character not in the named class. So, “[^:lower:]im” matches
any string that contains a 3 character sequence that does not start with a lower case letter and is followed by
“im”, such as “Jim” and “9ime”, but not “timmy” or “jim”.
3-28 ASIST Users Guide–Version 9.6

STOL
In addition to operations on a single character, there are also operators which apply to entire regular expressions:

Now that we have an idea of what a regular expression can do, let's return to our previous example, the SEND foreign
directive. Remember that this directive can contain a TO, CC, or MSG keyword/value argument. Let's write the regular
expression for the TO argument first and we'll assume that the value part can be any lower case string of letters. The regu-
lar expression for the TO argument looks like:

"TO=[:lower:]+"

and if we want to save the value we would change it to:

"TO=([:lower:]+)$0"

Next, let's write the regular expression for the CC argument. Assume that the value part, like the TO argument value, is
any lower case string of letters. Note that it looks very similar to the TO argument:

"CC=([:lower:]+)$1"

Finally, let's write the regular expression for the MSG argument. The value of this argument is a quoted string that can
contain blanks, upper and lower case letters, digits, and other characters. The regular expression for this argument is:

"MSG='[^']*'"

Notice how the negation character, “^”, is used to match any character but a single quote. In order to save the value,
change the above to:

"MSG=('[^']*')$2"

Now let's put them all together to create a single regular expression which validates the entire input string and extracts all
of the required values.

"^(((TO=([:lower:]+)$0)|(CC=([:lower:]+)$1)|(MSG=('[^']*')$2))[]*)+$"

TABLE 3-4. Operators on entire regular expressions

Operator What it does

RE* This operator matches zero or more occurrences of regular expression RE. So, “ca*t” matches “scat”, “fact”,
and “acaat”, but not “cete”.

RE+ This operator matches one or more occurrences of regular expression RE. So, “be+n” matches “ben” and
“been”, but not “ibn”.

RE? This operator matches zero or one occurrence of regular expression RE. So, “lai?n” matches “plan” and
“slain”, but not “aflaiin”.

(RE) This operator matches regular expression RE. Parenthesis allow you to group regular expressions. So,
“(ack)+” matches “back” and “ackack”, but not “flick”.

RE1|RE2 This operator matches either regular expression RE1 or regular expression RE2. So, “(an)|(in)” matches “pin”

and “spank”, but not “brunt”.

(RE)$n This operator matches regular expression RE and places the matching characters from the input string into the
retvaln argument (where n = 0…9). For example:%lex(“temp=99”, “temp=([0-9]+)$0”, SETTING) causes

the string “99” to be assigned to the STOL variable SETTING.
ASIST Users Guide–Version 9.6 3-29

CHAPTER 3
Observe that the entire regular expression is anchored at the beginning and end of the input string by ^ and $ which vali-
dates that the entire input string matched the regular expression. Also notice the use of | which allows any of the three
arguments to be matched in any order. Lastly, using []* allows spaces to separate each of the arguments.

Now we can write the completed SEND directive:

DIRECTIVE send(rest_of_line) IS
NOT STANDARD

BEGIN
LOCAL matched, re, dest,copy, msg_text

re="^(((TO=([:lower:]+)$0)|(CC=([:lower:]+)$1)|(MSG=('[^']*')$2))[]*)+$"
matched = %lex(rest_of_line, re, dest, copy, msg_text)
IF (matched) THEN

IF (dest = "") THEN
ERROR "No TO entered"

ELSEIF (msg_text = "") THEN
ERROR "No MSG entered"

ELSE
; …
; Do whatever we need to do to send this message
; …

ENDIF
ELSE

ERROR "Invalid keyword/value argument"
ENDIF

END

The %lex function assigns 1 to MATCHED if REST_OF_LINE matches the regular expression in RE and 0 if it doesn't.
Also, the values of the TO, CC, and MSG keywords will be assigned to DEST, COPY, and MSG_TEXT, respectively.

The %rex function works similarly to the %lex function. It allows you to match an input string against a list of regular
expressions. It's called this way:

%rex(input, reg_expr1, …, reg_exprN)

The input argument is the input string you want to parse. The reg_expr1 through reg_exprN arguments are the regular

expressions you want to match. The return value from this function may be 0 through N, where 0 indicates that no expres-
sion matched and a non- zero result indicates the number of the first regular expression that did match the input.

For example,

MATCHED = %rex("abcd", "[:digit:]+", "[:alpha:]+")

assigns 2 to MATCHED, while

MATCHED = %rex("fork", "spoon", "knife")

assigns 0 to MATCHED.

User defined functions

Similar to foreign directives, you can also write your own functions. A function is a collection of STOL statements that
execute as a unit, except that a function can return a value while a procedure or a directive can't. A user written function
3-30 ASIST Users Guide–Version 9.6

STOL
executes just like a built-in function, that is, its source lines are not displayed and if an error occurs, the function is exited
immediately. Writing your own functions allows you to improve the flow of your procedures and make them easier to test.

You define a function with this syntax:

 FUNCTION name ([parameter-list])

 function-statements

ENDFUNC

For example, a function to return the square of a number can be written like this:

FUNCTION square(number)
 LOCAL result
 result = number * number
 RETURN result
ENDFUNC

and invoked from STOL with:

PROC test_it
 LOCAL stuff, square_of_stuff
 stuff = 3
 square_of_stuff = square(stuff)
 WRITE "The square of ",stuff," is ",square_of_stuff
ENDPROC

Notice that the definition of SQUARE contains a RETURN directive followed by an expression. This is required for a
function and the compiler will check for it.

It is possible, however, to create a function that compiles but does not contain a valid RETURN directive. In this situa-
tion, an error will occur when you execute the function.

The actual arguments to a user-written function are processed the same as arguments to a procedure. The value of each
argument is passed to the function.

Like foreign directives, functions must be defined before you use them in a procedure or directive. Normally, you do this
by defining the function at the top of your procedure file. Sometimes, this can't be done, so instead you can define it with
a FORWARD directive using the following syntax:

 FUNCTION name ([parameter-list])

 FORWARD

Using our SQUARE function as an example:

FUNCTION square(number)
FORWARD

If you write lots of functions, you can place the function definitions in the user start-up file and add FORWARD defini-
tions to your user definition file (user.def). The FORWARD definitions can be automatically created and added by
the STOL compiler,See “Definition Files” on page 3–55.
ASIST Users Guide–Version 9.6 3-31

CHAPTER 3
IMPORTANT: There is one important restriction on the use of user written function. They cannot be invoked from the
STOL command line. They may only be invoked from a procedure, a foreign directive or another user written function.

Debugging STOL procedures and foreign directives

STOL provides several facilities to aid in pinpointing and correcting problems in user-written procedures: the directives
BREAKPOINT, NEXT, STEP, and SHOW, and several STOL local internal variables.

The BREAKPOINT directive lets you specify a procedure file name and line number to pause at. You can then investi-
gate the values of local and global variables, resume execution or execute the next statement. There are a total of four
breakpoints available. To enable a breakpoint use:

BREAKPOINT ON breakpoint-number file-name:line-number

where breakpoint-number is an integer that specifies which breakpoint to enable (0 to 3), file-name is the name of the pro-
cedure file (without the ".prc" file type), and line-number is the number of the line you want to pause at. For example,

BREAKPOINT ON 2 ace_test:56

sets a breakpoint at line number 56 in file "ace_test.prc". WARNING: breakpoint 0 is used by the UNTIL clause so exer-
cise caution when you use it.

To disable a breakpoint use:

BREAKPOINT OFF breakpoint-number

where breakpoint-number is the number of the breakpoint to disable.

For example, to disable the breakpoint set in the previous example,

BREAKPOINT OFF 2

To show which breakpoints are currently set, enter:

BREAKPOINT

Normally, when you reach a breakpoint, pause and then continue execution, if you ever encounter the file and line number
again, then your procedure will pause again. You can either disable the breakpoint manually using BREAKPOINT OFF,
or you can change the behaviour by clearing the local internal variable, STICKY_BREAKPOINTS (See “STOL internal
variables” on page 3–39.). If you modify STICKY_BREAKPOINTS, then after a breakpoint is reached it is automatically
disabled.

If your procedure is paused at a breakpoint you can enter any valid STOL directive - a breakpoint pause is no different
than encountering an indefinite WAIT directive. So, for example, you can display the value of a local variable with the
WRITE directive, or you can resume execution with the GO directive. You might, however, wish to execute the next
statement only and then pause again. This can be done most easily with the NEXT directive (or you can use the GO direc-
tive with an UNTIL clause).

The NEXT directive executes one or more statements and then pauses just like a breakpoint. The format of this directive
is:

NEXT [lines-to-execute]
3-32 ASIST Users Guide–Version 9.6

STOL
where the optional lines-to-execute is a count of the number of statements to execute before pausing. If lines-to-execute is
not specified, it defaults to one. So, assuming you are paused at a breakpoint, entering:

NEXT

executes the next statement and pauses again. If you want to execute the next three statements and then pause, use:

NEXT 3

Note that the NEXT directive does not use breakpoint 0 (like the UNTIL clause) so you can use it anytime without wor-
rying about accidently changing your breakpoints.

You can do the same thing in a slightly different way using the STEP directive. The STEP directive allows you to auto-
matically pause after every statement is executed. The format of STEP is:

STEP ON

You can proceed after pausing by using the GO directive but you will pause again after the next statement. You can dis-
able single step mode with:

STEP OFF

Single step mode provides one other feature, timed single step mode. Instead of pausing indefinitely after the next state-
ment, in timed single step mode, execution pauses for a specified amount of time and then resumes automatically. You
enable timed single step mode with:

 STEP seconds

 where seconds is the number of seconds to pause before resuming execution.

For example,

STEP 5

waits 5 seconds after each statement. To disable timed single step mode use:

 STEP OFF

Setting breakpoints inside a foreign directive can be confusing because (if you remember) foreign directives don't display
each source line during execution. This behavior can be modified by setting the STOL local internal variable,
LOG_FOREIGN to TRUE (or 1). This causes STOL to display the source lines of the foreign directive just like a proce-
dure. Another source of consternation when debugging a foreign procedure is that the foreign directive is automatically
exited (as if you had entered KILLPROC) if an error occurs during execution. This behaviour can also be changed by
setting the STOL local internal variable, KILL_FOREIGN_ON_ERROR to FALSE (or 0). This causes the foreign direc-
tive to be paused like a procedure after an error.

Another directive which can be useful during debugging is the SHOW directive, which allows you to view several differ-
ent STOL internal structures.

TABLE 3-5. Options of the SHOW directive

Typing: Lists:

SHOW GLOBALS The names and values of all currently defined global variables.

SHOW LOCALS The names and values of all currently defined local variables.
ASIST Users Guide–Version 9.6 3-33

CHAPTER 3
Two additional suggestions may help during debugging:

1. Setting the STOL local internal variable IGNORE_WAITS tells STOL to ignore all wait statements–execution
resumes immediately with the next statement,

2. Clearing the STOL local internal variable SEND_COMMANDS allows you to test without actually sending any com-
mands.
Warning: some directives also send commands (like the directive UPLINK) so they won’t work.

Formatted printing

The WRITE directive provides limited control of the output. If you want more control over the display of your data, use
the PRINTF directive. The PRINTF directive, like the WRITE directive, displays the value of an expression and outputs
it to the STOL Operator Output window and the event log. Unlike the WRITE directive however, the first argument spec-
ifies a format control string which allows finer control of the output. The format of PRINTF is:

printf "format" [, expression …]

where

format is a C language format control string (see APPENDIX E-“Printf” for a description of format control strings).

For example, to display a real number use:

printf "%5.3f",1.0/3.0

or to output a discrete telemetry value as a string:

printf "Limit checking is %s",P@GSE_LIMITCHECK

For information on printf control strings, see Appendix E: Printf.

STOL arrays

You can create an array with as many as 3 dimensions in STOL by using the LOCAL or GLOBAL directive. The syntax
is:

 LOCAL name [array-bounds [,array-bounds [,array-bounds]]][,...]

 GLOBAL name [array-bounds [,array-bounds [,array-bounds]]][,...]

where array_bounds are of the form:

[lower-bound ..] upper-bound

If lower-bound is not specified, the array begins from element 1.

SHOW STACK The names and line numbers of all currently executing procedures.

SHOW DIRECTIVES All defined foreign directives.

SHOW PENDING The status of commands which are awaiting local or end-to-end responses.

SHOW FUNCTIONS All defined user functions.

TABLE 3-5. Options of the SHOW directive

Typing: Lists:
3-34 ASIST Users Guide–Version 9.6

STOL
For example:

LOCAL array1[4] ;Creates a singly-dimensioned array of 4 elements
GLOBAL array2[2,2] ;Creates a 2-d array with 2 elements in each dimension
LOCAL matrix[2,3,4] ;Creates a 3-d array with
 ; 2 elements in the first dimension,
 ; 3 elements in the second dimension,
 ; and 4 elements in the third.
LOCAL matrix_about_zero[-1..1,-1..1]

; A 2-d array with 3 elements in each dimension
; addressed from -1 to 1

You can create an array whose bounds are computed at runtime by using a general expression for either bound. For exam-
ple:

isubsize = 3
...
jsubsize = 4
LOCAL vector1[isubsize*jsubsize]

After LOCAL executes, an array named vector1 will be created with twelve elements.

Array elements are used just like scalars in an expression. The following example doubles each element of array2:

FOR i = 1 to 2 DO
 FOR j = 1 to 2 DO
 array2[i,j] = array2[i,j] * 2
 ENDDO
ENDDO

You may also pass an entire array into a procedure, foreign directive, or user written function. For example, if PROC1 is a
procedure, MY_DIR is a foreign directive, and MY_FUNC is a user function, then:

START proc1((matrix2))
my_dir (matrix2)
result = my_func(matrix2)

passes all 24 elements of matrix2. For this to work properly, however, the procedure, foreign directive, or user function
must have been written to receive an array. You must place "[]" after each formal argument that you want to pass an array
to. Using the example above, write:

PROC proc1(input_array[])
 ...
ENDPROC

An array may also be assigned to another array. Both arrays must have the same number of dimensions and the same num-
ber of elements in each dimension. For example, if rmatrix and smatrix are created with:

LOCAL rmatrix[3,3], smatrix[3,3]

then

rmatrix = smatrix
ASIST Users Guide–Version 9.6 3-35

CHAPTER 3
assigns each element of smatrix to the corresponding element of rmatrix. An error will occur if the source and destination
arrays have a different number of dimensions or a different number of elements.

Similarly, an array can be returned by a function as long as the above conditions are met. For example:

FUNCTION scalar_multiply(array[], multiplier)
;---This function multiples each element of a 2 X 2 array by a scalar

FOR i = 1 TO 2 DO
FOR j = 1 TO 2 DO

array[i,j] = array[i,j] * multiplier
ENDDO

ENDDO
RETURN array

ENDFUNC

If arrayx and matrixy are created with:

LOCAL arrayx[2,2], matrixy[2,2]

then

matrixy = scalar_multiply(arrayx, 2)

doubles each element of arrayx and assigns the result to matrixy.

Arrays of telemetry points can also be referenced and assigned in the same manner. For example, if there is an array of
temperatures declared in RDL as:

UI ARRAYTEMP[8] DESC="Solar array temperatures"

and a corresponding array in STOL:

LOCAL temps[8]

then

temps = arraytemp

copies each array element from the telemetry array into the STOL array. Also,

arraytemp = temps

copies the STOL array elements back into the original telemetry array.

Similar to telemetry arrays, STOL arrays can also be assigned to a command parameter. For example, if load_command
is declared in the command database with:

CMDS load_command APID=60,FCTN=0,DESC="Memory load"
 UI words DYNAMIC,RANGE=(1,64)
 UI data[64] DYNAMIC, VARIABLE
END

and load_data is created in STOL with:

LOCAL load_data[64]
3-36 ASIST Users Guide–Version 9.6

STOL
then

/load_command words=64 data=load_data

causes the each element of load_data to be assigned to the command parameter named data.

You can create a new array from an old array, where the new array has different dimensions or a different number of ele-
ments per dimension with the %SLICE function. The syntax for %SLICE is:

 %SLICE(array,l1,u1 [,l2 ,u2 [,l3 ,u3]])

where array is the array to be modified and l1,l2,l3 are the new lower bounds for each dimension and u1,u2,u3 are the
new upper bounds for each dimension.

For example, if array3 and matrix2 are created with:

GLOBAL array3[4,4,4], matrix2[3,3,3]

then to convert array3 to a 3 X 3 X 3 array by copying the first 3 elements of each dimension, use:

matrix2 = %SLICE(array3, 1,3, 1,3, 1,3)

or, if vector2 is created with:

LOCAL vector2[4]

then to convert the middle dimension of array3 into a 4 element vector, use:

array1 = %SLICE(array3, 1,1, 1,4, 1,1)

Two other functions are also available which allow you to retrieve information about an array. To determine the number of
dimensions an array has use the %NUMDIMS function. Its syntax is:

 %NUMDIMS(array)

For example, to get the number of dimensions in array3 use:

count = %NUMDIMS(array3)

To determine the number of elements in a specified dimension of an array use the %DIMENSION function. Its syntax is:

 %DIMENSION(array,dimension-number)

where dimension-number ranges from 1 to 3 and specifies the dimension you want information on. For example, to
retrieve the number of elements in the second dimension of matrix1, use:

elements = %DIMENSION(matrix1, 2)

Disposing of arrays, foreign directives, or functions in STOL

STOL can forget about the existence of an array, foreign directive, or function by using the DROP directive. DROP
causes the specified object to be removed from STOL's internal tables and causes any memory that was allocated to the
object to be returned. This can be particularly useful if you have a large global array or long function you no longer need.
ASIST Users Guide–Version 9.6 3-37

CHAPTER 3
The syntax for DROP is:

DROP object [,object...]

For example, if you declare:

GLOBAL sensor1[50,20], sensor2[40,35]

and after processing the data in both arrays, you decide that you don't need either, you can enter:

DROP sensor1, sensor2

Both arrays will be removed and can no longer be referenced. Note: the STOL compiler doesn't know about dropped
objects so you can reference an object after it has been dropped in your procedure and the compiler will not flag it as an
error. An error will occur when you execute your procedure, however.

Creating and using unusual names in STOL

If you create a variable that is spelled the same as a STOL keyword you can usually use it with no problem. However,
there may be some situations where the use of your variable name is ambiguous. For example, if you defined a local vari-
able named for and tried to use it like this:

for = 2

The compiler would flag this as an error (because it looks like the beginning of a FOR-DO-ENDDO directive). You can
solve this in two ways - put LET before the directive:

LET for = 2

(this only works with an assignment directive), or you can place single quotes around the variable name, like this:

'for' = 2

Using single quotes guarantees that the compiler sees a variable name instead of a keyword.

This can occasionally be very useful. For example, you can create a named command from a raw command by defining
the following directive:

DIRECTIVE '/SAFEHOLD' is
BEGIN

/RAW 8100053FCD040373
END

Now whenever you enter:

/SAFEHOLD

the foreign directive is executed and the raw command is sent. Important: real commands allow spaces between the "/"
and the command name, foreign directives defined this way do not allow spaces.

Another use for quoting a name is to allow you to redefine an existing directive. Suppose that when the user enters EXIT,
you want to send commands to the spacecraft (or some other commandable object). You can do this by:

DIRECTIVE 'EXIT' IS
BEGIN
3-38 ASIST Users Guide–Version 9.6

STOL
/power off
END

But what if you want to use the real EXIT directive at the end of your directive. How do you do it? You can always refer-
ence the original meaning of a name by placing a backward slash in front of the name. So, if you put:

\EXIT

as the last executable line of the directive, STOL will execute the original EXIT directive.

STOL internal variables

You can control some of the features STOL by modifying local internal variables. These variable are accessed with the
%LIV function call, which looks like this:

%LIV(local-variable-name)

The values of local internal variables can be referenced using the %LIV function, like this:

WRITE "Local wait time is ",%LIV(local_wait)," seconds"

or assigned to, like this:

%LIV(ignore_wait) = TRUE

The valid local internal variables are:

TABLE 3-6. STOL local internal variables

Name Function
Default
Value

AUTO_SYNCHRONIZE Indicates whether STOL automatically waits for the end-to-end response
from each command.

TRUE

CHECK_SOURCE_FILE Checks whether the source file for a procedure has been modified since it
was last compiled

TRUE

CMD_QUE_DEPTH Specifies the number of commands in the command response que waiting
for end-to-end response to be received.

0

COMMAND_POST_VERIFIER Specifies the name of the foreign directive to be invoked whenever a com-
mand end-to-end response is received.

““

END_TO_END_TIMEOUT Specifies the number of seconds to wait for an end-to-end response before
declaring a time-out

60

END_TO_END_WAIT Controls whether STOL waits for an end-to-end response on a command
before proceeding to the next STOL statement in a procedure

TRUE

HALT_ON_BAD_QUALITY Controls whether STOL pauses the current procedure ifa data quality error
occurs

TRUE

HALT_ON_RED_LIMIT Controls whether STOL pauses the current procedure if a red limit viola-
tion occurs

TRUE

IGNORE_WAIT Controls whether STOL actually waits when encountering a WAIT state-
ment

FALSE

KILL_FOREIGN_ON_ERROR Controls whether STOL terminates the current foreign directive if an error
occurs

TRUE
ASIST Users Guide–Version 9.6 3-39

CHAPTER 3
Note that the local internal variables LOCALHOST and STOL_TYPE can only be referenced. Any attempt to assign to
them will cause an error.

Sending a directive from a page

STOL allows you to send directives to the run-time monitor directly from a telemetry page. You can send either a fixed
text string or a string which contains substituted values. In both cases, you must be familiar with starting the Page Editor
and editing a page (see CHAPTER 6-“Editing Telemetry Pages”).

To send a fixed text string from a push button on a page:

• Create a button DDO with local access type,

• Set the On and/or Off Text String to the desired directive,

• Set the On and/or Off Logical Server name to “stol_server”.

When the page containing the button is displayed and the button is pressed, the On Text String is sent to the STOL run-
time monitor. Likewise, when the button is released, the Off Text String is sent.

To send a string with substituted values, you must first create the values to be substituted. These values are referred to as
page local variables. To set the value of a page local variable, edit a page and:

• Create a DDO with universal access type,

KILL_FUNCTION_ON_ERROR Controls whether STOL terminates the current function if an error occurs TRUE

LOCAL_TIMEOUT Specifies the number of seconds to wait for a local response before declar-
ing a time-out

10

LOCALHOST Specifies the name of the computer that the ground system is executing on

LOG_FOREIGN Controls whether the statements in a foreign directive are logged as they
are executed

FALSE

LOG_FUNCTION Controls whether the statements in a function are logged when executed FALSE

LOG_PROCEDURE Controls whether the statements in a procedure are logged as they are exe-
cuted

TRUE

LOG_SUBSTITUTIONS Controls whether the results of %NAME(…) calls are logged TRUE

MONITOR_QUALITY Controls whether STOL does automatic quality inheritance or not. FALSE

SEND_COMMANDS Controls whether commands are actually sent TRUE

SILENT_WAIT Controls whether a PSTOL tasks’s indefinite, timed, or conditional waits
write state change events (event class STTE) to the system event log. This
is only useful with PSTOL tasks; if you attempt to change this variable
within a STOL proc, it will give you a warning and ignore you (because
silent waiting is always disabled for STOL).

FALSE

STICKY_BREAKPOINTS Controls whether breakpoints are deleted when they are reached TRUE

STOL_TYPE Specifies the STOL monitor that is running, either “INTERACTIVE” or
“PARALLEL”

USE_ASK_POPUP Controls whether ASK directives are to pop up a separate window for a
response (TRUE) or prompt you in the STOL window (FALSE).

TRUE

TABLE 3-6. STOL local internal variables (Continued)

Name Function
Default
Value
3-40 ASIST Users Guide–Version 9.6

STOL
• Place the name of an identifier into the Write Key field,

• Set the logical server name to “stol_server”.

The display type of this DDO can be a button, slider, select list, or text field.

Whenever the page containing this field is displayed, any update to the field will update the value of the page local vari-
able named in the Write Key field. This value can be substituted into a text string by using the following syntax in the
directive you want to send:

{page-local-variable [: default-value]}

If the page local variable does not exist and no default is specified, then an error occurs and the text string is not sent to
STOL. If the page local variable does not exist and a default is specified, then the defaulted is substituted in place of the
local variable. For example, if page local variable HOW_LONG is not defined, then

WAIT {HOW_LONG}

is an error. However,

WAIT {HOW_LONG:1}

sends “WAIT 1” to STOL. Note that

WAIT {HOW_LONG:}

sends just “WAIT” to STOL (since the default is the null string). If HOW_LONG is set to 2, then all of the above send
“WAIT 2” to STOL.

If you would like to send a “{” or “}” to STOL, use “\{” or “\}” instead. You can also use certain functions in place of
page-local-variable:

Note that embedded blanks or tabs are not allowed and that the function name must be upper case.

Sending a directive from the keypad

STOL also allows you to send run-time monitor directives from the numeric keypad or function keys attached to your
keyboard. You can do this by assigning the directive (as a string) to these STOL global variables:

TABLE 3-7. Functions allowed in place of page-local-variables

Function What it returns

PAGENAME() contains the name of the current page,

CONSOLEID() contains the ID number of the current console,

CVT([P@]telemetry-point) fetches the value of telemetry-point

TRIM_LEFT(page-local-variable) removes any leading blanks from page-local-variable

TABLE 3-8. STOL keypad definition variables

STOL Global Key Default

ACTION_KP0 keypad 0 “CLEARALL”

ACTION_KP1 keypad 1 “EXEC ON”
ASIST Users Guide–Version 9.6 3-41

CHAPTER 3
For example, if you want to assign the directive “NEXT” to the F1 key, enter:

ACTION_F1 = "NEXT"

From then on, whenever you press the F1 key, the STOL NEXT directive is executed.

If you make a mistake in an assignment or you just want to return the keys to their original settings you can use the
RESET_KEYMAPPINGS directive.

Using files

Sometimes, you want to save data into a file or read data from a file in STOL. This can be done by using the File I/O func-
tions: FILE_OPEN, FILE_CREATE, FILE_READ, FILE_WRITE, and FILE_CLOSE. These five functions let you
read and write simple text files.

ACTION_KP2 keypad 2 “; Form feed”

ACTION_KP3 keypad 3 “; Not defined”

ACTION_KP4 keypad 4 “/ALLOW TOP”

ACTION_KP5 keypad 5 “KILLPROC”

ACTION_KP6 keypad 6 “STEP ON”

ACTION_KP7 keypad 7 “GO”

ACTION_KP8 keypad 8 “WAIT”

ACTION_KP9 keypad 9 “STEP OFF”

ACTION_KPADD keypad + “; Not defined”

ACTION_KPDECIMAL keypad . “; Not defined”

ACTION_KPDIVIDE keypad / “; Not defined”

ACTION_KPENTER keypad Enter “XIT=1”

ACTION_KPMULTIPLY keypad * “; Not defined”

ACTION_KPSUBTRACT keypad - “; Not defined”

ACTION_F1 key F1 “; Not defined”

ACTION_F2 key F2 “; Not defined”

ACTION_F3 key F3 “; Not defined”

ACTION_F4 key F4 “; Not defined”

ACTION_F5 key F5 “; Not defined”

ACTION_F6 key F6 “; Not defined”

ACTION_F7 key F7 “; Not defined”

ACTION_F8 key F8 “; Not defined”

ACTION_F9 key F9 “; Not defined”

ACTION_F10 key F10 “; Not defined”

ACTION_F11 key F11 “; Not defined”

ACTION_F12 key F12 “; Not defined”

TABLE 3-8. STOL keypad definition variables (Continued)

STOL Global Key Default
3-42 ASIST Users Guide–Version 9.6

STOL
To create and write to a file you must first call the FILE_CREATE function. The format for FILE_CREATE is:

FILE_CREATE(filename-expression)

where filename-expression is the name of the new file you want to create. The return value of FILE_CREATE is very
important, it is a positive integer (called the file handle) that specifies which file you will be writing to, all further access
to this file will be through the file handle. If the file handle is negative, then your file could not be created. For example:

handle = FILE_CREATE("my_new_file.txt")
IF (handle < 0) THEN

ERROR "Can't create output file"
ENDIF

Once you have the file handle for your newly created file, you can write to it using the FILE_WRITE function. The for-
mat for this function is:

FILE_WRITE(handle, output-expression)

where handle is the file handle and output-expression is the data you want to write. If FILE_WRITE is successful it
returns 0. For example:

status = FILE_WRITE(handle, "The time is " & %GMT)
IF (status <> 0) THEN

ERROR "Can't write to output file"
ENDIF

Finally, when you are done writing to the file, you must close it with the FILE_CLOSE function. The format for this
function is:

FILE_CLOSE(handle)

where handle is the file handle. FILE_CLOSE returns 0 if it is successful.

status = FILE_CLOSE(handle)
IF (status <> 0) THEN

ERROR "Can't close output file"
ENDIF

After you've closed the file, the file handle is no longer usable.

To open and read from a file you must first call the FILE_OPEN function. The format for FILE_OPEN is:

FILE_OPEN(filename-expression [,file-access])

where filename-expression is the name of a file you want to access and file-access is the access mode for the file. The
access mode can be “READ”, “WRITE”, or “APPEND” depending upon whether you want to read from a preexisting
file, write to a new file, or append to the end of an old file (the default is "READ"). The FILE_OPEN function returns a
file handle that is used to refer to the file in all further calls. If the return value is negative, then the file could not be
opened. For example:

handle = FILE_OPEN("my_old_file.txt")
IF (handle < 0) THEN

ERROR "Can't open input file"
ENDIF
ASIST Users Guide–Version 9.6 3-43

CHAPTER 3
Now that the file is open, you can read records from it one at a time using the FILE_READ function. The format for the
FILE_READ function is:

FILE_READ(handle, buffer-name)

where handle is the file handle and buffer-name is the name of a local or global STOL variable which will receive the next
line from the file. If FILE_READ is successful, then it returns 0. If the end of the file was encountered during
FILE_READ, it returns -1. If a read error occurred then -2 is returned. For example:

status = FILE_READ(handle, line_buffer)
IF (status = -1) THEN

WRITE "No more data to read"
ELSEIF (status = -2) THEN

ERROR "Can't read input file"
ENDIF

When you have finished reading the file, you should call the FILE_CLOSE function as shown above.

The following is an extended example of the file I/O facilities. The first part creates a new file, writes 10 lines containing
a single integer on each line and then closes the file. The second part opens the file again, reads each line back, checks it,
and then closes the file.

PROC FILE_IO_TEST(test_file_name)
local handle, status, line

; Part 1 - create file, write to it, close it

handle = FILE_CREATE(test_file_name)
IF (handle < 0) THEN

ERROR "Can't create " & test_file_name
ENDIF

FOR i = 1 to 10 DO
IF (FILE_WRITE(handle, "line #" & i) <> 0) THEN

ERROR "Can't write to " & test_file_name
ENDIF

ENDDO

IF (FILE_CLOSE(handle) <> 0) THEN
ERROR "Can't close " & test_file_name

ENDIF

; Part 2 - open file, read it, close it

handle = FILE_OPEN(test_file_name)
IF (handle < 0) THEN

ERROR "Can't open " & test_file_name
ENDIF

i = 1
DO

status = FILE_READ(handle, line)
3-44 ASIST Users Guide–Version 9.6

STOL
IF (status = -1) THEN
BREAK

ELSEIF (status = -2) THEN
ERROR "Can't read " & test_file_name

ENDIF
IF (line <> "line#" & i) THEN

ERROR "input data mismatch"
ENDIF
i = i + 1

ENDDO
IF (FILE_CLOSE(handle) <> 0) THEN

ERROR "Can't close " & test_file_name
ENDIF

ENDPROC

Note that if you don't provide a path when you specify a file name in the FILE_CREATE or FILE_OPEN functions then
the default path (usually $PRIVATE) is used. You can change the path beforehand using the CD directive or you can
include a path in the file name.

Getting out of trouble

Occasionally, the STOL run-time monitor may behave erratically. This usually occurs after one or more errors have
occurred. The first thing you can try is the EXEC directive. This directive forces the run-time monitor into a known exe-
cution state. The format of EXEC is:

EXEC ON

This usually resolves the problem and allows you to proceed with your work.

In certain rare circumstances, EXEC may not work. In these situations you can try the RESET directive. This directive
resets the entire run-time monitor while preserving the procedure stack and any local or global STOL variables. The for-
mat of RESET is:

RESET or just press Ctrl-c

After executing RESET, you should be able to continue any procedure you were executing.

IMPORTANT, any situation in which you are forced to use either EXEC or RESET should be reported to the ASIST
development team as soon as possible.

Integrated compiling and editing

You can speed up the process of editing and compiling your STOL procedures by compiling them within the procedure
editor. You do this by entering:

ESC-x compile

The procedure editor will respond with:

Compile command: make -k

You then enter:

Ctrl-a Ctrl-k stol_compiler procedure-file-name
ASIST Users Guide–Version 9.6 3-45

CHAPTER 3
where procedure-file-name is the name of the file you want to compile. For example, if you are currently editing a file
named new_procedure.prc then to compile it you enter:

ESC-x compile

followed by:

Ctrl-a Ctrl-k stol_compiler new_procedure

This causes the editor to start compiling new_procedure.prc.

The editor splits the screen into two windows - the top window displays your source file and the bottom window displays
the results of the compile. If any errors are found, they are displayed in the bottom window. You can go directly to the line
in your source file that caused the error by placing the mouse cursor on the error message and clicking with the middle
mouse button (or you can enter ^x`). You can select each error this way and fix them one after another. You can then
recompile your procedure by using the above method (you don't have to enter the compile command again because the
editor remembers the last compile command you typed).

You can restore the editor screen to a single window by selecting your source file window and entering:

^x1

Normally you don't need to compile your procedures before you run them because STOL will do it automatically. When
STOL encounters a START directive, it first determines whether a compiled file exists. If a compiled file does not exist,
STOL prompts with:

"procedure-file-name" has not been compiled
Compile it? (Y/N)

where procedure-file-name is the name of the procedure file.

If you respond with Y, STOL compiles the procedure as if you had typed:

 STOL_COMPILER procedure-file-name

If there is an error during the compilation or if you respond with N, STOL will output an error. If the file compiles success-
fully, the procedure begins execution immediately.

If a compiled file does exist, but the modification date of the compiled file is older than the modification date of the source
file, STOL prompts with:

 “procedure-file-name" has been modified since last compile
 Recompile it? (Y/N)

As above, if you respond with Y STOL compiles the procedure. If there is an error during the compilation, STOL does not
execute the procedure. If you respond with N, STOL will prompt with:

Execute it anyway? (Y/N)

If you respond with N, STOL does not execute the procedure. If you respond with Y, STOL generates a warning and exe-
cutes the procedure.
3-46 ASIST Users Guide–Version 9.6

STOL
You can disable this behavior by setting the STOL local internal variable, CHECK_SOURCE_FILE (See “STOL internal
variables” on page 3–39.) to FALSE (or 0). If you disable this feature, and the compiled file does not exist, then STOL
will report an error. Additionally, STOL will not look at the modification date of either the source file or the compiled file.

Unexpected procedure halts

Your procedure may pause unexpectedly because an error occurred, an ERROR directive was encountered, a RETURN-
ERROR directive was encountered or due to a red limit condition.

If an execution error occurs, such as division-by-zero or an invalid directive argument, your procedure pauses in an “error
wait” state. This state is similar to executing an indefinite WAIT directive. You can enter any directive in an attempt to
resolve the error or type GO to resume execution. Remember, however, that a future statement may reference the results
of the statement in error and cause further errors.

If the error occurs in a foreign directive (rather than a procedure), the foreign directive is exited immediately, and the pro-
cedure that called it will halt on the line following the invocation of the foreign directive. This behavior can be changed so
that errors in foreign directives mimic procedure errors, by setting the local internal variable,
KILL_FOREIGN_ON_ERROR to FALSE (or 0) (See “STOL internal variables” on page 3–39.).

Your procedure may also halt in an "error wait" state if it executes an ERROR directive. This directive causes STOL to
act as if an execution error had occurred. The format for this directive is:

ERROR error-message-expression

where error-message-expression contains the error message to be displayed. For example,

ERROR "data out of sync"

or

ERROR "File " & filename & " not found"

As in an actual execution error, you can attempt to fix the problem or enter GO to resume execution.

The RETURNERROR directive is similar to the ERROR directive. This directive causes STOL to exit the current pro-
cedure, foreign directive, or function and to halt in an "error wait" state in the caller. The format for this directive is:

RETURNERROR error-message-expression

where error-message-expression contains the error message to be displayed. For example,

RETURNERROR "Invalid input command - " & input_cmd

Finally, if a telemetry point is received, limit checking is enabled, limits are defined and enabled for that point, and the
point is in the red limit region, then the procedure will halt with a red limit violation error. As above, you can type GO to
resume execution, but if another red limit violation occurs, the procedure will halt again. You can change this behavior by
setting the local internal variable, HALT_ON_RED_LIMITS to FALSE (or 0).

Important: If your procedure is halted due to a red limit condition (especially on a telemetry point being received fre-
quently) there is no way to start a procedure or foreign directive to fix the problem since it will halt as soon as you start it!
The easiest way to fix this is to enter:

CHECK OFF
ASIST Users Guide–Version 9.6 3-47

CHAPTER 3
which disables the limit checker, run your procedure, and then reenable the limit checker with:

CHECK ON

Alternatively, you can set HALT_ON_RED_LIMITS to FALSE (or 0) temporarily.

Error handling

Error handling is available for each procedure, function, or directive. You specify the error handling method by using the
ON ERROR directive. The ON ERROR directive gives you three different error handling actions:

ON ERROR HALT

Causes the currently executing procedure, function, or directive to halt. This is the default behavior.

ON ERROR RESUME

Causes the currently executing procedure, function, or directive to continue executing.

ON ERROR GOTO label

Causes the currently executing procedure, function, or directive to resume execution at the specified label. The condition
handling mode is reset back to HALT (to prevent infinite loops). If label is not found the procedure is halted.

In all of the above actions, regardless of the setting of ON ERROR, the error message which caused the error is always
logged.

You can place the ON ERROR directive anywhere in your procedure that you like. The ON ERROR directive may also
appear as many times in your procedure that you like. For example:

Line
1 PROC CATCH_EM_ALL(A,B)
2 LOCAL D,E,F
3
4 ON ERROR RESUME
5 D = A/0
6 ON ERROR GOTO EXIT_ME
7 E = SQRT(-B)
8 ON ERROR HALT
9 F = LN(0)
10 EXIT_ME:
11 ENDPROC

From line 1 to line 4,any errors will cause the procedure to halt (because ON ERROR HALT is the default mode). From
line 5 to line 6, any errors will continue execution without halting. From line 7 to line 8, any errors will cause execution to
resume at line 10. From line 9 to the end of the procedure, any errors will once again cause the procedure to halt.

When you exit a procedure/directive/function, the caller's error handling mode is restored.
3-48 ASIST Users Guide–Version 9.6

STOL
Defining a state machine

If you have a subsystem or component that has a well-defined set of states that it can exist in, then you can use a STOL
STATEMACHINE to model it. A STATEMACHINE allows you to create a procedure that contains actions for each
defined state as well as setup actions and termination actions. The syntax for a STATEMACHINE is:

STATEMACHINE machine-name
 [STATE_VARIABLE variable-name]
BEGIN
 [setup-directives]
 state-definitions...
 [termination-directives]
END

Where machine-name is the name of the state machine procedure, state-definitions… is one more clauses that define each
discrete state, setup-directives is an optional set of initial STOL directives, and termination-directives is an optional set of
final STOL directives. The optional STATE_VARIABLE allows you to specify the name of a STOL variable or pseudo
telemetry point to receive the name of the current state.

A state definition clause is used to name the state, supply actions for the state and define when the state is exited. The syn-
tax for a state definition is:

WHEN state-name DO

 stol-or-transition-directives

ENDDO

A state can only be defined one time.

The TRANSITION directive in stol-or-transition-directives specifies what the next state will be. Its syntax is:

TRANSITION state-name

This directive may only appear inside of a state definition clause. If there is no TRANSITION directive in a state defini-
tion then the current state is not changed and the next execution of the state machine will execute the same state. The
named state must be defined.

A combined example of a state definition clause with transitions follows:

WHEN power_on DO
 IF bus_voltage > 27.25 AND bus_current < 5.2 THEN
 TRANSITION normal
 ELSE
 /power off
 WRITE "Bus voltage or current out of limits"
 TRANSITION power_off
 ENDIF
ENDDO

STOL state machines are executed using the START directive without input arguments. For example:

START ipsdu_model
ASIST Users Guide–Version 9.6 3-49

CHAPTER 3
When a state machine is initiated, any STOL directives in setup-directives are executed, then depending on the current
state, a state definition clause is executed until a TRANSITION directive is encountered or the end of the state definition
is reached. Finally, any STOL directives in termination-directives are executed and the state machine is exited. The initial
state for a state machine is the first state definition clause after the BEGIN keyword.

The following is a complete example of a state machine that models a simple pyrotechnic device on board a spacecraft.
The device can exist in one of four states–unfired, enabled, armed, or fired. This state machine tracks each state by follow-
ing the values of telemetry points (pyro1_armed, pyro1_enabled, pyro1_fired).

STATEMACHINE simple_pyro1_states
BEGIN
 WHEN unfired DO
 IF pyro1_enabled THEN
 WRITE "Pyro 1 is ENABLED"
 TRANSITION enabled
 ENDIF
 ENDDO
 WHEN enabled DO
 IF pyro1_armed THEN
 WRITE "Pyro 1 is ARMED"
 TRANSITION armed
 ENDIF
 ENDDO
 WHEN armed DO
 IF pyro1_fired THEN
 WRITE "Pyro 1 FIRED"
 TRANSITION fired
 ENDIF
 ENDDO
 WHEN fired DO
 WRITE "Pyro1 has already fired"
 ENDDO
END

Parallel STOL

Parallel STOL (PSTOL) allows a procedure to run independently and in parallel with interactive STOL or other PSTOL
procedures (up to a maximum of 16). Using PSTOL, you can run a test with interactive STOL and simultaneously watch
for hazardous conditions that might occur, or schedule and automate routine tasks, or monitor the telemetry stream for a
particular value.

The execution environment for your procedures in PSTOL is the same as interactive STOL. In fact, unless you check the
value of the local internal variable, STOL_TYPE, your procedures will be unable to tell the difference. As a result, you
can use procedures you have already written for interactive STOL or alternatively, you can develop and test new proce-
dures under interactive STOL before executing them with PSTOL.

In PSTOL, the fundamental element of control is a task, which consists of a procedure and all directives, subprocedures,
or functions that it invokes. A task can be started, stopped, or paused without affecting other tasks.
3-50 ASIST Users Guide–Version 9.6

STOL
A task inherits its foreign directives, user functions, and global variables from the PSTOL start-up task. If a task modifies
a global variable, the modification is only known to it. However, if a task replaces a foreign directive or user function,
then the replacement is available is available to all current and future tasks.The only way to communicate between tasks
or between a task and interactive STOL is to change a variable in the Current Value Table.

A task has its own unique id which is assigned when it is initiated. The task id is displayed in the system event log preced-
ing every event (like this: <ID:dd>, where dd is the task id) so that you can easily identify which task caused the event.
Only task state changes or task output are written to the system event log.

Event Logging

By default, PSTOL tasks are not logged, however, you can enable event logging when you start a task (by adding the
LOG keyword to the TASK START directive) or by command while the task is running (using the TASK LOGGING
directive). If event logging is enabled, then all events are placed in a file named taskevhdd.log (where dd represents the
task id) in the directory $STOL_LOG. Similar to interactive STOL, when a task exits, the event log is placed in the direc-
tory, $STOL_LOG/old, and is renamed to taskevhdd.yy.day.hh.mm.log.

Logged events are placed in the task event log only and are not displayed in the usual system event log windows (except
for state changes or task output, which are put in both). You can monitor a task's event log by entering the following com-
mand in a UNIX window:

tail $STOL_LOG/taskevhdd.log

where dd is the id of the task.

Commanding

You can send commands from a task with some restrictions. Since there is a single command connection which is shared
among all active tasks, anytime the currently executing task is waiting for a local response, any other task which attempts
to send a command must wait (this is called a "link" wait). When the local response is finally received and if the sent com-
mand wasn't hazardous, then the waiting task's command is sent automatically. If the sent command was hazardous, then
any tasks waiting to send commands must continue to wait until the hazardous command is either accepted or rejected. If
no local response is seen, then no further commands will be sent until a local time-out occurs.

Command blocks (commands between BLOCKBEGIN and BLOCKEND directives) are not allowed. Any attempt by a
task to send a BLOCKBEGIN, BLOCKEND, or BLOCKCANCEL directive will cause an error.

Event-driven tasks

PSTOL allows you to initiate a task when a user-specified telemetry packet is received. Event-driven tasks behave differ-
ently than other tasks.

When you start an event-driven task, it immediately enters an "event" wait. PSTOL then checks the Current Value Table
periodically to determine whether the specified telemetry packet has arrived. If a packet has arrived, the task is run imme-
diately with a priority of 10 (a real time task). When the task completes, it automatically reenters an "event" wait at the
beginning of the task and is ready to run again.

If more packets arrive while the task is executing, the task is not notified of their arrival. Thus, event-driven tasks should
always be as short as possible.
ASIST Users Guide–Version 9.6 3-51

CHAPTER 3
Scheduling

Normally, PSTOL simulates running multiple tasks in parallel by giving each task a fixed amount of time (called a time
slice) to execute. When a task has completed its time slice, it is suspended and the next task which is ready to execute is
given a time slice and then executed.

A task may be suspended for reasons other then the expiration of a time slice. It can voluntarily suspend itself for one of
the following reasons:

1. an indefinite, timed, or conditional wait is executed,

2. a local, end-to-end, or hazardous command occurs,

3. an ASK directive is encountered.

When a task voluntarily suspends itself, the next runnable task is initiated. The task which suspended itself will not run
again until the event which caused it to be suspended is resolved (for example, the timed wait has completed).

You can control the length of a task's time slice by assigning it a priority. A task with a high priority receives a larger time
slice, while a task with a low priority receives a smaller time slice.

Normal task priorities range from 0 to 9, and are set up so that a priority 9 task receives twice as large a time slice as a pri-
ority 0 task. The default priority for a task is 5.

A task can change its priority while it is executing, allowing you to give it more time to execute if required. However, the
change in the length of the time slice does not take place until its next time slice.

Priority 10 is reserved for real time tasks. Unlike a normal task, the time slice of a real time task never expires and it will
continue to execute until it exits or voluntarily suspends itself. While a real time task is running, no other task can execute
(including other real time tasks).

Tasks in the normal priority range (0-9) are always scheduled so that each task has an equal chance to execute. Real time
tasks have priority over other tasks and will always be initiated ahead of lower priority tasks.

Task control

You control PSTOL tasks with the TASK directive. You can also use it to find out about the state of all PSTOL tasks, as
well as manage global PSTOL resources.

The TASK directive has two forms. The first form is used when communicating directly with PSTOL, for example when
you want to display the list of currently active tasks. The second form is used when you want to communicate with a task
that PSTOL has started.

When communicating directly with PSTOL the following directives are supported:

TABLE 3-9. Directives for communicating with PSTOL

TASK SHOW [TASKS] Display a list of the currently active tasks to the event log.

TASK SHOW PENDING Display a list of all commands in the pending command list.
3-52 ASIST Users Guide–Version 9.6

STOL
To communicate with a task that is currently active use:

Here is an extended example:

; Start a task using the procedure in file "waiter.prc".
TASK S WAITER
; The event log will display, "Task 0 created".

; Start a task using the procedure in file "counter.prc" with a lower
; priority than "waiter".
TASK S COUNTER("") PRI 3
; The event log will display, "Task 1 created".
; List currently running tasks.
TASK SHOW

TASK CLEAR_PEND Delete all commands in the pending command list.

TASK S[TART] procedure [(arg1 [, … arg5])

] [LOG] [PRI[ORITY] n] [WHEN apid]
[ID variable-name]]

Start a task named procedure with up to five optional arguments, arg1-arg5,

which may be of any data type. By default, logging is disabled and the task pri-
ority is five (5). You may enable logging with LOG or change the priority with
the PRIORITY option.

If you use the WHEN option, every time packet apid is received, the task is
executed.

If you use the ID option and the task starts successfully, the created task's id
will be assigned to variable-name.

TABLE 3-10. Directives for communicating with a PSTOL task

TASK id W[AIT] Pause task id indefinitely.

TASK id G[O] Resume task id.

TASK id KP Terminate task id.

TASK id PRI[ORITY] n Set task id to priority n, n must be from 0 to 10.

TASK id DIS[PLAY] name Show the value of local or global variable name in task id.

TASK id REPLY response Send response in reply to an ASK from task id.

TASK id PROMPT Display the outstanding ASK directive prompt from task id.

TASK id LOGGING ON Enable logging for task id.

TASK id LOGGING OFF Disable logging for task id.

TASK id NEWLOG filename Close and rename task id's current log file to filename (don't forget to include a
path name as well a a filename). Open and activate a new log file.

TASK id GET TASK_EXISTS variable Determine whether task id exists and put the result in variable.

TASK id GET NAME variable Get the task name of task id and put it in variable.

TASK id GET PRIORITY variable Get the priority of task id and put it in variable.

TASK id GET EXEC_MODE variable Get the execution mode of task id and put it in variable.

TASK id GET WAIT_MODE variable Get the wait mode of task id and put it in variable.

TASK id GET PROCEDURE variable Get the procedure file name of task id and put it in variable.

TASK id GET LINE variable Get the procedure line number of task id and put it in variable.

TASK id GET LOGGING_STATE variable Get the logging state of task id and put it in variable.

TABLE 3-9. Directives for communicating with PSTOL
ASIST Users Guide–Version 9.6 3-53

CHAPTER 3
; The event log will display:;
;Name ID Pri Exec Mode Wait Mode Procedure Line
;waiter 0 5 execute indefinite wait waiter.prc 6
;counter 1 3 running none counter.prc 3

; Now resume "waiter"
TASK 0 G
; The event log will display, "Task 0 resumed", followed by, "Task 0 com-
pleted"

; Let's pause "counter" now.
TASK 1 W
; The event log will display, "Task 1 suspended".

; Display the list of running task again.
TASK SHOW
; The event log shows:
;Name ID Pri Exec Mode Wait Mode Procedure Line
;counter 1 3 running indefinite wait counter.prc 3

; We could resume it with "TASK 1 G", but let's kill it instead.
TASK 1 KP
; The event log will display, "Task 1 deleted".

; Display the task list one more time.
TASK SHOW
; This puts "No tasks are active" in the event log.
3-54 ASIST Users Guide–Version 9.6

STOL
STOL Reference Guide

Compiler Options

Normally, you only need to enter stol_compiler and your procedure name in order to compile your procedure. Occasion-
ally, you might need to use some of the special execution options available for the compiler. These options are:

Preprocessing Procedure Files

The STOL compiler executes the C Preprocessor (CPP) on your procedure files before it begins to compile them. You can
use this feature to improve the readability of your procedures as well as make them more easily configurable (see
APPENDIX G-“C-Preprocessor” for a discussion of the features available in CPP).

Definition Files

In order for the syntax checker or the compiler to properly check user and system defined foreign directives, it must be
told in advance about the existence and syntax of all foreign directives. This is provided for by loading files (called defini-
tion files) containing this information before checking or compiling the user's STOL procedure.

When the compiler is installed on your system, all foreign directives provided with ASIST are defined in a definition file
(asist.def) that is installed with the compiler.

If you have foreign directives that are defined in your user startup procedure you must create a definition file in order to
properly compile any procedures that use those directives. To create your own definition file, enter the following at the
UNIX prompt:

stol_compiler -s -i -duser procedure-name

This command creates a definition file named user.def in the local directory. If you already have a user.def and you want
to add to it, use the -a option like this:

TABLE 3-11. STOL Compiler command line options.

Option What it does

-ooutput-file Use output-file for the name of the created object file instead of procedure-name.

-eerror-count Set the maximum number of errors that can occur before terminating to error-count. The default is 15.

-tsymbol-count Set the maximum number of global and local variables to symbol-count. The default is 512.

-ddefs-file Create a file name defs-file containing definitions of foreign directives defined in this file.

-a Append the definition of any directive defined in this file to the file specified in a prior -d option.

-s Syntax check this file, don't compile it.

-w Don't display warning messages

-i Don't read and process definition files

-v Display information about local variables, global variables, and foreign directives defined in this file only.

-V Display information about local variables, global variables, and foreign directives defined in this file and
any definition files.

-A Allow undefined telemetry mnemonics or command mnemonics.

-Dvar[=def] Defines preprocessor variable var, optionally assign value def to var.
ASIST Users Guide–Version 9.6 3-55

CHAPTER 3
stol_compiler -s -i -a -duser procedure-name

Make sure you copy the resulting file into the $WORK/prc directory and that it is named user.def.

Operators

The basic data types that STOL supports are: integer (I), real (R), character string (C), and time. The time data type is
subdivided into two subtypes: absolute time (Ta: time relative to a specified epoch) and elapsed time (Te).

The supported arithmetic operators are: addition(+), substraction (-), multiplication (*), division (/), modulus (MOD),
remainder (REM), and exponentiation (**). The following tables shows the resulting data type for each operation:

The only supported string operator is concatenation (&). The resulting data type is always a character string (that is, all
operands are converted to character strings before concatenating).

The supported logical operators are and (AND), or (OR), xor (XOR), and (NOT). The input data types are converted to
logical TRUE or logical FALSE (integer 1 or integer 0, respectively) by the following method:

TABLE 3-13. How data is converted to a logical value

Input Data Type Logical Meaning

Integer if operand = 0 then FALSE else TRUE

Real If operand = 0.0 then FALSE else TRUE

TABLE 3-12. a) Results of addition

+ I R C Ta Te

I I R I Ta Ta

R R R R Ta Ta

C I R I Ta Ta

Ta Ta Ta Ta Ta Ta

Te Ta Ta Ta Ta Ta

TABLE 3-12. b) Results of subtraction

- I R C Ta Te

I I R I Ta Ta

R R R R Ta Ta

C I R I Ta Ta

Ta Ta Ta Ta R Ta

Te Ta Ta Ta Ta R

TABLE 3-12. c) Results of *,/,**

*,/,** I R C Ta Te

I I R I Ta Ta

R R R R Ta Ta

C I R I Ta Ta

Ta Ta Ta Ta Ta Ta

Te Ta Ta Ta Ta Ta

TABLE 3-12. d) Results of mod and rem

MOD,REM I R C Ta Te

I I R I Ta Ta

R R R R Ta Ta

C I R I Ta Ta

Ta Ta Ta Ta Ta Ta

Te Ta Ta Ta Ta Ta
3-56 ASIST Users Guide–Version 9.6

STOL
The resulting data type of a logical operation is always an integer (either 0 or 1).

The supported relational operators are greater than (>), greater than or equal (>=), less than (<), less than or equal (<=),
equal to (=), and not equal to (<>). The input data types are converted before the relational operator is applied by using the
following method:

If either operand is a time then

convert both operands to an absolute time
perform a time comparison

else if both operands are character strings then

perform a character string comparison

else

convert both operands to real
perform a real comparison

The resulting data type of a relational operation is always an integer (either 0 or 1).

Ordered from highest to lowest, STOL operator precedence is:

1. Exponentiation (**)

2. Unary minus (-), unary plus (+)

3. Multiplication (*), division (/), modulus (mod), and remainder (rem)

4. Addition (+), subtraction (-), and string concatenation (&)

5. Relational operators (=, <>, <, >, <=, >=)

6. Negation (not)

7. Conjunction (and)

8. Exclusive OR (xor)

9. Disjunction (or)

Except for exponentiation, which is right-associative, operations at the same precedence level are evaluated from left to
right. Parentheses may be used to alter the order of evaluation.

Character String if operand = "" then FALSE else TRUE

Elapsed Time if operand = 00-000-00:00:00.000 then FALSE else TRUE

Absolute Time if operand > current time then FALSE else TRUE

TABLE 3-13. How data is converted to a logical value

Input Data Type Logical Meaning
ASIST Users Guide–Version 9.6 3-57

CHAPTER 3
Built-In Functions

STOL provides a number of built-in functions that ease the job of coding STOL procedures and directive definitions
which can be used wherever an expression is allowed. In the trigonometric functions, all angles are expressed in radians.

TABLE 3-14. STOL Built-in Functions (Sheet 1 of 7)

Function What it returns

abs (expr) returns the absolute value of an expression.

acos (expr) returns the angle having the given cosine.

alarm_limit(limit-region, "mnemonic") returns the limit value for the specified limit region and mnemonic. Limit-
region may be -2, -1, 1, or 2 which correspond to the RED LOW, YELLOW
LOW, YELLOW HIGH, RED HIGH regions, respectively.

alarm_status(“mnemonic”) returns the current limit checker status for the specified mnemonic. The return
values -2, -1, 0, 1, 2 correspond to the RED HIGH, YELLOW LOW, NOR-
MAL, YELLOW HIGH, and RED HIGH regions, respectively.

%and(x,y) returns the bitwise AND of x and y.

%arg(expr) returns the i-th argument of the currently executing procedure or foreign direc-
tive body. Arguments are numbered from 1 to the number of arguments (see
the %nargs function).

%ashiftr(expr1,expr2) returns the value of expr1 arithmetically shifted right expr2 bits. For example,
%ASHIFTR(-1,16) returns -1

asin(expr) returns the angle having the given sine.

atan(expr) returns the angle having the given tangent.

atan2(y , x) returns the arc tangent of y / x, using the signs of both to determine the quad-
rant of the result. The result is undefined if x = 0.

%badq returns the numeric value of “bad” quality.

%bin (expr [,width]) returns a string containing expr formatted in binary; e.g., the number 23 would
be returned as “…00010111”. The optional field width argument controls the
number of digits in the returned value; if not specified, width defaults to the
number of bits in a long integer (usually 32).

command_attr(“cmd”,”attr”) returns the value of attribute attr for command cmd. Both cmd and attr are
strings.

command_defined(”expr”) returns TRUE if expr is the name of a command defined in the command data-
base. For example, COMMAND_DEFINED(“snoopcmd”) returns TRUE.

command_parm_attr(“cmd”,”parm”,”
attr”)

returns the value of attribute attr for command parameter parm of command
cmd. Cmd, parm and attr are strings.

%common(expression) returns expression formatted as YY/MM/DD HH:MM:SS.mmm

%convert(expr1,expr2) returns the value of expr1 converted to binary when interpreted as a string con-
taining a number expressed in base expr2. For example, %CONVERT(
“1110”,2) returns 14 while %CONVERT(“1110”,10) returns 1110.

cos (expr) returns the cosine of an angle.

cosh (expr) returns the hyperbolic cosine of an angle.

%day_of_year(time-expression) returns the day-of-year field of time-expression.
3-58 ASIST Users Guide–Version 9.6

STOL
%dec (expr [, width]) returns a string containing expr formatted in decimal; e.g., the number 23
would be returned as “23”. The optional field width argument controls the
number of digits in the returned value; if not specified, width defaults to the
number of decimal digits (plus a sign, if necessary) required to represent expr.
Unlike the binary, hexadecimal, and octal conversion functions, %dec pads the
field with leading blanks, not zeroes.

decode_hex(expr1,expr2) returns the result of converting the hexadecimal text string in expr1 into an
array of integers. Expr2 represents the maximum number of bytes in each of
the resulting integers. It can be either 1, 2, or 4.

%default ([expr],default) returns expr if it's not a NULL string and default otherwise. This function may
be used to specify defaults for missing directive arguments.

%defined(name) returns TRUE if name is a STOL local or global variable.

%dimension(expr1,expr2) returns the number of elements in dimension expr2 of array expr1.

%elapsed (expr) returns a string containing expr formatted as an elapsed time.

encode_hex(expr1,expr2) returns the result of converting the array of integers in expr1 into a hexadeci-
mal string. Expr2 represents the maximum number of bytes used to represent
each of the integers in the input array. It can be either 1, 2, or 4.

%env (expr) returns the value of a UNIX environment variable.

%eval (expr) returns the value of expr, converted to a string and evaluated as if it had been
typed in. For example, given the string “COUNT+1”,%eval would look up the
value of variable COUNT and add 1 to it. %eval is useful for evaluating non-
standard arguments in foreign directives.

exp(expression) returns eexpression.

file_close(handle-expression) Closes the file specified by handle-expression. Returns 0 if successful.

file_create(filename-expression) Creates a new file named filename-expression. If successful returns a file han-
dle >=0.

file_exists(filename-expression) Returns TRUE if filename-expression exists, FALSE otherwise.

file_open(filename-expression [,access]) Opens the preexisting file named filename-expression. If successful, returns a
file handle >=0. Access, if specified, is the file access mode, and may be
“READ”, “WRITE”, or “APPEND”. The default access mode is “READ”.

file_read(handle-expr,name) Reads the next line from the file specified by handle-expr into the variable
name. Returns 0 if successful, -1 if EOF encountered, or -2 if a read error was
detected.

file_write(handle-expr,write-expr) Writes write-expr to the file specified by handle-expr. Returns 0 if successful.

%float (expr) returns the value of expr, converted to a real number.

%float_cmp(expr1,expr2,error-bound) compares two floating-point values, expr1 and expr2, and determines if they
are equal (± error-bound). It returns:

0 if | expr1 - expr1 | ð error-bound

otherwise, it returns:

-1 if expr1 > expr2 OR

1 if expr1 < expr2

%gmt returns the current GMT as a date/time constant.

TABLE 3-14. STOL Built-in Functions (Sheet 2 of 7)

Function What it returns
ASIST Users Guide–Version 9.6 3-59

CHAPTER 3
%hex (expr [, width]) returns a string containing expr formatted in hexadecimal; e.g., the number 23
would be returned as “00000017”. The optional field width argument controls
the number of digits in the returned value; if not specified, width defaults to the
number of hexadecimal digits required to represent a long integer (usually 8).

%hour(time-expression) returns the hour-of-day field of time-expression.

%int (expr) returns the value of expr, converted to an integer. The fractional portion of expr
is truncated, not rounded.

%length (string) returns the number of characters in string.

%lex (target, regexp [, retval0 [, retval1
[, …]]] [,remainder])

dissects a target string using the given regular expression. If the regular expres-
sion match is successful, designated subexpressions are stored in the corre-
sponding retvalN variables (for N = 0…9) and %lex returns true. If the match
is unsuccessful, zero-length strings are assigned to the return variables and
%lex returns false. In either case, remainder returns the text following the text
matched by the regular expression.

%liv (keyword) looks like a %-function, but it's really a reference to an internal variable; see
the earlier section, Local Internal Variables.

ln (expr) returns the natural logarithm (base e) of expr. The result is undefined for expr
<= 0.

%locate (string,pattern) returns the start position of pattern within string, if one is found. Otherwise, it
returns 0.

log10 (expr) returns the common logarithm (base 10) of expr. The result is undefined for
expr <= 0.

%lower (expr) returns the value of expr as a string, with all alphabetic characters converted to
lower case.

%match (target, expr [, expr …]) matches the target string against a list of expressions. Matches are case insensi-
tive; both the target string and the match strings are converted to upper case
before a match is attempted. Use %rex if alphabetic case is important. A string
in the list of expressions can specify a fixed-length abbreviation by embedding
a “#” in the string; e.g., “SIM#INT” will match simint and its short form, sim.
Variable-length abbreviations are denoted by a “*” embedded in the match
string; e.g., “INIT*IALIZE” matches init, initi, …, initialize. %match returns
the index 1…N of the matching string in the list of expressions; 0 is returned if
no match was found.

%minute(time-expression) returns the minute-of-hour field of time-expression.

%name(expr) returns a string containing a command mnemonic, command parameter, STOL
variable, or telemetry mnemonic. This function creates names at runtime simi-
lar to the $ substitution operator. The result of expr must be a string.

%nargs returns the number of arguments passed to the currently executing procedure
or foreign directive.

%native(expr) returns the exit code returned by the operating shell after executing the com-
mand contained in expr. The result of expr must be a string.

%neutralq returns the numeric value of “neutral” quality.

%not (expr) returns the bitwise complement of expr.

%numdims(expr) returns the number of dimensions in array expr.

TABLE 3-14. STOL Built-in Functions (Sheet 3 of 7)

Function What it returns
3-60 ASIST Users Guide–Version 9.6

STOL
%nwords (expr) returns the number of “words” in a string, including null words. Words are
delimited by spaces tabs or commas. (See the %word function below)

%oct (expr [, width]) returns a string containing expr formatted in octal; e.g., the number 23 would
be returned as “00000000027”. The optional field width argument controls the
number of digits in the returned value; if not specified, width defaults to the
number of octal digits required to represent a long integer (usually 11).

%or (x,y) returns the bitwise OR of x and y.

packet_age(“mnemonic”) returns the number of seconds since the telemetry packet containing mnemonic
was received. For example: packet_age("p001scnt").

packet_initialized(“mnemonic”) returns a flag indicating whether the telemetry packet containing mnemonic
has been received in telemetry since ASIST was last started. For example:
packet_initialized("p001scnt").

packet_name(expression) returns the name of the packet with APID expression. For example,
PACKET_NAME(0) returns “P000”.

packet_quality(“mnemonic”) returns the value of the quality flag for the telemetry packet containing mne-
monic. For example: packet_quality("p001scnt").

packet_stale(“mnemonic”) returns a flag indicating whether the age of the packet containing mnemonic is
greater than the staleness age defined for that packet. For example:
packet_stale("p001scnt").

packet_valid(name-expression) Returns TRUE if packet name-expression is initialized, not stale, and of good
quality.

%pick (index, expr [, expr …]) returns the i-th expression from a list of expressions. When used in conjunction
with %match or %rex, %pick provides an easy way to convert abbreviations to
fixed keywords.

%quality(expression) returns the current data quality of the variable named in expression. This func-
tion may also be the target of an assignment. For example, %QUAL-
ITY(“ramp”) returns the data quality of ramp, but %QUALITY(“ramp”)
= %GOODQ sets the quality of ramp to GOOD.

rand() returns a pseudo-random integer between 0 and 2147483647. A different seed
for the pseudo-random sequence can be specified by calling SRAND.

%real (expr [, format]) returns a string containing expr formatted as a real number; e.g., the number
2.345E-4 would be returned as “0.0002345”. The optional format argument
can be any standard C format for floating point numbers (as a quoted string);
the default format is “%G”, which lets the system choose an appropriate for-
mat, with or without an exponent, depending on the value of expr.

%rest (expr, index) returns the rest of a string, beginning with the i-th “word” in the string; words
are delimited by blanks, commas, or tabs. Using the same scanning mechanism
as %word, %rest skips arguments 1 through i-1 of expr and then returns the
rest of expr (i.e., arguments i through N). A zero-length string (“”) is returned
if index exceeds the number of words in the string (see the %nwords func-
tion). %rest is useful for scanning nonstandard arguments.

%rex (target, regexp [, regexp …]) matches the target string against a list of regular expressions. The matches
case-sensitive - target is not converted to upper case before the match is
attempted. If a regular expression must match the entire target string, be sure to
include the ^ and $ anchors at the beginning and end, respectively, of the regu-
lar expression. %rex returns the index 1…N of the matching string in the list of
regular expressions; 0 is returned if no match was found.

TABLE 3-14. STOL Built-in Functions (Sheet 4 of 7)

Function What it returns
ASIST Users Guide–Version 9.6 3-61

CHAPTER 3
%rpad (string, length, pad) returns a character string which is the result of right padding string out to
length length with pad character pad. This function will truncate the string if
required in order to fit it into length characters. For example:

 wzz = %rpad("ABC", 5, "*")

assigns the string "ABC**" to the variable wzz.

%second(time-expression) returns the second-of-minute field of time-expression.

%select (test,true-expr,false-expr) returns true-expr if test evaluates as true, or false-expr if test evaluates as false.
For example, %select(2>1,”Normal”,”Weird”) would return “Normal”.

%shiftl(expr1,expr2) returns the value expr1 logically shifted left expr2 bits. For example,
%SHIFTL(2,2) returns 8.

%shiftr(expr1,expr2) returns the value expr1 logically shifted right expr2 bits. For example,
%SHIFTR(-1,16) returns 65535.

sin (expr) returns the sine of an angle.

sinh (expr) returns the hyperbolic sine of an angle.

%slice(expr,l1,u1[,l2,u2,[l3,u3]]) returns a new array containing a subset of the dimensions of array expr.

sqrt (expr) returns the square root of expr.

sprintf(format [,expression1 [, …]]) returns a formatted string that is the result of applying format to any following
expressions.

The format string is in the same syntax as the printf format string. For exam-
ple:

 str = sprintf("Number = %d", 2)

assigns the string "Number = 2" to the STOL variable STR.

srand (expr) sets the initial seed of the pseudo-random sequence for the RAND function.
Returns the value of expr.

%staleq returns the numeric value of “stale” quality.

%status looks like a %-function, but it's really a reference to STOL's global status vari-
able, %status; see the earlier section, STOL Variables.

%string(expression) returns the result of converting expression to a string.

%subsecond(time-expression) returns the subsecond-of-second field of time-expression.

%substring (string,start,end) returns a substring of string, starting at position start and ending at end. If start
is negative, larger than end or past the end of string, a null string (“”) is
returned. If end is negative or smaller than start then a null string is also
returned. If end is past the end of string, then the length of the string is used
instead of end. For instance, %substring(“DooWahDiddy”,4,6) would return
“Wah”.

tan (expr) returns the tangent of an angle.

tanh (expr) returns the hyperbolic tangent of an angle.

telemetry_attr(name-expr,attr-expr) returns the attribute named attr-expr of telemetry point name-expr. See Appen-
dix F-”Access to Database Attributes”

telemetry_defined(“mnemonic”) returns a flag indicating whether mnemonic is defined in the telemetry data-
base. For example: telemetry_defined("synch")

TABLE 3-14. STOL Built-in Functions (Sheet 5 of 7)

Function What it returns
3-62 ASIST Users Guide–Version 9.6

STOL
telemetry_table_attr(name-expr,attr-
expr, index)

returns telemetry attribute values that are stored in tables (limit set information
or discrete ranges and labels) for telemetry point name-expr. For more infor-
mation on attributes, see APPENDIX F-“Access to Database Attributes”

telemetry_units(“mnemonic”) returns the units of mnemonic from the telemetry database as a string. For
example: telemetry_units("dfloat1")

%time (expr) returns the value of expr, converted to a date/time constant. If expr is a string in
the format of a date/time constant, the string is converted to that date/time con-
stant (useful when parsing non-standard directive arguments). Otherwise, expr
is treated as the number of seconds since January 1, 1970 and is converted to
the equivalent date/time constant.

%token (identifier [, string]) scans a character string and returns the type of the next token as well as its
value. This function is useful when scanning the arguments to a non-standard
foreign directive.

If both identifier and string are present begin a lexical scan of string and
return the value of the first token in the STOL variable identifier. The func-
tional return value is a string containing the token type. The token type can be:

INTEGER token is an integer
REAL token is a floating point number
STRING token is a quoted string
ABS_TIME token is an absolute time
REL_TIME token is a relative time
IDENTIFIER token is an identifier
OTHER token is a single character
END end-of-string - no more tokens

If only identifier is present, return the next token found in the most recently
entered string.

For example, if called like this: WRITE %TOKEN(tok,"12 ""a b""")
it returns the string "INTEGER" and places 12 into the STOL variable tok.

If called again: WRITE %TOKEN(tok)

it returns the string "STRING" and places "a b”” into the STOL variable
tok.

Finally, if called by: WRITE %TOKEN(tok)

it returns the string "END" and places "" into the STOL variable tok.

trend_max(“mnemonic”) returns the maximum value of mnemonic in the trend interval. For example:
trend_max("float1").

trend_mean(“mnemonic”) returns the mean value of mnemonic in the trend interval. For exam-
ple:trend_mean("float2").

trend_meantime(“mnemonic”) returns the mean time of mnemonic in the trend interval. For example:
trend_meantime("dfloat1").

trend_min(“mnemonic”) returns the minimum value of mnemonic in the trend interval. For example:
trend_min("dfloat2").

trend_num(“mnemonic”) returns the current size of the trend interval for mnemonic. For example:
trend_num("float1").

trend_redfailtime(“mnemonic”) returns the number of seconds until mnemonic exceeds either the red high or
red low limit, if it follows the currently calculated slope. For example:
trend_redfailtime("float2").

TABLE 3-14. STOL Built-in Functions (Sheet 6 of 7)

Function What it returns
ASIST Users Guide–Version 9.6 3-63

CHAPTER 3
trend_sdev(“mnemonic”) returns the standard deviation of mnemonic in the trend interval. For example:
trend_sdev("dfloat1").

trend_slope(“mnemonic”) returns the slope of mnemonic in the trend interval. For exam-
ple:trend_slope("dfloat2").

trend_state(“mnemonic”) returns a flag indicating whether trending is enabled for mnemonic. For exam-
ple: trend_state("float1").

trend_sum(“mnemonic”) returns the sum of the values of mnemonic in the trend interval. For example:
trend_sum("float2").

trend_sumsq(“mnemonic”) returns the sum of squares of mnemonic in the trend interval. For example:
trend_sumsq("float2").

trend_var(“mnemonic”) returns the variance of mnemonic in the trend interval. For exam-
ple:trend_var("dfloat1").

trend_yelfailtime(“mnemonic”) returns the number of seconds until mnemonic exceeds either the yellow high
or yellow low limit, if it follows the currently calculated slope. For example:
trend_yelfailtime("dfloat2").

%trim_left (string) returns string with any leading blanks or tabs removed.

%trim_right (string) returns string with any trailing blanks or tabs removed.

%type(expression) returns the fundamental data type of expression: INTEGER if integer,
UNSIGNED if an unsigned integer, REAL if floating point, STRING if char-
acter, ABS_TIME if an absolute time, REL_TIME if a relative time, or
UNKNOWN otherwise.

%uninitq returns the numeric value of “uninitialized” quality.

%unsigned(expr) forces its input argument to an unsigned integer. This function is useful for
viewing the result of an operation as an unsigned integer.

%unsigned_cmp(expr1,expr2)) compares two integers (signed or unsigned) as if they were both unsigned and
returns:+
 0 if expr1 = expr2

 -1 if expr1 < expr2

 1 if expr1 > expr2

This can be used when comparing addresses in a spacecraft processor or when
comparing two unsigned values from the telemetry database.

%upper (expr) returns the value of expr as a string, with all alphabetic characters converted to
upper case.

%utcf returns the current value of the UTC correlation factor.

%word (expr, index) returns the i-th “word” from a string, where words are delimited by blanks,
commas, or tabs. Null words in a string can be specified with consecutive com-
mas (with intervening white space allowed). A zero-length string (“”) is
returned if index specifies a null word or if it exceeds the number of words in
the string (see the %nwords function). %word is useful for scanning non-
standard arguments.

%xor (x,y) returns the bitwise Exclusive OR of x and y.

%year(time-expression) returns the year field of time-expression including the correct millennium.

TABLE 3-14. STOL Built-in Functions (Sheet 7 of 7)

Function What it returns
3-64 ASIST Users Guide–Version 9.6

STOL
Built-in Directives

TABLE 3-15. STOL Built-in Directives (Sheet 1 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.

/cmd-name [parm=expr | parm ...]
/%name(expr) [parm=expr | parm ...]
/%name(expr) [%name(expr)=expr |
%name(expr) ...]

Sends a command to the spacecraft or to controllable
ground support equipment.

Example:
/SIT DOG=”FIDO”

✔ ✔

ask prompt [variable] Issues prompt to the operator and reads a line of input
from the operator into either variable or ANSWER if
variable is not specified. This directive may be aborted
at run-time by entering a single "!".

Example:
ask “Host name of front-end computer?” FRONT_END

✔

break [if expression] Terminates the current loop if expression evaluates to
TRUE. BREAK alone causes an unconditional termi-
nation of the loop.

Example:
break OR break if BatVoltage<5

✔

breakpoint
(abbr: bp)

List all execution breakpoints. ✔

breakpoint number
(abbr: bp)

List breakpoint number.

Example:
breakpoint 3

✔

breakpoint on number file-name:line-number
(abbr: bp on)

Set breakpoint number to file file-name on line line-num-
ber and enable it.

Example:
breakpoint 3 powerup 45

✔

breakpoint off number
(abbr: bp off)

Disable breakpoint number.

Example:
breakpoint off 3

✔

cd expression Changes the local directory to the directory specified in
expression.

Example:
cd “my_directory”

✔ ✔

check [on|off] Turns the telemetry limit checker on or off. ✔ ✔

clear_pending
(abbr: clear_pend)

Removes any pending command status blocks from the
STOL pending command queue.

✔ ✔
ASIST Users Guide–Version 9.6 3-65

CHAPTER 3
continue [if expression] Resumes execution of the current loop with the next iter-
ation if expression evaluates to TRUE. continue alone
causes the loop to resume with the next iteration uncon-
ditionally.

Example:
continue OR continue if still_crazy=TRUE

✔

directive name [(formal1 [,] formal2 [,] ...)] is
 foreign-directive-attributes
 forward

Predefines the attributes of a foreign directive before it is
formally defined.

Example:
directive twist_and_shout(how_far,how_loud) is
 alias shake_it_up_baby
forward

✔

directive name [(formal1 [,] formal2 [,] ...)] is
 foreign-directive-attributes
begin
 foreign-directive-body
end

Defines (or redefines) a foreign directive. The usual
directive attributes are available. The attributes and for-
mals must agree with any FORWARD definition.

Example
directive twist_and_shout(how_far,how_loud) is
 alias shake_it_up_baby
begin
 write “Twist… (“,how_far,”), Shout…(“,how_loud,”)”
end

✔

do [until expression]
 loop-body
enddo

Repeats the directives in loop-body until expression
evaluates to TRUE. DO alone is an infinite loop.

Example
do until how_loud=0
 write “Shout “,how_loud
 how_loud=how_loud-1
enddo

✔

drop object-name Deletes STOL local variable, STOL global variable, for-
eign directive, or user-defined function object-name.

✔ ✔

error message Causes an error to occur at runtime. message is displayed
and any active procedures are halted.

Example
error “No more voice left”

✔

event [subsystem,class,level,] message Causes an event message to be generated with the
optionally specified subsystem, class, and level. If these
are not specified, the directive defaults to "SPR", "STS",
and "INFO", respectively. Unlike the error directive, an
event with a level of ERROR will not halt your proce-
dure.

Example
 event "FEDS","STS","WARNING","Whoops"

 event “This is an explanatory event”

✔ ✔

TABLE 3-15. STOL Built-in Directives (Sheet 2 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
3-66 ASIST Users Guide–Version 9.6

STOL
exec Displays the current execution state of the run-time mon-
itor.

✔

exec on Forces the run-time monitor into a known state. ✔

exit [prompt] Issues prompt to the operator and causes the STOL run-
time monitor to exit. If prompt is not specified, EXIT
STOL! Are you sure? is displayed instead.

Example
exit “Shall we leave Dodge?”

✔ ✔

for variable = expr [down] to expr [step expr]
do
 loop-body
enddo

Repeats the directives in loop-body the number time
requested, from the initial expr to the final expr. If STEP
appears, it specifies the amount to increment by, the
default is 1.

DOWN must be used when the initial expression is
larger than the final expression (STEP must also appear
with a negative value).

Example
for i=1 to how_far do
 write “Twist…”
enddo

✔

function name([parameters])
forward

Predefines the attributes of a function before it is for-
mally defined.

✔

function name([parameters])
 stol-directives
endfunc

Defines a function. Like directives, each source line is
NOT displayed while a function executes and if an error
occurs the function is exited immediately.

Note that a return statement must appear somewhere
inside the function and must contain an expression
whose value is returned. If no return is found in the func-
tion a runtime error will occur.

global name [= init-value] [, …]

global name [size1 [, size2 [, size3]]]

global %name(expression) [, …]

Creates a global variable (or array) named name or
named the result of expression., and optionally assigns it
the value init-value.

Example
global tooty_fruity OR global %name(“Aw” & Rudy)
OR global an_array[5]

✔

go
(abbr: g)

Begins (or resumes) execution at the current line in the
current procedure

✔

go until line-number Begin execution at the current line and set breakpoint 0
to line-number in the current procedure.

Example
go until 123

✔

TABLE 3-15. STOL Built-in Directives (Sheet 3 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
ASIST Users Guide–Version 9.6 3-67

CHAPTER 3
goto label Causes execution to resume on the line that contains
label.

Example
goto bop_bop_baloo_bop OR goto %name(var)

✔ ✔

goto line-number Begin execution on line line-number.

Example
goto 123

✔

goto label | line-number until bp-line-number Begin execution on the line containing label or line line-
number and set breakpoint 0 to bp-line-number in the
current procedure.

Example
goto bop_bop_baloo_bop until 123

✔

if expression directive Causes directive to be executed if expression evaluates to
TRUE. directive must not be a command.

Example
if (balop=”bamboo”) goto bop_bop_baloo_bop

✔

if if-expression then
 then-body
elseif elseif-expression then
 elseif-body
elseif …
else
 else-body
endif

Causes then-body to be executed if if-expression evalu-
ates to TRUE or elseif-body if elseif-expression evalu-
ates to TRUE or else-body otherwise.

Example
IF (tooty=”fruity”) THEN
 write “Aw Rudy”
ELSEIF (bopbop=”baloobop”) THEN
 write “balop-bamboo”
ELSE
 write “Knew a girl, named Sue, …”
ENDIF

✔

killproc [all]
(abbr: kp)

Terminates execution of the current procedure or all pro-
cedures if ALL is specified.

✔ ✔

[let] name = expression

[let] %name(name-expression) = expression

Assigns expression to either name or the result of name-
expression. name or name-expression may be a local
variable, global variable or telemetry point.

Example
tooty=”Fruity” OR %name(“to” & “oty”)=”Fruity”

✔ ✔

limit name

limit %name(name-expression)
(abbr: lim)

Displays the state (either OFF or ON) of limit checking
for the specified telemetry point.

Example
limit Voltage1 OR limit %name(“Voltage” & i)

✔ ✔

TABLE 3-15. STOL Built-in Directives (Sheet 4 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
3-68 ASIST Users Guide–Version 9.6

STOL
limit on name

limit on %name(name-expression) [all]
(abbr: lim on)

Enables limit checking for the specified telemetry point.
If ALL appears, then all telemetry points contained
within the specified telemetry point (assuming it is an
aggregate type) are affected.

Example
limit on Voltage1 OR limit on P001 all

✔ ✔

limit off name

limit off %name(name-expression)

(abbr: lim off)

Disables limit checking for the specified telemetry point.

Example
limit off Voltage1

✔ ✔

limit def name [set = expr | current_set]
[RL=expr] [YL=expr] [YH=expr] [RH=expr]

limit def %name(name-expression) [set = expr |
current_set] [RL=expr] ... [RH=expr]

(abbr: lim def)

Sets limits on the specified telemetry point. If no limits
are specified, then the current limit settings are shown.
The optional parameter set specifies which limit set to
assign/view for this telemetry point (numbered up from
zero). You can also specify current_set, which selects
the currently active limit set. If unspecified, set 0 is used.
Please note that If you define a new limit set this way,
the new set number must be one higher than the previous
highest set number.

Example
limit def Voltage1 rl=1 rh=32

limit def Goofy2 set=2,rl=4.2, yl=42,yh=420,rh=1492

✔ ✔

 limit undef name [set = expr | current_set]]

 limit undef %name(name-expression) [set =
expr | current_set]]

(abbr: lim undef)

Clears limits on the specified telemetry point.The
optional parameter set specifies which limit set clear (set
numbers begin at zero), or the optional current_set
specifies to clear the currently active set. If unspecified,
set 0 is cleared.

Example
limit undef Voltage1

✔ ✔

 local name [= init-value] [, …]

local name [size1 [, size2 [, size3]]]

 local %name(expression) [, …]

Creates a local variable (or array) named name or
named the result of expression., and optionally assigns it
the value init-value.

Example
local tooty_fruity OR local %name(“Aw” & Rudy)
OR local a_small_array[20] OR local one_plus_one=4

✔ ✔

 native expression Send expression to the native operating system for exe-
cution and wait for its completion.

Example
native “rm -R /*”

✔ ✔

next
(abbr: n)

Pause execution before the next line. ✔

TABLE 3-15. STOL Built-in Directives (Sheet 5 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
ASIST Users Guide–Version 9.6 3-69

CHAPTER 3
next line-count

(abbr: n)

Pause execution after line-count lines have executed.

Example
next 5

✔

on error HALT Causes the currently executing procedure, function, or
directive to halt when an error occurs. This is the default
behaviour.

✔

on error RESUME Causes the currently executing procedure, function, or
directive to continue executing when an error occurs
(effectively ignoring the error).

✔

on error GOTO label Causes the currently executing procedure, function, or
directive to resume executing at the specified label when
an error occurs. The condition handling mode is reset to
HALT after the error-induced goto occurs (to prevent
infinite loops). If label is not found, the procedure is
halted.

✔

poly name [a0=expr] … [a7=expr]

poly %name(name-expression) [a0=expr] …
[a7=expr]

Sets the polynomial coefficients for the engineering con-
version of telemetry point name. If no coefficients are
specified, then the current coefficients are displayed.

Example
poly putthe_kettleon a0=12,a3=1.345

✔ ✔

position label | line-number

(abbr: pos)

Set the current line to be the line containing label or line
line-number and pause the procedure indefinitely.

Example
position a_label_in_this_proc

✔

printf format [, expression …] Displays the value of any expressions specified using the
given format. format is a standard C format string.

Example
p=3.141596
printf “The value of p is %5.3f”,p
 prints 3.141

✔ ✔

proc name [(formal1, … formaln)]

 procedure-body
endproc

Defines a new procedure. Only one PROC…ENPROC
directive may appear in a file.

Example
proc tology(takes_an,md)
 write “Inside tology(“,takes_an,”,”,md,”)”
endproc

✔

reset Reset the execution state of the run-time monitor. ✔

return Returns control from either a procedure or a foreign
directive.

✔

returnerror message Causes an error to occur at runtime. Message is dis-
played and the calling procedure, foreign directive or
function is halted.

✔

TABLE 3-15. STOL Built-in Directives (Sheet 6 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
3-70 ASIST Users Guide–Version 9.6

STOL
run expression Execute the results of expression as a run-time monitor
directive.

✔ ✔

show directives Display a list of all defined foreign directives. ✔

show globals Display a list of all global variables. ✔

show locals Display a list of all local variables. ✔

show pending Display a list of all pending command status blocks. ✔

show stack Display a list of all active procedures. ✔

start name [(arg1 , ... argn)]

(abbr: s)

Initiate execution of the procedure contained in the file
name with the specified arguments

✔ ✔

start name [(arg1 , ... argn)] at line | label

(abbr: s … at …)

Initiate execution of the procedure contained in the file
name with the specified arguments. Begin execution at
line line or label label.

✔

start name [(arg1 , ... argn)] until line

(abbr: s … until …)

Initiate execution of the procedure contained in the file
name with the specified arguments. Set breakpoint 0 to
line line in the initiated procedure.

✔

statemachine name
 [state_variable variable-name]
begin
 state-machine-body
end

Creates a state machine named name. State_variable
may be used to specify the name of a STOL variable or
telemetry point that receives the name of the current
state machine state.

✔

step [on] Turns single step mode on. ✔

step off Turns single step mode off. ✔

step expression Turns timed single step mode on where expression is the
number of seconds to wait between each directive.

✔

synchronize Displays the current state of synchronous commanding. ✔ ✔

synchronize off Completely disables waiting for end-to-end responses
when transmitting commands in a STOL procedure. This
is the same as: %liv(END_TO_END_WAIT)=0.

✔ ✔

synchronize manual Disables waiting for end-to-end responses when trans-
mitting commands in a STOL procedure. All end-to-end
responses are saved until a synchronize now directive is
executed. You are limited to having no more than 100
commands outstanding at once.

✔ ✔

synchronize auto Enables waiting for end-to-end responses when transmit-
ting commands in a STOL procedure. This is the default
and is equivalent to: %liv(END_TO_END_WAIT)=1

✔ ✔

TABLE 3-15. STOL Built-in Directives (Sheet 7 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
ASIST Users Guide–Version 9.6 3-71

CHAPTER 3
synchronize count [timeout secs] Places the current STOL procedure in synchronous wait
until only count commands are left awaiting an end-to-
end response verification(all the rest have received end-
to-end responses), or secs seconds occurs. If no timeout
is specified, the current end-to-end timeout value will be
used.

✔ ✔

synchronize now [timeout secs] Places the current STOL procedure in synchronous wait
until all outstanding end-to-end responses have been
received, or secs seconds occurs. If no timeout is speci-
fied, the current end-to-end timeout value will be used.

✔ ✔

task [show | clear_pend | s[tart]] … Allows you to monitor and control PSTOL and to start
PSTOL tasks. These are described in Table 3-9, “Direc-
tives for communicating with PSTOL,” on page 3–52.

✔ ✔

task id action … Allows you to communicate with, monitor, and control
the currently running PSTOL task id . These are
described in Table 3-10, “Directives for communicating
with a PSTOL task,” on page 3–53.

✔ ✔

transition state-name Causes the state machine that contains this directive to
change state to state-name. The enclosing when clause is
exited immediately. This directive is only valid inside of
a statemachine directive.

✔

trend name

trend %name(name-expression)

Displays the state (either ON or OFF) of statistics col-
lection for the specified telemetry point. See “Trending”
on page 8–27.

✔ ✔

trend on name [interval-size]

trend on %name(name-expression) [interval-
size]

Enables statistics collection for the specified telemetry
point. The optional interval-size parameter sets the
length of the boxcar interval.

✔ ✔

trend off name

trend off %name(name-expression)

Disables statistics collection for the specified telemetry
point.

✔ ✔

wait
(abbr: w)

Pause execution indefinitely. ✔ ✔

wait expression
(abbr: w)

Pause execution for expression seconds. ✔

wait until expression [timeout timeout] Pause execution until expression evaluates to TRUE. If
TIMEOUT is specified, then an error occurs if timeout
number of seconds have elapsed.

✔

when state-name do
 state-machine-directives
enddo

Executes the enclosed state-machine-directives when the
state machine that contains this directive is in state state-
name. This directive is only valid inside of a statema-
chine directive.

✔

TABLE 3-15. STOL Built-in Directives (Sheet 8 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
3-72 ASIST Users Guide–Version 9.6

STOL
Status Variables

STOL maintains a set of telemetry points which the user can access from pages. These variables are:

while expression do
 loop-body
enddo

Repeats the directives in loop-body as long as expression
evaluates to TRUE.

Example
while Voltage < 5 do
 gpib cmd “set voltage 5”
 wait 4
enddo

✔

write expression [, expression ...] Display the results of all specified expressions.

Example
write “You are ”,”here”

✔ ✔

TABLE 3-16. STOL Telemetry Points

Variable Contents

STOL_AUTO_SYNCHRONIZE An integer containing the current setting of the auto_synchronize local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_CHECK_SOURCE An integer containing the current setting of the check_source_file local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_CMD_QUE_DEPTH An integer containing the current number of command status blocks in the pending
command queue.

STOL_COMMAND_POST_VERI
FIER

A character string containing the name of a foreign directive to be invoked when a
command end-to-end response is received.

STOL_END_TO_END_TIMEOUT An integer containing the number of seconds STOL waits before declaring an end-to-
end time-out.

STOL_END_TO_END_WAIT An integer containing the current setting of the end_to_end_wait local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_EXEC_MODE A character string containing the current execution mode name.

STOL_HALT_ON_BAD An integer containing the current setting of the halt_on_bad_quality local internal
variable. Since this variable is defined as a discrete telemetry point, the discrete label
may be accessed by using the P@ modifier.

STOL_HALT_ON_RED An integer containing the current setting of the halt_on_red_limit local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_IS_ACTIVE An integer flag indicating whether STOL is available and able to accept directives.

TABLE 3-15. STOL Built-in Directives (Sheet 9 of 9)

Directive What it does

Available
from

Procs

Run-
Time
Mon.
ASIST Users Guide–Version 9.6 3-73

CHAPTER 3
STOL_IGNORE_WAIT An integer containing the current setting of the ignore_wait local internal variable.
Since this variable is defined as a discrete telemetry point, the discrete label may be
accessed by using the P@ modifier.

STOL_KILL_FOREIGN An integer containing the current setting of the kill_foreign_on_error local internal
variable. Since this variable is defined as a discrete telemetry point, the discrete label
may be accessed by using the P@ modifier.

STOL_KILL_FUNCTION An integer containing the current setting of the kill_function_on_error local internal
variable. Since this variable is defined as a discrete telemetry point, the discrete label
may be accessed by using the P@ modifier.

STOL_LOCALHOST A character string containing the current host name.

STOL_LOCAL_TIMEOUT An integer containing the number of seconds STOL waits before declaring a local
time-out.

STOL_LOG_FOREIGN An integer containing the current setting of the log_foreign local internal variable.
Since this variable is defined as a discrete telemetry point, the discrete label may be
accessed using the P@ modifier.

STOL_LOG_FUNCTION An integer containing the current setting of the log_function local internal variable.
Since this variable is defined as a discrete telemetry point, the discrete label may be
accessed using the P@ modifier.

STOL_LOG_PROCEDURE An integer containing the current setting of the log_procedure local internal variable.
Since this variable is defined as a discrete telemetry point, the discrete label may be
accessed using the P@ modifier.

STOL_LOG_SUBS An integer containing the current setting of the log_substitutions local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed using the P@ modifier.

STOL_MISSION A character string containing the current mission name.

STOL_MONITOR_QUALITY An integer containing the current setting of the monitor_quality local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_PROC_LINE An integer containing the line number of the currently executing line. If no procedure
is active, this integer contains zero.

STOL_PROC_NAME A character string containing the name of the currently executing procedure. If no
procedure is active, this string contains blanks.

STOL_SEND_COMMANDS An integer containing the current setting of the send_commands local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed by using the P@ modifier.

STOL_STEP_MODE A character string containing the current step mode name.

STOL_STEP_TIME An integer containing the seconds to wait between steps.

STOL_STICKY_BREAKS An integer containing the current setting of the sticky_breakpoints local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed using the P@ modifier.

STOL_USE_ASK_POPUP An integer containing the current setting of the use_ask_popup local internal vari-
able. Since this variable is defined as a discrete telemetry point, the discrete label may
be accessed using the P@ modifier.

STOL_WAIT_MODE A character string containing the current wait mode name.

STOL_WAIT_TIME An integer containing the number of seconds to wait in this mode.

TABLE 3-16. STOL Telemetry Points (Continued)

Variable Contents
3-74 ASIST Users Guide–Version 9.6

AS
CHAPTER 4 Telemetry Database
Compiler
Overview

The telemetry database defines how ASIST should interpret the data it receives from the spacecraft. This database is gen-
erated by describing the format of the data using the Telemetry Record Definition Language (RDL) and compiling it using
the Telemetry Database Compiler.

All telemetry is received in groupings called packets. Each packet is identified by a unique Application ID code (APID).
When ASIST receives a telemetry packet, it determines where to store it by looking up its APID in the telemetry database.
Thus, without a valid database, ASIST cannot recognize or store the telemetry it receives, and that telemetry is discarded.

This chapter will provide you with:

• Tools Overview – A list of the tools provided to ease telemetry database development.

• Language Overview – A brief synopsis of the telemetry record definition language.

• Language Reference – A detailed description of elements of the telemetry record definition language.

• Tools Reference – Brief tutorials on how to use the telemetry database tools.
IST Users Guide–Version 9.6 4-1

CHAPTER 4
Tools Overview

Creating and maintaining the database is left to the user. ASIST provides a number of tools to aid in this task, including:

• Telemetry Database Compiler (dbcmptlm) - Compiles the user-generated RDL files into a binary database readable
by the ASIST system.

• Telemetry RDL Syntax Checker (otlm filename) - Verifies the syntax of an RDL file.

• Telemetry Database Reports (otlmbyapid and otlmbymnem) - Generates reports sorted by APID or name to help
ensure database correctness before telemetry is received.

• Database Editor (dbedit) - A version of the emacs editor customized for RDL development.
4-2 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
Language Overview

The ASIST Telemetry Record Definition Language (RDL) is a hierarchical language based on standard programming lan-
guage data structures.

• The top (or outer) level of a telemetry database is signified with the DATABASE statement. This tells ASIST that the
contents of the DATABASE record (whatever appears between the DATABASE statement and the accompanying
END statement) define the entire structure of the Current Value Table. ASIST only generates one database, so this
statement must appear only once. When using the standard telemetry database compiler (dbcmptlm), ASIST defines
this (database statement) for you.

• A database contains one or more PACKETs. Each packet has associated with it an APID, which ASIST uses to deter-
mine where telemetry data should be stored and how it should be retrieved. A packet is a group of data which ASIST
receives in a contiguous stream, either from the spacecraft, from another external data source, from internal ASIST
subsystems, or from pseudo-telemetry (values calculated within ASIST based upon other telemetry points).

• Each packet contains one or more telemetry points of the following structure types:

Scalar structures define a single telemetry point as a standard data type (like integer, floating point, etc.) and form the major-
ity of mnemonic definitions.

Aggregate structures define collections of telemetry points. This includes records (a sequence of telemetry points) and union
(a group of telemetry points mapped to the same physical location).

• A database may also contain one or more TYPES constructs. Theses allow you to define your own data types based
upon the standard scalar data types and attributes built into ASIST.

A standard database is defined as:

DATABASE database-name
PACKET packet-name

…telemetry-points…
END
PACKET another-packet-name

…telemetry-points…
END
…

END
ASIST Users Guide–Version 9.6 4-3

CHAPTER 4
Language Reference

The telemetry database is defined at the top level as a DATABASE, which is then subdivided into PACKETs. These
packets are subdivided further into scalar telemetry points or aggregate telemetry structures.

The following section defines each of the statements that are used to create a database and its components.

Grouping Constructs

DATABASE

The outer level data construct of the telemetry database is the DATABASE statement. The contents of this DATABASE
block (whatever appears between the word DATABASE and the accompanying END) is a definition of all of the packets
to be stored in the Current Value Table. This statement is required to generate a database, but may only appear once. It is
actually included in the system database definitions, and thus isn’t necessary for users telemetry definitions.

Format:
DATABASE database-name [DESC=text-description]

…packets… AND/OR …types

END

Keywords:

DESC a text description of this database.

Parameters:

database-name A name which identifies the database uniquely. It is a series of letters, digits, or underscores,
beginning with a letter. In ASIST, this is generally
Telemetry_Database_Definitions.

packets Groups of data which ASIST receives in a contiguous stream.

types A group of user-defined types.

text-description A string describing the database.

Example:
DATABASE Telemetry_Database_Definitions

PACKET ACS_B APID=21,DESC="B Side ACS tlm"
UI DATA1
DFP MOREDATA
UB ETAL[64]

END
PACKET SDS_A APID=22,DESC="Another packet"
UI Rhythm

UB IGotStyle[32]
Time AskFor

END
END

This example defines a database containing telemetry packets with APIDs of 21 and 22.
4-4 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
PACKET

Within the database record is a sequence of telemetry packets. A telemetry packet is defined using the PACKET state-
ment. This tells ASIST that all of the definitions between the word PACKET and the accompanying END form one telem-
etry packet, and thus will be received from the spacecraft in one contiguous series of bytes.

Format:
PACKET packet-name [APID=apidnum,] [APPEND [=”string”] | SHORT] [VARYING,]

[FREQUENCY=(freq-list)] [FILTERS=(filter-list)]
[DESC=text-description] [STALE=stale-factor]
[PACKET_TIME=”mnemonic”,] [PACKET_COUNT=”mnemonic”]
[SFDU_NAME=”ddid-string”]

…tlm-points.…

END

Keywords:

APPEND causes telemetry points within this packet to use the APPEND naming method (i.e. PXXX-
item-name). If an optional string is specified, this string is used as a prefix for all points within
this packet.

SHORT causes telemetry points within this packet to use the SHORT naming method. This is the
default.

APID defines the application id for all telemetry points in this packet.

VARYING indicates that incomplete versions of this packet may be received in telemetry without error.

DESC provides text to describe this packet.

STALE defines the time in seconds that it takes for the packet's data to become stale.

FREQUENCY defines the frequency (in Hertz) this packet arrives in up to 16 filter factors.

FILTERS defines the filter factor (how many seconds between arrivals) for this packet in up to 16 modes.

PACKET_TIME tells ASIST which telemetry point to read to determine this packet's generation time. If none is
assigned, then the time defaults to the current GMT of the workstation.

PACKET_COUNT tells ASIST which telemetry point to read to determine this packets sequence counter. If none
is assigned, then the counter defaults to a free-running counter, which starts at zero and incre-
ments each time that either the packet is received in telemetry, or a point within the packet is
set from STOL.

SFDU_NAME tells ASIST that when an SFDU with the data-description ID (DDID) ddid-string is received, it
should be put into the CVT as this packet.

Parameters:

packet-name Identifies the packet uniquely. packet-name is a series of letters, digits, or underscores begin-
ning with a letter.

apidnum An integer.

text-description A string describing this packet.

stale-factor An integer or floating point number of seconds.

tlm-points All telemetry points within this packet.
ASIST Users Guide–Version 9.6 4-5

CHAPTER 4
freq-list A list of 1 to 16 frequencies for this packet. They should be defined in packet arrivals per sec-
ond (Hertz).

filter-list A list of 1 to 16 filter settings defining how many seconds between packet arrivals.

mnemonic A telemetry point name. This is used for the PACKET_TIME and PACKET_COUNT key-
words, to define what telemetry point to read when determining this packet's time and
sequence count.

ddid-string A four character string indicating what SFDU’s DDID should be interpreted as this packet.
This can be either a fixed string, or a C-style printf format statement which reformats this
packets APID (i.e. C%03X would print C003 for apid=3 and C01F for apid=31 [or 0x1f]).

Example:

PACKET ACS_B APID=21,DESC="B Side ACS telemetry"
UI DATA1
DFP MOREDATA
UB ETAL[64]

END

This example defines a telemetry packet with an APID of 21.
4-6 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
Aggregate Data Types:

Aggregate data type statements define collections of telemetry points which appear as a single unit in a telemetry packet.
There are two kinds of aggregate data types: RECORDS and UNIONS.

RECORD

A record is a group of telemetry points which appear sequentially in the telemetry stream.

Format:
RECORD record-name [[array-bound1 [, array-bound2 [,array-bound3]]] [APPEND [=”string”] | SHORT,]

 [,DESC=text-description]
[,SUPERCOM=apid] [,TIME_OFFSET=number-of-seconds]
[,TIME_BETWEEN_ELEMENTS=number-of-seconds]
[,SUBCOM=BLOCK

…
SUBCOM_APID=expression
…

ENDBLOCK]

...tlm-definitions....

END

Keywords:

APPEND causes telemetry points within this record to use the APPEND naming method. If an optional
string is specified, this string is used as a prefix for all points within this packet.

SHORT causes telemetry points within this record to use the SHORT naming method.

DESC provides a description of this record.

SUPERCOM tells ASIST that when this record is received in telemetry, each element (if it is an array)
should be redelivered to ASIST as packet apid.

TIME_OFFSET the offset in time between the packet's time and the time this record (or the first element of it, if
it is an array of records) was measured.

TIME_BETWEEN_ELEMENTS
for an array of records, this tells ASIST that each set of measurements in this array was taken
number-of-seconds apart.

SUBCOM tells ASIST that when this record is received in telemetry, it should be redelivered to ASIST as
the packet with the apid indicated in SUBCOM_APID.

Parameters:

record-name must be unique, and is a series of letters, digits, and underscores beginning with a letter.

array-bound1–array-bound3
specifies an array of up to three dimensions with the indicated bounds. Array bounds are of the
form:
[lower-bound ..] upper-bound
where lower-bound defaults to 1 if not specified.

text-description A string describing this record.

tlm-definition All telemetry points and sub-records within the record. Records may be nested.
ASIST Users Guide–Version 9.6 4-7

CHAPTER 4
apid A number between 0 and 4097, indicating which apid each element of this array of records will
be redelivered to if it is supercommutated.

number-of-seconds a number, in seconds.

Example:
This is a record definition for the CCSDS header, included in each telemetry packet. Please note that append mode is
used, because this file is included within every spacecraft packet and the names specified within the header must be
unique.

RECORD CCSDS_Header APPEND,DESC="CCSDS Header"
UNION HDR1 DESC="CCSDS Header 1st 16 bits"

ui pvno mask=%b1110000000000000, lshift=-13,
desc="Packet Version Number Bits 0- 2"

ui pckt mask=%b0001000000000000, lshift=-12,
desc="Packet Type Bit 3"

ui shdf mask=%b0000100000000000, lshift=-11,
desc="Secondary Header Flag Bit 4"

ui xapid mask=%b0000011111111111, lshift= 0,
desc="Application ID Bits 5-15"

END
UNION HDR2 DESC="CCSDS Header 2nd 16 bits"

ui segf mask=%b1100000000000000, lshift=-14,
desc="Segÿment Flags Bits 0- 1"

ui xcnt mask=%b0011111111111111, lshift= 0,
desc="Source Sequence Count Bits 2-15"

END
UI plen desc="Packet Length"
Time HDR_TIME desc="Secondary Header Time - 64 bits"

END ! End of Record

UNION

A UNION statement is used to map several telemetry point definitions onto the same data field. The database compiler
usually increments the offset of a telemetry point, placing it after the previously defined telemetry point. Definitions
within a UNION, however do not cause the offset to be incremented, and thus share the same space.

Format:
UNION union-name [[array-bound1 [, array-bound2 [,array-bound3]]] [APPEND [=”string”] | SHORT ,]

[,DESC=text-description]
[,SUPERCOM=apid] [,TIME_OFFSET=number-of-seconds]
[,TIME_BETWEEN_ELEMENTS=number-of-seconds]
[,SUBCOM=BLOCK

…
SUBCOM_APID=expression
…

ENDBLOCK,]

...tlm-points...

END

Keywords:

APPEND causes telemetry points within this union to use the APPEND naming method. If an optional
string is specified, this string is used as a prefix for all points within this packet.
4-8 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
SHORT causes telemetry points within this union to use the SHORT naming method.

DESC a description of the union.

SUPERCOM tells ASIST that when this union is received in telemetry, each element (if it is an array) should
be redelivered to ASIST as packet apid.

TIME_OFFSET the offset in time between the packet's time and the time this union (or the first element of it, if
it is an array of unions) was measured.

TIME_BETWEEN_ELEMENTS
for an array of unions, this tells ASIST that each set of measurements in this array was taken
number-of-seconds apart.

SUBCOM tells ASIST that when this union is received in telemetry, it should be redelivered to ASIST as
the packet with the apid indicated in SUBCOM_APID.

Parameters:

tlm-points All telemetry structures defined within the union.

array-bound1–array-bound3
specifies an array of up to three dimensions with the indicated number bounds, which are of
the form:
[lower-bound ..] upper-bound
where lower-bound defaults to 1 if not specified.

union-name A name which uniquely identifies this union. It is a series of letters, digits, or underscores,
beginning with a letter.

apid A number between 0 and 4097, indicating which apid each element of this array of records will
be redelivered to if it is supercommutated.

number-of-seconds a number, in seconds.

Example:
In the following example, all five of the telemetry points share exactly the same space. Note that the length of the
union is the length of the longest of all telemetry definitions within it, in this example 4 bytes.

UNION TEST_UNION
UB BYTES[4] DESC=“4 bytes (four bytes)”
UI WORDS[2] DESC=“2 words (four bytes)”
ULI LONGS DESC=“1 long (four bytes)”
SFP SFLOAT DESC=“1 single float (four bytes)”
SI SIGNED DESC=“1 signed word (two bytes)”

END
ASIST Users Guide–Version 9.6 4-9

CHAPTER 4
Scalar Data Types:

Scalar data type statements are used to define telemetry points within a telemetry packet. They should be defined in the
same order that they appear in the telemetry packet.

There are two kinds of scalar telemetry points: ANALOG and DISCRETE.

• Analog telemetry points are interpreted as numbers (e.g. A bus voltage, which could take on any value between 0 and
5 volts). Telemetry points default to analog.

• Discrete telemetry points are interpreted as a limited set of states which are looked up in a user-specified state table
(e.g. A relay status bit which is 1 for ON or 0 for OFF).

Naming Method

The names of telemetry points are formed according to the naming method currently used. This can be set on any DATA-
BASE, PACKET, RECORD, or UNION statement enclosing the telemetry point. The two methods are:

• SHORT - Names are what the user specifies. For example, using SHORT names, the telemetry point in the example
below would be named BUSPWR. This is the default naming method.

• APPEND (or APPEND=”append-string”indicates that a prefix should be attached to the telemetry point name.

If no append-string is specified, then the telemetry point name takes the following form: Capital letter P followed by
the three digit hexadecimal APID (zero padded if necessary), followed by the user specified field name. For example,
using APPEND, the telemetry point in the example below would be P001BusPwr.

DATABASE tlm
PACKET Packet1 APID=1,DESC="This is a packet",APPEND…

RECORD Bun…
UI BusPwr
…

END
…

END
…

END

If append-string is specified, then all telemetry point names within this packet/record/union should be prefixed by
append-string. For example:

RECORD MY_BALONEY APPEND="MY_NAME_IS_"
UI OSCAR
UI MAYER
UI SLIM_SHADY

END

would create the following telemetry points:
MY_NAME_IS_OSCAR
MY_NAME_IS_MAYER
MY_NAME_IS_SLIM_SHADY

A few notes about APPEND mode:

1.You can cause the append strings to be stacked whenever a point is within two record/union/packet structures,
both containing an APPEND. You must first turn this feature on by inserting the following line in you RDL:

APPEND_STACKED=1 (Turns it on)
APPEND_STACKED=0 (Turns it off)
4-10 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
For example:
APPEND_STACKED=1
. . .
RECORD DOO_RECORD APPEND="DOO"

UNION WAH_UNION APPEND="WAH"
UI DIDDY

. . .

the point's name would be DOOWAHDIDDY

By default, appends are not stacked.

2.Specifying APPEND when declaring a variable based upon a type definition of a Record or Union will cause
points within that declared item to have names formed by appending their point names to the APPEND string.
Also, these points will be accessed via that name and not via the dotted notation name (as is the case without
APPEND).

For example:

TYPES
RECORD CCSDS_HDR_TYPE DESC="CCSDS Header"

UNION HDR1 DESC="CCSDS Header 1st 16 bits"
ui pvno mask=%xE000,desc="Packet Version Number Bits 0- 2"
ui pckt mask=%x1000,desc="Packet Type Bit 3"
ui shdf mask=%x0800,desc="Secondary Header Flag Bit 4"
ui id mask=%x7ff, desc="Application ID Bits 5-15"

END
UNION HDR2 DESC="CCSDS Header 2nd 16 bits"

ui segf mask=%xC000,desc="Segment Flags Bits 0- 1"
ui scnt mask=%x3fff,PACKET_COUNT,

 desc="Source Sequence Count Bits 2-15"
END
UI plen Desc="Packet Length"
UNION u_time

UTC stime PACKET_TIME,desc="Secondary Header Time (64 bits)"
MET mtime desc="Secondary Header Time (64 bits)"

END
END
. . .

END_TYPES
. . .
PACKET MYPKT APID=1

CCSDS_HDR_TYPE Pkt1Hdr APPEND="P001"
. . .

END

would define points P001PVNO, P001ID,P001SCNT, ...

Format:
ASIST Users Guide–Version 9.6 4-11

CHAPTER 4
data-type name [[array-bound1 [, array-bound2 [, array-bound3]]]]
[ABSOLUTE = value | ABSOLUTE = date-time-value], [ANALOG | DISCRETE],
[ASCII_DECIMAL], [ASCII_FLOAT], [ASCII_HEX], [CATMULL=(ordered-pair-
list)], [CHECK_RAIL], [CORRELATED], [DELTA=value], [DESC=text-description],
[DLABEL=discrete-labels], [DOLIMIT | DONOLIMIT], [DRANGE=discrete-range],
[EQUATION=expression], [EXPONENTIAL = (a , b)], [GAUSSIAN = (a,b,c)],
[GENERAL_EXP = (a,b)], [GROUND_TIME] [INCLUSIVE | EXCLUSIVE],
[INIT=value], [INVERTED], [LEAP], [LIM_SWITCH="tlm-point"], [LIM-
ITS=(rl,yl,yh,rh)], [LIMSET = [(limit-set-one), (limit-set-two), ...]], [LOGARITHMIC = (
a,b)], [LOOKUP=(ordered-pair-list)], [LOWER_RAIL=value], [LSHIFT=value],
[MASK=value], [OPEN | CLOSED], [ORDER=value-list], [PACKET_COUNT],
[PACKET_TIME], [POLY=coefficients-list], [QUAL=quality-value], [READONLY],
[RELATIVE], [REPRESENTATION=identifier], [REVERSED], [RH=value],[RL=value],
[SC_TIME="tlm-point"], [SIZE=value], [SPLINE=(ordered-pair-list)],
[SUB_SIZE=value], [SUPERCOM = apid], [TICK=value],
[TIME_BETWEEN_ELEMENTS = number-of-seconds], [TIME_OFFSET = number-of-
seconds], [UNIT=unit-spec], [UPPER_RAIL=value], [YH=value], [YL=value],

Keywords

data-type Indicates what format the data will be. This can be either one of ASIST's built-in data types or
a user-defined type.
ASIST provides two classes of data types:
1. Base types-These are the basic data types ASIST understands. All other types are built from
these. They are:

Note: All base types default to unswapped.

2. Defined types-This is a set of commonly used data types delivered with ASIST to maintain
compatibility with previous missions:

Data Type Size Description Valid Representation

INTEGER 1…4a

a. Bold items are the default.

Integer UNSIGNED,
TWOS_COMPLEMENT,
ONES_COMPLEMENT,
SIGNED_MAGNITUDE

FLOAT 4,8 Floating point number IEEE, R000_FLOAT

CUC_TIME or
TIME

4…8 Generic Time CCSDS_UNSEGMENTED_TIME,
CCSDS_SEGMENTED_TIME, PB5

CHAR 1 Character string

Data Type Size Definition

UB 1 Integer Size=1, Representation = Unsigned, Desc=" Unsigned Byte"

SB 1 Integer Size=1, Representation = Twos_complement, Desc=" Signed
Byte"

UI 2 Integer Size=2, Representation = Unsigned, Desc=" Unsigned Word
Integer"
4-12 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
SI 2 Integer Size=2, Representation = Twos_complement, Desc=" Signed
Word Integer"

ULI 4 Integer Size=4, Representation = Unsigned, Order=(3,4,1,2), Desc="
Unsigned Long Word Integer"

SLI 4 Integer Size=1, Representation = Twos_complement,
Order=(3,4,1,2), Desc=" Signed Long Word Integer"

SFP 4 Float Size=4, Representation = IEEE, Order=(3,4,1,2), Desc=" Sin-
gle Precision IEEE Floating Point"

DFP 8 Float Size=4, Representation = IEEE, Order=(7,8,5,6,3,4,1,2),
Desc=" Double Precision IEEE Floating Point

FILL 1 Integer Size=1, Representation = Unsigned, Desc=" Fill Bytes"

STIM 4 TIME Representation=CCSDS_Unsegmented_Time,
Size=4,Sub_Size=0, Relative, Desc="Short Standard Time”

MET 8 TIME Representation=CCSDS_Unsegmented_Time,
Size=8,Sub_Size=4, Relative, Desc="Mission Elapsed Time

SMET 4 TIME Representation=CCSDS_Unsegmented_Time,
Size=4,Sub_Size=0, Relative, Desc="Short Mission Elapsed Time

CUT 8 TIME Representation=CCSDS_Unsegmented_Time,
Size=8,Sub_Size=4, Absolute=93-1-0:0:0, Desc="Correlated UTC

SCUT 4 TIME Representation=CCSDS_Unsegmented_Time,
Size=4,Sub_Size=0, Absolute=93-1-0:0:0, Desc="Short Correlated
UTC

UTC 8 TIME Representation=CCSDS_Unsegmented_Time,
Size=8,Sub_Size=4, Absolute=93-1-0:0:0, Correlated, Desc="Uni-
versal Coordinated Time

SUTC 4 TIME Representation=CCSDS_Unsegmented_Time,
Size=4,Sub_Size=0, Absolute=93-1-0:0:0, Correlated, Desc="Short
Universal Coordinated Time

UNXT 4 TIME Representation=CCSDS_Unsegmented_Time,
Size=4,Sub_Size=0, Absolute=70-1-0:0:0, Desc="UNIX Time

PB5A 4 Time Representation=PB5,Size=4,Sub_Size=0,Desc=”PB5 Time
with no msec or usec”

PB5B 6 Time Representation=PB5,Size=6,Sub_Size=0,Desc=”PB5 Time
with 2 bytes of msec since last sec.”

PB5C 7 Time Representation=PB5,Size=7,Sub_Size=0,Desc=”PB5 Time
with 2 bytes of msec since last sec + 1 byte usec.”

PB5D 8 Time Representation=PB5,Size=8,Sub_Size=0,Desc=”PB5 Time
with 2 bytes of msec since last sec + 1 byte usec + 1 byte nsec”

PB5E 5 Time Representation=PB5,Size=5,Sub_Size=1,Desc=”PB5 Time
with 1 byte of binary fraction subseconds”

PB5F 6 Time Representation=PB5,Size=6,Sub_Size=2,Desc=”PB5 Time
with 2 bytes of binary fraction subseconds”

PB5G 7 Time Representation=PB5,Size=7,Sub_Size=3,Desc=”PB5 Time
with 3 bytes of binary fraction subseconds”

Data Type Size Definition
ASIST Users Guide–Version 9.6 4-13

CHAPTER 4
name [[array-bounds1 [, array-bound2 [, array-bounds3]]]]
The name of the telemetry point. Names may be any length, although only the first 32 charac-
ters are significant, and consist of letters, digits, or underscores beginning with a letter. The
name (after any additions due to APPEND mode) must be unique within the database (or
within its record or union when in a RECORD or UNION array or type definition), or the com-
piler will generate an error.
A telemetry point may be defined as an array by enclosing array bounds (up to three sets) in
brackets after the name. The form of the array-bounds is:

[lower-bound ..] upper-bound
where, as the name implies, lower-bound defines the lower boundary of the array (defaulting to
1 if lower-bound is not specified) and upper-bound specifies the upper boundary of the array
for the given dimension. Thus, the number of elements in a given dimension is upper-bound -
lower_bound + 1. Arrays are useful when defining a group of contiguous elements of the same
data type.

PB5H 8 Time Representation=PB5,Size=8,Sub_Size=4,Desc=”PB5 Time
with 4 bytes of binary fraction subseconds”

CDS_TIME6 6 Time Representation=ccsds_segmented_time,Size=6,
Desc=”CCSDS Standard Segmented Time with Bytes 1-2=Day of
epoch, 3-6=msec of day”

CDS_TIME7 7 Time Representation=ccsds_segmented_time,Size=7,
Desc=”CCSDS Standard Segmented Time with Bytes 1-3=Day of
epoch, 4-7=msec of day”

CDS_TIME8 8 Time Representation=ccsds_segmented_time,Size=8,
Desc=”CCSDS Standard Segmented Time with Bytes 1-2=Day of
epoch, 3-6=msec of day, 7-8=usec after msec”

CDS_TIME9 9 Time Representation=ccsds_segmented_time,Size=9,
Desc=”CCSDS Standard Segmented Time with Bytes 1-3=Day of
epoch, 4-7=msec of day, 8-9=usec after msec”

Data Type Size Definition
4-14 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
The remaining fields are a list of keywords and keyword/value combinations. These keywords assign various characteris-
tics of the telemetry point.

TABLE 4-1. Scalar Keyword Table (Sheet 1 of 5)

KEYWORD OP-TYPE DESCRIPTION

ABSOLUTE=value
ABSOLUTE=date-time-value

Specifies that this time data value is an absolute time, with an epoch indicated by
value (meaning value seconds after midnight, January 1, 1970) or by date-time-
value.

i.e. absolute=93-001-00:00 OR absolute=55

This keyword is valid only for telemetry points of type CUC_TIME.

ANALOG or

ANALOG=curve-type(parms)

Indicates that this telemetry point represents a physical measurement or count. This
is the default telemetry point type (the other option is DISCRETE). Also, the curve-
type can be used to define what form of conversion should be used to convert this
value from counts to engineering units. Valid curve-types are:
POLY, GAUSSIAN, EXPONENTIAL, LOGARITHMIC, GENERAL_EXP,
SPLINE, LOOKUP, CATMULL. parms is the parameters needed to perform the
specific conversion. See each keyword (i.e. POLY, GAUSSIAN, ...) in this table for
the necessary parms.

ASCII_DECIMAL Tells ASIST that the telemetry point, which is received as a string, should be con-
verted to an integer when P@value is asked for.

ASCII_FLOAT Tells ASIST that the telemetry point, which is received as a string, contains a format-
ted floating point value, and should be converted to floating point when P@value is
asked for.

ASCII_HEX Tells ASIST that the telemetry point, which is received as a string, contains hex val-
ues in ASCII (often called half-ascii), and should be converted to an integer when
P@value is asked for.

CATMULL=(ordered-pair-list) Indicates that a lookup table with Catmull-Romm spline interpolationa should be
used to convert this analog value from counts to engineering units. The lookup val-
ues are entered in the field ordered-pair-list, where each ordered pair is entered in
the form (counts-value,engineering-units-value)
i.e. catmull=((1,0.005),(10,1.222),(25,2.5),(50,5.0),
(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can use %float(time-expression), which
allows you to use lookup tables for interpolating time values.

CHECK_RAIL Specifies that rail limit checking is enabled for this point when ASIST is started (it
will be performed when limit checking is on for this point).

CLOSED Specifies that the end bounds of the range are not included as valid input for limit
checking. See “What happens at limit boundaries?” on page 8–21.

CORRELATED Specifies that this time value is correlated (meaning that a correlation factor from
telemetry will be added each time this value is retrieved). This keyword is valid only
for absolute times.

DESC=text-description A text description of the telemetry point.
i.e. DESC=”I am some very descriptive text.”

DISCRETE or

DISCRETE=((range1, label1),
(range2,label2), ...)

Indicates that the value of this telemetry point is to be looked up in a table of discrete
labels. The range and labels can be defined to the right of the equal sign, or using the
keywords DLABEL and DRANGE.
ASIST Users Guide–Version 9.6 4-15

CHAPTER 4
DLABEL=discrete-labels Specifies the labels used to identify the discrete states. Each state specified in
DRANGE must have a corresponding label. This keyword may only be used with
discretes.
i.e. dlabel=(“Off”,”On”)

DOLIMIT Set limit checking on for this telemetry point when ASIST is started

DONOLIMIT Sets limit checking off for this telemetry point when ASIST is started. This is the
default.

DRANGE=discrete-ranges Specifies the discrete ranges used to determine the current state of this discrete
telemetry point. All values from the minimum possible value for the data type to the
first value specified in the discrete range list are considered the first state. The corre-
sponding label in DLABEL identifies the state. All values between the first and next
range specification are the second state and the second label in DLABEL identifies
this state. This continues until the last specification. If the value is greater than that
specification, a discrete error is flagged. This keyword may only be used with dis-
crete values.
i.e. DRANGE=(0,1)

EQUATION=expression

EQUATION

Defines pseudo-telemetry equation (described in “Pseudo-Telemetry Definitions” on
page 4-22), or indicates that this point will be set within another equation (when
expression is omitted).

EXCLUSIVE Specifies that the limits are in the following order from low to high --YL, RL, RH,
YH. EXCLUSIVE must be entered in the RDL before the LIMITS statement or else
it is an error. See “What order are the states in?” on page 8–22.

EXPONENTIAL=(a,b) Indicates that an exponential curve of the form with the specified coeffi-
cients should be used to convert this analog value from counts to engineering units.

i.e. exponential=(1.0,2.0) ;

GAUSSIAN=(a,b,c) Indicates that a general exponential curve of the form

with the specified coefficients should be used to
convert this analog value from counts to engineering units.

i.e. gaussian=(3,1,5.123) ;

GENERAL_EXP=(a,b)
Indicates that a general exponential curve of the form with the specified coef-
ficients should be used to convert this analog value from counts to engineering units.

i.e. general_exp=(1.0,2.0);

INCLUSIVE Specifies that the limits are in the following order from low to high–RL, YL, YH,
RH. INCLUSIVE must be entered in the RDL before the LIMITS statement or
else it is an error. See “What order are the states in?” on page 8–22. This is the
default limit order.

INIT=value Specifies the initial value of the telemetry point.
i.e. init=5

INVERTED Specifies that when this telemetry point is accessed
the data bits are ones complemented before being
returned (ones complement means ones become
zeroes, and zeroes become ones).

TABLE 4-1. Scalar Keyword Table (Sheet 2 of 5)

KEYWORD OP-TYPE DESCRIPTION

a e
b x⋅⋅

1.0 e
2.0 x⋅⋅

a b 2 π⋅⋅()⁄() e
0.5– x c–() b⁄()2⋅⋅

3() 1 2 π⋅⋅()⁄() e
0.5– x 5.123–() 1⁄ 2⋅⋅

a b
x

+

1.0 2.0
x

+

1110 0000

0001 1111

For
Example:
4-16 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
LEAP Specifies that this time value should have the leap-second field from telemetry
added to it each time it is retrieved. This keyword is valid only for absolute times.

LIM_SWITCH="tlm-point" Defines the telemetry point which will be used to determine which limit set to use
for limit checking. If tlm-point is a Discrete value, then the first Label will cause
limit-set-0 to be used, the second limit-set-1 and so forth. If tlm-point is an analog,
then the limit set will correspond to the value (i.e. tlm-point=0 would use limset 0,
=1 would use set 1, ...).

LIMITS=(rl,yl,yh,rh)
LIMITS=(yl,rl,rh,yh)

Specifies the red and yellow limits for this telemetry point. The default is the first
form (rl,yl,yh,rh) which is used for INCLUSIVE limits. The second form
(yl,rl,rh,yh) is used for EXCLUSIVE limits.

LIMSETS=[(limit-set-zero),
(limit-set-one),…]

Defines sets of limit settings. limit-set-zero applies when the switch value is 0, limit-
set-one when the switch value is 1, ... Each limit-set-xxx can contain any of the key-
words or keyword/values which apply to limits:

• LIMITS=(), RL, RH, YL, YH

• OPEN or CLOSED

• INCLUSIVE or EXCLUSIVE

• LIMTYPE=[RANGE or DELTA]
in a comma-separated list. See crossref.

LIMTYPE=[RANGE or
DELTA]

Tells ASIST how to perform limit checking for this telemetry point: RANGE limits
are measured against the telemetry point’s value, while DELTA limits are measured
against the difference between the current and previous value of this telemetry point.
The default limit type is RANGE.

LOGARITHMIC=(a,b) Indicates that a logarithmic curve of the form with the specified coeffi-
cients should be used to convert this analog value from counts to engineering units.

i.e. logarithmic=(1.0,2.0);

LOOKUP=(ordered-pair-list) Indicates that a lookup table with linear interpolation should be used to convert this
analog value from counts to engineering units. The lookup values are entered in the
field ordered-pair-list, where each ordered pair is entered in the form
(counts-value,engineering-units-value)
i.e. lookup=((1,0.005),(10,1.222),(25,2.5),(50,5.0),
(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can use %float(time-expression), which
allows you to use lookup tables for interpolating time values.

LOWER_RAIL=value This overrides the lower rail for this telemetry point. By default, the lower rail value
is the lowest possible value for this point (i.e. 0 for unsigned integers).

LSHIFT=value This specifies the number of bits the telemetry value is shifted after it is maskedb.
i.e. LSHIFT=4 ; Shifts 4 bits (i.e. 1100 0000 becomes 1100)

MASK=value A mask used to strip data bits embedded within a larger data field. When this telem-
etry point is accessed, the data is AND’ed with the mask value and then shifted

according to the LSHIFT valueb. This keyword is valid only for integer types.
i.e. mask=%X1f

OPEN Specifies that the end bounds of the range are included as valid input for limit check-
ing. If not specified, OPEN is the default. See “What happens at limit boundaries?”
on page 8–21.

TABLE 4-1. Scalar Keyword Table (Sheet 3 of 5)

KEYWORD OP-TYPE DESCRIPTION

a b xln⋅+

1.0 2.0 xln⋅+
ASIST Users Guide–Version 9.6 4-17

CHAPTER 4
ORDER=value-list Defines how to swap this data point to convert it from the spacecraft form to the
ground system form. The first byte, which is the most significant, is numbered one in
the list, the second two, … i.e. ORDER=(3,4,1,2) swaps a four-byte integer
(ULI) into ground system form

For more information on swapping, see See “Data Swapping” on page 8–6..

PACKET_COUNT Tells ASIST that this telemetry point is the sequence counter for its packet.

PACKET_TIME Tells ASIST that this telemetry point is the generation time for its packet.

POLY=coefficients-list Indicates that a polynomial with the specified coefficients should be used to convert
this analog value from counts to engineering units.

i.e. poly=(1.0,5.0,2.0) ;

QUAL=quality-value Specifies the initial quality for this field. The only quality-value currently supported
is %NEUTRALQ, which sets this field to neutral quality (meaning that it doesn't
inherit quality from other points used in its calculation). For more information, see
“Data Quality” on page 8-37.

READONLY Specifies that this telemetry point can't be modified or written. It is usually used with
the INIT statement.

REPRESENTATION=identifier Tells ASIST how to interpret the values it reads. Valid representations for integer
types are UNSIGNED, ONES_COMPLEMENT, TWOS_COMPLEMENT, and
SIGN_MAGNITUDE. For floating point numbers, IEEE (4-byte and 8-byte) and
R000_FLOAT (6-byte or 8-byte) are supported.
Valid representations for times are CCSDS_UNSEGMENTED_TIME ,
CCSDS_SEGMENTED_TIME, and PB5.
i.e. representation=unsigned

For more information on representations, see “User-Defined Data Representation”
on page 8-7.

REVERSED Specifies that when this telemetry point is accessed
the data bits are reversed before being returned.

RH=value

RHIGH=value

Specifies the red high value for limit checking. If the telemetry point exceeds this
limit then an alarm will be generated and an event sent to the printer. Note: value is
interpreted as engineering units for analog values, or counts for discrete values.
i.e. RH=18 OR rhigh=33

RL=value

RLOW=value

Specifies the red low value for limit checking. If the telemetry point exceeds this
limit then an alarm will be generated and an event sent to the printer. Note: value is
interpreted as engineering units for analog values, or counts for discrete values.
i.e. RL=0 OR rlow=5

SC_TIME=”tlm-point” Tells ASIST that this telemetry points spacecraft time should be read from the indi-
cated telemetry point whenever this point is assigned a value. This is intended to be
used for pseudo-telemetry points, allowing you to assign a particular packet's space-
craft time to them. It does not work for points received through regular telemetry.

SEPARATE_LIMIT_STATES This tells ASIST to set aside space for current limit state for each element of an
array. Defining limits for the array has the same effect as using this keyword.

TABLE 4-1. Scalar Keyword Table (Sheet 4 of 5)

KEYWORD OP-TYPE DESCRIPTION

2.0 x
2⋅ 5.0 x

1⋅ 1.0 x
0⋅+ +

1110 0000

0000 0111

For
Example:
4-18 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
SIZE=value Specifies the number of bytes each element of this field occupies. Valid sizes are:
1-4 for INTEGERs, 4 or 8 for FLOATs, 4-8 for Times, and 1 for CHAR.

SPLINE=(ordered-pair-list) Indicates that a lookup table with quadratic spline interpolation should be used to
convert this analog value from counts to engineering units. The lookup values are
entered in the field ordered-pair-list, where each ordered pair is entered in the form
(counts-value,engineering-units-value)
i.e. spline=((1,0.005),(10,1.222),(25,2.5),(50,5.0),
(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can be %float(time-expression), which
allows you to use lookup tables for interpolating time values.

SUB_SIZE=value Specifies the number of bytes in the subsecond field of a time. For example, a Mis-
sion elapsed time is an eight byte time value whose last four bytes are subseconds,
and is defined as:
TIME Representation=CCSDS_Unsegmented_Time,
SIZE=8,SUB_SIZE=4,RELATIVE

SUBCOM=BLOCK equations
 END_BLOCK

Tells ASIST that whenever this telemetry item is received, it should be redelivered to
the apid assigned to the variable SUBCOM_APID within the pseudo-telemetry equa-
tions.

SUPERCOM=apid-value Tells ASIST that whenever this telemetry item is received, it should be "redelivered"
to apid apid-value. For more information, see "Supercommutation" on page 8-36.

TICK=value Tells ASIST the number of tick’s per second in a time data-type. For example,
TICK=10 defines a time where each tick is one-tenth of a second (there are 10 per
second).

Time_Between_Elements = num-
seconds

Specifies the number of seconds apart each measurement of an array was taken.

TIME_OFFSET=num-seconds Specifies the number of seconds between when this telemetry point is measured and
its packet's time-stamp. This offset is used when calculating the telemetry attribute
TIME_MEASURED.

TRIGGER_APID=apid-num Tells ASIST that when packet apid-num is received in telemetry, that this point
should be sequential printed.

UNIT=”unit-spec” Specifies the units of the telemetry point within a quoted string.
i.e. UNIT=”radians” OR unit=”Furlongs/Fortnight”

UPPER_RAIL=value This overrides the upper rail for this telemetry point. By default, the upper rail value
is the highest possible value for this point (i.e. all 1s for unsigned integers, FF for
UB, FFFF for UI, FFFFFFFF for ULI).

YL=value

YLOW=value

Specifies the yellow low value for limit checking. If the telemetry point exceeds this
limit then an alarm will be generated and an event sent to the printer. Note: value is
interpreted as engineering units for analog values, or counts for discrete values.
i.e. YL=2 OR ylow=7

YH=value

YHIGH=value

Specifies the yellow high value for limit checking. If the telemetry point exceeds this
limit then an alarm will be generated and an event sent to the printer. Note: value is
interpreted as engineering units for analog values, or counts for discrete values.
i.e. YH=18 OR yhigh=33

a. Catmull-Romm splines are a form of quadratic spline which provides better smoothing, and are generally recommended
over the quadratic spline.

TABLE 4-1. Scalar Keyword Table (Sheet 5 of 5)

KEYWORD OP-TYPE DESCRIPTION
ASIST Users Guide–Version 9.6 4-19

CHAPTER 4
Type Definitions

ASIST allows you to define your own data types for later use in telemetry declarations. This is done with a TYPES -
END_TYPES block. Its format is:

TYPES

...type-definitions....

END_TYPES

Each type definition defines a new type which can be used later to define a new telemetry point. These type definitions
can be scalars or aggregates, and can contain any of the attributes described in the sections on “Scalar Data Types:” on
page 4-10 and “Aggregate Data Types:” on page 4-7. They are of the form:

base-type new-type-name [attribute-list]

where:

base-type is either an ASIST type (i.e. INTEGER, CHAR) or a previously defined type.

new-type-name is the name you assign this new type which you are defining.

attribute-list is a list of attributes for this type.

Example:
To define a single byte data type which is 0 when OFF and 1 when ON, you could type:

TYPES
INTEGER ON_OFF_SWITCH SIZE=1,DISCRETE,DRANGE=(0,1),DLABEL=("OFF","ON")

END_TYPES

To declare a telemetry point using this type:
PACKET MyTlmPkt APID=123,DESC="A mythical packet"

...
ON_OFF_SWITCH CPBS MASK=%X01,DESC="Continuous Playback Status"
ON_OFF_SWITCH DMPS MASK=%X10,DESC="Dump Status"
...

END_TYPES

To define a CCSDS Header:
TYPES

RECORD CCSDS_Header_Type DESC="CCSDS Header"
UNION W1 DESC="CCSDS Header 1st 16 bits"

ui Version mask=%xE000,desc="Packet Version Number"
ui pkt_type mask=%x1000,desc="Packet Type"
ui sec_hdr_flag mask=%x8000,desc="Secondary Header Flag"
ui id mask=%x7FF,desc="Application ID"

END
UNION W2 DESC="CCSDS Header 2nd 16 bits"

ui segment_flag mask=%xC000,desc="Segment Flags"
ui seq_cnt mask=%3FFF,desc="Source Sequence Count"

END
UI pkt_length Desc="Packet Length"

b. If no LSHIFT is defined for a telemetry point, it is defined as the number of shifts it takes to get to the least significant
bit of the mask.
4-20 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
UNION pkt_time desc="Secondary Header Time (64 bits)"
UTC Corr desc="2nd header time, correlated"
MET Elapsed desc="2nd header time, elapsed"

END
END
…

END_TYPES

To declare a Header:
PACKET MyTlmPkt APID=%x123,DESC="A mythical packet"

CCSDS_Header_Type P123Hdr DESC="The whole CCSDS header for this packet"
...

END

To access telemetry points from this header, you must use dotted notation. For example:
write "MyTlmPkt arrived at ",P123Hdr.pkt_time.Corr
write "MyTlmPkt is apid ",P123Hdr.W1.id
write "MyTlmPkt is length ",P123Hdr.pkt_length

Alternatively, you can specify APPEND=”append_string” on the instantiation of P123Hdr to specify that all teleme-
try point names within that structure are to be named: append_string followed by the point name. For example:

PACKET MyTlmPkt APID=%x123,DESC="A mythical packet"
CCSDS_HDR_TYPE Pkt1Hdr APPEND="P123"

. . .
END

would define points P123Version, P123ID,P123SEQ_CNT, ...
write "MyTlmPkt arrived at ",P123Corr
write "MyTlmPkt is apid ",P123id
write "MyTlmPkt is length ",P123pkt_length

For more information, see “Naming Method” on page 4-10.

Modifying Telemetry Declarations or Type Definitions

You can modify either scalar telemetry point definitions or user-defined types (defined with the TYPES…END_TYPES
construct) using the MODIFY keyword. In the case of user-defined types, this will cause all points defined with this type
after the MODIFY statement to use the new attributes. This must be placed at the same level of the database as the
TYPES and PACKET statements (not within them), and is of the form:

MODIFY item-name [attribute-list]

where:

item-name is the telemetry point or user-defined type to be modified.

attribute-list is a list of attributes to change (it can contain any of the attributes described in the section on
“Scalar Data Types:” on page 4-10.).

For example, to change the epoch of UTC and SUTC, you could enter:

MODIFY UTC ABSOLUTE=1980-6-0:0:0
MODIFY SUTC ABSOLUTE=1980-6-0:0:0
ASIST Users Guide–Version 9.6 4-21

CHAPTER 4
(a special note: putting the two lines above in your user_tlm.rdl file, with the appropriate epoch, should cause the SC
MET field on the ASIST command bar to correctly display the time of the last packet received as an elapsed time)

Or to change the default swap order for ULI’s, enter:

MODIFY ULI ORDER=(1,2,3,4) ; Unswapped

Or to add limits to a telemetry definition, enter:

MODIFY FLOAT1 RL=2.5,YL=5.6, YH=17.5, RH=33.3

Notes:

• Modification of a type definition only affects telemetry points defined using that type after the MODIFY statement (in
the telemetry RDL.

• You can't modify the size of a telemetry point.

• You can't modify DRANGE. You can modify the DLABEL's, but make sure to define the same number of labels you
defined originally.

• A telemetry point can only be modified after it is declared.

Default SFDU Name

You can specify the default SFDU name (ddid) which ASIST uses to map input data (in SFDUs) to packet definitions.
Generally, you will want to include in this a C-printf style format (either %03X or %03d), which will substitute each pack-
ets apid into the string.

For example,

DEFAULT_SFDU_NAME=”C%03X”

matches the current FEDS protocol, in which packets are sent with a DDID of the form Cxxx where xxx=the apid in hex.

Pseudo-Telemetry Definitions

ASIST allows you to define new telemetry points, called pseudo-telemetry, that are calculated from other telemetry
points. The EQUATION keyword signifies a pseudo telemetry point and also specifies the equation used to calculate the
point’s value. Equations may refer to regular telemetry points or to other pseudo telemetry points.

There a two different kinds of pseudo telemetry, periodic and event-driven. Periodic is the default type; these points are
re-calculated approximately once a second. Event-driven pseudo telemetry points are calculated when particular system
events occur. You can recognize event-driven pseudo telemetry by the presence of the EQUATION=WHEN event key-
word phrase.

Periodic Pseudo-Telemetry

Format:
EQUATION

or
EQUATION = expression-or-statement
4-22 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
The first form allows you to define a pseudo telemetry point that can be modified from either STOL or another pseudo
telemetry equation (the pseudo telemetry processor can't modify a normal telemetry point). The second form allows you
to specify any valid STOL expression (e.g., A + B, A * B,...), or a pseudo telemetry statement. A pseudo telemetry state-
ment can be an assignment statement, BLOCK statement, LOCAL statement, IF statement, FOR statement, a WHILE
statement, a STATEMACHINE statement, a PAGE statement, an ERROR statement, an EVENT statement, an
%unchecked statement or a %new_packet statement.

Syntax of Pseudo-Telemetry Statements

Assignment statements assign a value to either a local variable or another pseudo telemetry point. The syntax is:

variable[[expression]]= expression

BLOCK statements group several statements together using this syntax:

BLOCK statements ENDBLOCK

where statements can be one or more pseudo-telemetry statements as defined above.

LOCAL statements let you define variables or arrays local to the current pseudo telemetry equation (i.e. a local variable
in one pseudo telemetry equation can't reference a local variable in another equation). The syntax for LOCAL is:

LOCAL name[[array-bound(s)]] [= constant(s)]

where:

For example:

ULI total_power EQUATION=BLOCK
LOCAL array_power
array_power = x_power + y_power
total_power = array_power + battery_power

ENDBLOCK

IF statements are used to select between one or more choices with this syntax:

IF expression THEN
statements
[ELSEIF expression THEN
statements]
[ELSEIF . . .]
[ELSE
statements]
ENDIF

array-bound(s) is one to three sets of array bounds, of the form [lower-bound ..] upper-bound (for example, LOCAL
ABC[-3..2] or LOCAL DEFG[5]. If lower-bound is not specified, it defaults to 1.

constant(s) specifies one item for each element of name. If name is an array, the constants should be enclosed in
brackets. For example:

LOCAL scalar=42
LOCAL array[4]=[1,2,3,4]
LOCAL vector[2,3]=[[2,6,8],[3,7,9]]
ASIST Users Guide–Version 9.6 4-23

CHAPTER 4
where statements can be one or more pseudo telemetry statements as defined above

FOR statements let you repeat a group of statements a number of times. The syntax is:

FOR id = expr [DOWN] to expr [STEP expr] DO

statements

ENDDO

The number of times the statements between DO and ENDDO are executed is controlled by the loop control variable id,
which will be automatically declared as a local variable.

WHILE statements allow you to repeat a block of statements based on a conditional that you define. The WHILE state-
ment syntax is:

WHILE expression DO

statements

ENDDO

STATEMACHINEs let you define a finite state machine. This can be used to model a set of distinct states that the space-
craft or a subsystem of the spacecraft exist in. The syntax for a STATEMACHINE is:

STATEMACHINE name

[STATE_VARIABLE name]

BEGIN

 state-machine-statements

END

See CHAPTER 3: "STOL" for further information on the use of STATEMACHINE.

The PAGE statement opens a telemetry page on the workstation monitor (similar to the PAGE directive in STOL). Here
is the syntax:

PAGE page-name

where page-name is a quoted string containing the name of the page you wish to display.

Example: page "STOLSTAT"

The STOL directive allows you to send commands and directives directly to STOL. Its syntax is:

STOL string-expression

For example:

UI stol_test DESCRIPTION="A test of the STOL directive"
EQUATION= BLOCK

STOL "WRITE ""Msg from pseudo at "",%gmt"
ENDBLOCK

will cause the directive:

WRITE "Msg from pseudo at",%GMT
4-24 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
to be sent to STOL about once a second (probably something you really don’t want to do). Or:

UI another_test DESCRIPTION="Yet another STOL test",
EQUATION= BLOCK

IF (another_test = FALSE AND another_point > 126) THEN
STOL "START FIXIT()"
another_test = TRUE

ENDIF
ENDBLOCK

which causes the STOL procedure FIXIT to run the first time that ANOTHER_POINT exceeds 126.

The ERROR statement lets you create ERROR events that disable the current pseudo-telemetry equation. The syntax is:

ERROR message-text

message-text is displayed by the event handler (the subsystem is SPTP and the class is STS). The equation may be reen-
abled with ENABLE_EQUATION directive.

The EVENT statement writes an event to the event log. Here is the syntax:

EVENT ["subsys", "class", "level",] event-string

where event-string is a quoted string containing the event you wish to log and subsys, class, and level indicate the mes-
sage's originator, classification, and severity level (these are described in Chapter 7).

Example: event "The spacecraft is on fire!"

The %UNCHECKED directive allows you to store data in the CVT with limit checking disabled. This can be used in
conjunction with the %NEW_PACKET directive to allow you to create new telemetry packets on the fly.

To perform an unchecked assignment, use:

%UNCHECKED(telemetry-point-name) = expression

For example:

%UNCHECKED(double1) = 100

causes 100 to be stored in DOUBLE1 without any limit checking.

The %NEW_PACKET directive allows you to signal the telemetry processor that a new telemetry packet with a speci-
fied APID has just arrived. The telemetry processor will perform limit checking on the new packet and activate any asso-
ciated event-driven pseudo-telemetry.

Using this feature, in conjunction with unchecked CVT assignments (above), gives you the ability to assemble new pack-
ets and submit them to the telemetry processor.

To signal a packet arrival, use:

%NEW_PACKET expression

where expression evaluates to the APID of the new packet.
ASIST Users Guide–Version 9.6 4-25

CHAPTER 4
For example:

%NEW_PACKET 301

signals the arrival of a new packet with APID 301.

Operators within Pseudo-telemetry Equations

The following operators are allowed in pseudo telemetry expressions:.

For more information on these operators see CHAPTER 3: “STOL” .

Functions Supported in Pseudo-telemetry Equations

You may also use one of the many built in functions provided in STOL. Here is a summary of the functions supported by
the pseudo telemetry processor:

TABLE 4-2. Valid operators in pseudo-telemetry expressions

Arithmetical Logical Relational

Op Action Op Action Op Action

+ Add OR Or = Equal to

- Subtract AND And <> Not Equal

* Multiply NOT Not > Greater than

/ Divide XOR Exclusive OR < Less than

MOD Modulus >= Greater or equal

REM Remainder <= Less than or equal

** Exponentiation

& Concatenation

TABLE 4-3. Functions supported in pseudo-telemetry

Function Return Value

abs(expr) absolute value of an expression

acos(expr) angle having the given cosine

alarm_limit(region,”mnemonic”) limit value of a telemetry point and limit region

alarm_status(“mnemonic”) limit checker status of a telemetry point

%and(x,y) returns the bitwise AND of x and y.

%ashiftr(expr1,expr2) return the value of expr1 arithmetically shifted right expr2 bits

asin(expr) angle having the given sine

atan(expr) angle having the given tangent

atan2(y , x) returns the arc tangent of y / x, using the signs of both to deter-
mine the quadrant of the result. The result is undefined if x = 0.

%badq returns the numeric value of “bad” quality

%bin(expr[,width]) string formatted in binary

%common(expression) returns expression formatted as YY/MM/DD HH:MM:SS.mmm
4-26 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
%convert(expr1,expr2) returns the value of expr1 converted to binary when interpreted
as a string containing a number expressed in base expr2.

cos(expr) cosine of an angle

cosh (expr) returns the hyperbolic cosine of an angle.

%day_of_year(time-expression) returns the day-of-year field of time-expression.

%dec(expr[,width]) string formatted in decimal

decode_hex(expr1,expr2) integer array converted from a hexadecimal text string

%dimension(expr1,expr2) returns the number of elements in dimension expr2 of array
expr1.

encode_hex(expr1,expr2) hexadecimal text string converted from an integer array

%env (expr) returns the value of a UNIX environment variable.

exp(expression) returns eexpression.

file_close(handle-expression) Closes the file specified by handle-expression. Returns 0 if suc-
cessful.

file_create(filename) Creates a new file named filename. If successful returns a file
handle >=0.

file_exists(filename) Returns TRUE if filename exists, FALSE otherwise.

file_open(filename[,access]) Opens the preexisting file named filename If successful, returns
a file handle >=0. Access specifies the file access mode, which
can be either "READ", "WRITE", or "APPEND". The default is
"READ".

file_read(handle-expr,name) Reads the next line from the file specified by handle-expr into
the variable name. Returns 0 if successful, -1 if EOF encoun-
tered, or -2 if a read error was detected.

file_write(handle-expr,write-expr) Writes write-expr to the file specified by handle-expr. Returns 0
if successful.

%float(expr) value of an expression as a real number

%float_cmp(expr1,expr2,error-bound) compares two floating point values and returns:
 0 if abs(expr1 - expr2) < error-bound

 OR -1 if expr1 < expr2

 OR 1 if expr1 > expr2

where expr1 and expr2 must be floating-point values, and

 error-bound can be either an integer or a floating-pt value

This will detect when two floating point values are very close
but not exactly equal (a situation common with floating point
numbers, due to the nature of float point arithmetic). This func-
tion applies an error bound, stating that if expr1 and expr2 are

less than error-bound apart, they are equivalent.

%gmt current date and time as a date/time constant

%goodq returns the numeric value of “good” quality

%hex(expr[,width]) string formatted in hexadecimal

%hour(time-expression) returns the hour-of-day field of time-expression.

TABLE 4-3. Functions supported in pseudo-telemetry (Continued)

Function Return Value
ASIST Users Guide–Version 9.6 4-27

CHAPTER 4
%int(expr) value of an expression as an integer

%length (string) returns the number of characters in string.

%lex (target,regexp[,retval0[,retval1
[,...]]][,remainder])

dissects a target string using the given regular expression. If the
regular expression match is successful, designated subexpres-
sions subexpressions are stored in the corresponding retvalN
variables (for N = 0...9) and %lex returns true. If the match is
unsuccessful, zero-length strings are assigned to the return val-
ues and %lex returns false. In either case, remainder returns the
text following the text matched by the regular expression.

limit_checking() returns TRUE if the telemetry limit checker is on, FALSE if it is
off

ln (expr) returns the natural logarithm (base e) of expr. The result is unde-
fined for expr <= 0.

%locate (string,pattern) returns the start position of pattern within string, if one is found.
Otherwise, it returns 0.

log10 (expr) returns the common logarithm (base 10) of expr. The result is
undefined for expr <= 0.

%lower(expr) string converted to lower case

%minute(time-expression) returns the minute-of-hour field of time-expression.

%neutralq returns the numeric value of “neutral” quality

%not (expr) returns the bitwise complement of expr.

%numdims(expr) returns the number of dimensions in array expr.

%nwords (expr) returns the number of “words” in a string, including null words.
Words are delimited by spaces tabs or commas. (See the %word
function below)

%oct(expr[,width]) string formatted in octal

%or (x,y) returns the bitwise OR of x and y.

packet_age(“mnemonic”) number of seconds since a telemetry packet was updated

packet_initialized(“mnemonic”) boolean flag indicating whether a telemetry packet has been
received

packet_quality(“mnemonic”) value of the packet quality flag

packet_stale(“mnemonic”) boolean flag indicating whether the age of the packet is greater
than the staleness age for that packet

packet_valid(name-expression) Returns TRUE if packet name-expression is initialized, not
stale, and of good quality.

%quality(expression) returns the current data quality of the variable named in expres-
sion. This function may also be the target of an assignment.

%real(expr[,form]) string formatted as a real number

rand() returns a pseudo-random integer between 0 and 2147483647. A
different seed can be specified by calling srand

TABLE 4-3. Functions supported in pseudo-telemetry (Continued)

Function Return Value
4-28 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
%rest (expr, index) returns the rest of a string, beginning with the i-th “word” in the
string; words are delimited by blanks, commas, or tabs. Using
the same scanning mechanism as %word, %rest skips arguments
1 through i-1 of expr and then returns the rest of expr (i.e., argu-
ments i through N). A zero-length string (“”) is returned if index
exceeds the number of words in the string (see the %nwords
function).

%rex (target,regexp[,regexp...]) matches the target string against a list of regular expressions.
The match is case-sensitive - target is not converted to upper
case before the match is attempted. If a regular expression must
match the entire target string, be sure to include the “^” and “$”
anchors at the beginning and end, respectively, of the regular
expression. %rex returns the index 1..N of the matching string in
the list of regular expressions; 0 is returned if no match is found.

%second(time-expression) returns the second-of-minute field of time-expression.

%shiftl(expr1,expr2) returns the value of expr1 logically shifted left expr2 bits.

%shiftr(expr1,expr2) returns the value of expr1 logically shifted right expr2 bits.

sin(expr) sine of an angle

sinh (expr) returns the hyperbolic sine of an angle.

%slice(expr,l1,u1[,l2,u2,[l3,u3]]) returns a new array containing a subset of the dimensions of
array expr.

sprintf(format,expression,…) returns a formatted string that is the result of applying format to
any following expressions.

srand(expr) sets the initial seed of the pseudo-random sequence for the rand
function. Returns the value of expr.

sqrt(expr) square root of an expression

%staleq returns the numeric value of “stale” quality

%subsecond(time-expression) returns the subsecond-of-second field of time-expression.

%substring (string,start,end) returns a substring of string, starting at position start and ending
at end. If start is negative, larger than end or past the end of
string, a null string (“”) is returned. If end is negative or smaller
than start then a null string is also returned. If end is past the end
of string, then the length of the string is used instead of end. For
instance, %substring(“DooWahDiddy”,4,6) would return
“Wah”.

tan(expr) tangent of an angle

tanh (expr) returns the hyperbolic tangent of an angle.

telemetry_attr(name-expr,attr-expr) returns the attribute named attr-expr of telemetry point name-
expr. See Appendix F-”Access to Database Attributes”

telemetry_defined(“mnemonic”) boolean flag indicating whether the telemetry point is defined in
the telemetry database

telemetry_units(“mnemonic”) string containing the units of the telemetry point from the telem-
etry database

%time(expr) value of an expression as a date/time constant

TABLE 4-3. Functions supported in pseudo-telemetry (Continued)

Function Return Value
ASIST Users Guide–Version 9.6 4-29

CHAPTER 4
For more information on these functions see “Built-In Functions” on page 3-58.

trend_max(“mnemonic”) maximum value of a telemetry point in the trend interval

trend_mean(“mnemonic”) average value of a telemetry point in the trend interval

trend_meantime(“mnemonic”) average time of a telemetry point in the trend interval

trend_min(“mnemonic”) minimum value of a telemetry point in the trend interval

trend_num(“mnemonic”) number of samples in the trend interval for a telemetry point

trend_redfailtime(“mnemonic”) estimated number of seconds until a telemetry point exceeds
either red limit

trend_sdev(“mnemonic”) standard deviation of a telemetry point in the trend interval

trend_slope(“mnemonic”) slope of a telemetry point in the trend interval

trend_state(“mnemonic”) boolean flag indicating whether trending is enabled for a teleme-
try point

trend_sum(“mnemonic”) sum of telemetry point values in the trend interval

trend_sumsq(“mnemonic”) sum of squares of a telemetry point in the trend interval

trend_var(“mnemonic”) variance of a telemetry point in the trend interval

trend_yelfailtime(“mnemonic”) estimated number of seconds until a telemetry point exceeds
either yellow limit

%trim_left (string) returns a string with any leading blanks or tabs removed.

%trim_right (string) returns a string with any trailing blanks or tabs removed.

%uninitq returns the numeric value of “uninit” quality

%unsigned(expr) forces its input argument to an unsigned integer. This function is
useful for viewing the result of an operation as an unsigned inte-
ger.

%unsigned_cmp(expr1,expr2)) compares two integers (signed or unsigned) as if they were both
unsigned and returns:
 0 if expr1 = expr2

 -1 if expr1 < expr2

 1 if expr1 > expr2

This can be used when comparing addresses in a spacecraft pro-
cessor or when comparing two unsigned values from the teleme-
try database.

%upper(expr) string converted to upper case

%utcf returns the current value of the UTC correlation factor.

%word (expr, index) returns the i-th “word” from a string, where words are delimited
by blanks, commas, or tabs. Null words in a string can be speci-
fied with consecutive commas (with intervening white space
allowed). A zero-length string (“”) is returned if index specifies
a null word or if it exceeds the number of words in the string
(see the %nwords function).

%xor (x,y) returns the bitwise Exclusive OR of x and y.

%year(time-expression) returns the year field of time-expression including the correct
millennium.

TABLE 4-3. Functions supported in pseudo-telemetry (Continued)

Function Return Value
4-30 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
Periodic Pseudo-Telemetry Examples

The following example defines a telemetry item as a pseudo telemetry point:

UI Value DESC="This is a pseudo-telemetry value", EQUATION =
IF (A > B) THEN

Value = A - B
ELSE

Value = A + B
ENDIF

where A and B are telemetry points which have been previously defined in RDL.

The next two examples show how simple equations are defined:

UI AnotherValue DESC="Description for AnotherValue",
EQUATION=c *(a+cos(b))

UI OneMoreTime DESC="This is a description for OneMoreTime.",
EQUATION=MET+UTCF+GroundTimeCorrection

This example illustrates the use of an IF statement that contains another nested IF statement:

UI NoMorePleaseDESC="This is a description for NoMorePlease",
EQUATION=IF doo > wah

THEN
IF diddy > wah THEN

NoMorePlease = diddy
ELSE

NoMorePlease = wah
ENDIF

ELSE
NoMorePlease = doo

ENDIF

This example demonstrates the use of the BLOCK, PAGE, and EVENT features:

UI utcf_error_flag DESC="Flag indicating whether to display warning"
EQUATION=

IF (not packet_initialized("stcutcftm") or
 packet_stale("stcutcftm")) THEN

utcf_error_flag = 0
ENDIF

UI utcf_in_error DESC="Flag indicating utcf error state"
EQUATION=BLOCK

utcf_in_error = 0
IF (stcutcftm = 0 and utcf_error_flag = 0) THEN

EVENT "UTCF not set"
PAGE "TC"
utcf_error_flag = 1
ASIST Users Guide–Version 9.6 4-31

CHAPTER 4
utcf_in_error = 1
ENDIF

ENDBLOCK

Event-Driven Pseudo-Telemetry

Periodic pseudo telemetry equations are re-calculated once a second. ASIST also allows you to calculate a pseudo telem-
etry equation when an event occurs, such as the arrival of a particular telemetry packet or upon a limit violation. The key-
word WHEN specified in an RDL file defines a point to be event-driven pseudo telemetry. WHEN is followed by an
event-statement and a DO/ENDO block defining code to be executed when the event occurs. The syntax for event-driven
pseudo telemetry is:

EQUATION = WHEN event
DO
 statements
ENDDO

ASIST supports two event types:

1. the receipt of a telemetry packet, specified by the keyword PKT_RCVD and an equal-sign followed by a list of 1 to 8
APIDs. The syntax for the packet-received event is:

PKT_RCVD = (apid, apid,...)

Here are two examples, for points named whenp_1 and whenp_1etal:
SLI WHENP_1
DESC="Calculation is event-driven by packet 1.",
init=0,
equation= when pkt_rcvd = (1)
DO ; This DO block executes each time packet 1 is received.
whenp_1 = whenp_1 +1
ENDDO

SLI WHENP_1etal
DESC="Calculation event-driven by packets 1, 2, and 42.",
init=0,
equation= when pkt_rcvd = (1, 2, 42)
DO ; This DO block executes each time packet 1, 2, or 42
; is received.
whenp_1 = whenp_1 +1
ENDDO

If we received five packets of APID 1, and two packets each of APIDs 2 and 42, WHENP_1 would equal 5, and
WHENP_1etal would be 9 (5 +2 +2).

2. whenever a telemetry point (or one point from a list of points) enters, exits, or remains in a given limit state. The syn-
tax of the event is:

WHEN points entry limit-state DO

statements...

ENDDO

where:

points a single telemetry point name or a parenthesized list of comma-separated point names
4-32 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
For example, to start the STOL procedure BAT_TEMP when WBATTEMP01 enters a red high state, use:
UI monitor_rh DESCRIPTION="Equation to monitor cell 1 temp",

EQUATION= WHEN WBATTEMP01 ENTERS RH DO
EVENT "Starting BAT_TEMP due to over temp"
STOL "START BAT_TEMP"

ENDDO

or, to send an event whenever ACSRWX is YH or ACSRWY is also YH, use:
UI monitor_rw DESCRIPTION="Equation to monitor RWx and RWy",

EQUATION= WHEN (ACSRWX,ACSRWY) IS YH DO
EVENT "Either ACSRWX or ACSRWY is YH"

ENDDO

Enabling and Disabling Pseudo-Telemetry Equations

Pseudo-telemetry equations can be manually enabled and disabled. If a pseudo-telemetry equation is disabled, it can be
enabled with the ENABLE_EQUATION directive in STOL. The syntax for this directive is:

ENABLE_EQUATION pseudo-telemetry-point-name

For example to enable a pseudo-telemetry equation named ramp, use:

ENABLE_EQUATION ramp

Likewise, you can disable a particular pseudo-telemetry equation with:

DISABLE_EQUATION pseudo-telemetry-point-name

To disable all pseudo-telemetry equations in a given packet use:

DISABLE_PACKET_EQUATIONS packet-apid

For example, to disable all equations in a packet with APID 201, use:

DISABLE_PACKET_EQUATIONS 201

You can enable all equations in a packet with:

ENABLE_PACKET_EQUATIONS packet-apid

entry one of the following: ENTERS, EXITS, or IS

limit-state a limit state from the following list:
RED either red low or red high
YELLOW either yellow low or high
GREEN neither red nor yellow
RL red low
RH red high
YL yellow low
YH yellow high
RAIL a rail limit violation (either upper or lower rail)
UPPER_RAIL
LOWER_RAIL
ASIST Users Guide–Version 9.6 4-33

CHAPTER 4
Execution quotas on equations

Whenever a pseudo-telemetry equation is executing, the number of instructions executed by the equation is monitored. If
the number of instructions exceeds a warning level, a message is sent to the event logger, "Execution time excessive". If
the number of instructions exceeds an error level, a message is sent to the event logger "Execution time exceeded" and the
equation is disabled from further execution. Both the warning level and the error level have been set high enough that nor-
mal pseudo-telemetry will not violate them. It is possible to increase these levels.

Data quality inheritance

Data quality can be automatically inherited from the quality of other variables in an equation. If you assign a value with
bad data quality to a telemetry point, it inherits the same bad data quality. For a more detailed explanation of data quality,
see “Data Quality” on page 8-37.

Dynamic Reloadable Pseudo-Telemetry

Beginning with version 9.4, ASIST gives you the ability to remove or change pseudo-telemetry equations, both periodic
and event-driven, while ASIST is running. (You may not, however, add a new pseudo-telemetry point.)

You must first create a text file containing the new equations. This file is compiled from STOL and then loaded in a sep-
arate step. The input file consists of a sequence of lines with the following syntax:

<action> <pseudo-point> [EQUATION=<pseudo-equation>]

where <action> is either UPDATE or DELETE, <pseudo-point> is the name of a previously declared pseudo-telemetry
point, and <pseudo-equation> is the equation to be applied. Note that <pseudo-equation> uses exactly the same syntax as
that documented elsewhere in this chapter. This allows you to easily copy pseudo-telemetry definitions to and from RDL
files.

To modify an existing definition of pseudo-telemetry you use the UPDATE action keyword. This will cause the currently
executing pseudo-telemetry equation to be removed and replaced. The new equation will be executed when it is loaded
(after compiling). The syntax for an UPDATE action is this:

UPDATE <pseudo-point> EQUATION=<pseudo-equation>

For example, to change the equation on pre-existing pseudo-telemetry point RAMP, use

UPDATE ramp EQUATION=IF ramp < 100 THEN
 ramp = ramp + 4
 ELSE
 ramp = 0
 ENDIF

To modify pre-existing point SAWTOOTH, use:

UPDATE sawtooth EQUATION=ramp+2

To remove an existing pseudo-telemetry equation, use the DELETE keyword . This causes the current pseudo-telemetry
equation to be removed. The point retains a slot in the database that you can UPDATE later. You don’t need to DELETE
a pseudo-telemetry point before you UPDATE it. The syntax for a DELETE action is:

DELETE <pseudo-point>
4-34 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
For example, to remove the equation on pseudo-telemetry point SAWTOOTH, use:

DELETE sawtooth

After you have made a file containing deletions or updates, you must compile it with the pseudo-telemetry compiler.
From the STOL command line, enter this:

PSEUDO_COMPILER <pseudo-file-name>

Where <pseudo-file-name> is the name of the file containing your dynamically reloadable definitions. The compiler will
look in $WORK/rdl for a file with an extension of ".psd". If the compile is successful, a new file is created with an exten-
sion of ".pi". Similar to the STOL compiler, you will see a popup window that displays the results of the compile. Enter
a 'Q' in the window to continue. For example, to compile a file located in $WORK/rdl named jims_pseudo.psd, at the
STOL command line, enter:

PSEUDO_COMPILER jims_pseudo

Once your file has been successfully compiled, you must load it to initiate its execution. Here is the load directive:

LOAD_PSEUDO <pseudo-file-name>

As soon as the file has been loaded by both the periodic pseudo-telemetry processor (SPTP) and the event-driven pseudo-
telemetry processor (TLMH), it will begin executing. If you want to return to the pseudo-telemetry equations that were
active at ASIST startup, enter the following STOL directive, which restore all the original pseudo-telemetry specified in
the RDL files:

RELOAD_PSEUDO

Special Constructs

Comments

Comments are introduced by the semi-colon (;). The compiler ignores all text on a line from the semi-colon (or exclama-
tion point) to the end of the line.

For example:

UI AN_ITEM ; This line has a definition and a comment

Delimiters

The most common delimiters are commas and spaces. Commas are used to delimit parameters and keywords from each
other. Spaces are used to separate major components from each other (such as data type from name).

The end of a line is not a delimiter. Thus, you can have multi-line definitions of RDL without the continuation statement,
which is only supported for compatibility with older missions.

C Preprocessor Directives

ASIST supports the directives which conform to the ANSI standard for the C preprocessor. For information on these
directives, APPENDIX G: “C-Preprocessor” .
ASIST Users Guide–Version 9.6 4-35

CHAPTER 4
Predefined Names

ASIST's telemetry compiler predefines a variable with the name of the mission (i.e. TRMM for the Tropical Rainforest
Measurement Mission, or CIRS for the CIRS instrument). It also predefines a constant identifying the operating system;
either OS_AIX or OS_Linux (note: this is case-sensitive).

An example using some of these directives:

#ifdef CIRS
#define HDR_SIZE 10
#else
#define HDR_SIZE 16
#endif

PACKET OnePacket Apid=666
#ifdef TRMM
#include "trmm_ccsds_pkt.rdl"
#else
! A generic header area.

UB CCSDS_HEADER[HDR_SIZE]
#endif

UB RestOfPacket[132]
END

Example

The following file defines a packet with an APID of 1, using C-Preprocessor directives.

! File -- Packet1.rdl
! Packet Description -- Processor independent status packet, from FDS
! Original Author -- M. Testconductor, 3-4-93
! Modified by --
! B. Brock 4-2-93 Added SHSXBRS
! C. Crock 4-3-93 Corrected mask of SHSXBRS
!
! Definition -- OLD_NEW_DISCRETE -- A discrete with range 0-1 & label old
! or new data. Use it for repetitive text.
!
#define OLD_NEW_DISCRETE DISCRETE,DRANGE(0,1),DLABEL=("OLD_DATA","NEW_DATA")

PACKET P001 APID=0001,DESC=“S/C Processor Mode Independent Status Packet”
#include "ccsds_header.rdl"
!
!
! ************ Health and Safety Section -- “HS” ************
!

UB SHSCMDXCDESC=“Ground Command Executed Counter”,
UNITS=Counts,
LIMTYPE=Range,
OPEN,
RLOW=0.0,
YLOW=0.0,
YHIGH=255.0,
4-36 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
RHIGH=255.0
UNION UN_SHSFSWRS

UI SHSFSWRSDESC=“Subsystems Present Status Word”,
UI SHSFSS10DESC=“10-Bit Spare Bilevel TLM Word”,

MASK=%XFFC0, LSHIFT=-6
UI SHSSBRSDESC=“Status Data Refreshed Flag”,

OLD_NEW_DISCRETE, MASK=%X0008,
LSHIFT=-3

UI SHSXBRSDESC=“1773 Comm Data Refreshed Flag”,
OLD_NEW_DISCRETE, MASK=%X0004,
LSHIFT=-2

UI SHSTORSDESC=“Telemetry Output Data Refreshed Flag”,
OLD_NEW_DISCRETE, MASK=%X0002,
LSHIFT=-1

UI SHSCIRSDESC=“Command Ingest Data Refreshed Flag”,
OLD_NEW_DISCRETE, MASK=%X0001,
LSHIFT=0

END
UB SHSCMDXCDESC=“Ground Command Executed Counter”,

UNITS=Counts,
LIMTYPE=Range,
CLOSED
RLOW=0.0, YLOW=1.0,
YHIGH=250.0, RHIGH=255.0

END ! End of Record

#undef OLD_NEW_DISCRETE

Telemetry RDL Examples

Defining types based upon records and unions

Defining a type which is a UNION or RECORD allows you to describe templates of commonly used data structures and
then use them repeatedly to declare variables in your telemetry RDL

For example, to define a type PSE_MODULE which contains a Voltage and a Current:

TYPES
RECORD PSE_MODULE

UI VOLTAGE MASK=%x0FFF, UNIT=Volts, ANALOG, INCLUSIVE,
RL=0.2, YL=1.0, YH=65.0, RH=75.0

UI CURRENT MASK=%x0FFF, UNIT=Amps, ANALOG, INCLUSIVE,
YH= 8.5, RH= 10.0

END ; RECORD PSE_MODULE
END TYPES

You can declare a variable using your defined type just as you would any other data definition in telemetry RDL, in the
form:
ASIST Users Guide–Version 9.6 4-37

CHAPTER 4
user-type-name variable-name attribute-list

For example, to declare variables using the definition for PSE_MODULE:

PACKET P0CA APID=%x0CA, DESC="PSE A FAST TLM - BUS CURRENT & VOLTAGE"
. . .
PSE_MODULE ESSENTIAL_BUS_A
. . .
PSE_MODULE NONESSENTIAL_BUS_A
. . .

END ; PACKET P0CA

To reference elements of your declared RECORD, you must use dotted notation, beginning with the declared name of
your variable. For example, in the above example, to access elements of ESSENTIAL_BUS_A, use:

ESSENTIAL_BUS_A.VOLTAGE
ESSENTIAL_BUS_A.CURRENT

From STOL, you can see the value of the essential bus current by typing:

WRITE "Essential Bus A: Current=",Essential_Bus_A.Current

Note: When you use a user-defined type based upon RECORDS or UNIONs, the names are always in dotted notation. In
the previous example, VOLTAGE is not a telemetry point, but ESSENTIAL_BUS_A.VOLTAGE is a telemetry point.

Defining and using arrays of records and unions

You can also declare an array of Records or Unions in your telemetry RDL. For example: To declare arrays WASAM and
WBSAM based upon type PSE_MODULE which was defined above:

PACKET P0CA APID=%x0CA, DESC="PSE A FAST TLM - BUS CURRENT & VOLTAGE"
. . .
PSE_MODULE WASAM[8]
. . .

END ; PACKET P0CA

PACKET P0CB APID=%x0CB, DESC="PSE B FAST TLM - BUS CURRENT & VOLTAGE"
. . .
PSE_MODULE WBSAM[8]
. . .

END ; PACKET P0CB

To reference elements of your Record or Union, you must use dotted notation, beginning with the declared name of your
variable. You must also use array brackets to specify which element of the array to reference.

For example: To access elements of WASAM, use:

WASAM[4].VOLTAGE WASAM[4].CURRENT

To print all of the elements of WBSAM:

PROC ALL_O_WBSAM
LOCAL I
4-38 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
for i=1 to 8 do
write "WBSAM of ",i" is ",WBSAM[i].VOLTAGE," volts, ", ;;

WBSAM[i].CURRENT," amps"
enddo

endproc

Note: Like telemetry points in user-defined types of records and unions, you can only reference telemetry points within
arrays of records or unions using dotted notation. In the previous example, VOLTAGE is not a telemetry point, but
WASAM[1].VOLTAGE is.

You may also declare an array of RECORDS or UNIONS directly in your RDL, without creating a type definition.

For example:

TYPES
UI ON_OFF DISCRETE,DRANGE=(0,1),DLABEL=("OFF","ON")
UI YES_NO DISCRETE,DRANGE=(0,1),DLABEL=("NO","YES")
UI OK_OVER DISCRETE,DRANGE=(0,1),DLABEL=("OK","OVERFLOWED")

END_TYPES

PACKET P123 APID=%x123 DESC="123 look at meeeeee"
. . .
RECORD SDS_VR[6] DESC="Pri S/C Virtual Record Status"

UI TAMB DESC="Total Available Memory Blocks"
ULI FSN[4] DESC="First Sequence Number"
ULI LRSN DESC=" Last Recorded Sequence Number",
ULI LTSN DESC="Last PB Telemetered Sequence Number"
UNION STATUS DESC="A word containing playback status info"

ON_OFF CPBS DESC="Continuous Playback Status",MASK=%X01
YES_NO PBS DESC="Playback Status",MASK=%X02
YES_NO RXS DESC="Retransmit Status",MASK=%X04
UI AOS DESC="Automatic Overwrite Status",MASK=%X08,
DISCRETE,DRANGE=(0,1),DLABEL=("DISABLED","ENABLED")
ON_OFF DMPS DESC="Dump Status",MASK=%X10
OK_OVER P1QOS DESC="Quota Overflow Status",MASK=%X20
OK_OVER P2QOS DESC="Quota Overflow Status", MASK=%X40

END
END
. . .

END

Note: This example was 240 lines in the XTE database.

To access Virtual Recorder 3's playback status, use:

write SDS_VR[3].STATUS.PBS

or to see the First Seq Number for the second data set of VR 5:

write SDS_VR[5].FSN[2]
ASIST Users Guide–Version 9.6 4-39

CHAPTER 4
NOTE: Because elements of arrays of records/unions or type definitions of records/unions can't be accessed directly, their
names only need to be unique within the record/union containing them.

Constant numeric expressions

You can use a constant expression in an RDL definition wherever a number is called for. Valid operators within these
expressions are:

For example, you can define the APID of a packet with:

PACKET A_PACKET APID=3+1,DESC="A simple example"
.
.
.

END

Or you can define the number of elements in a telemetry point array with:

PACKET B_PACKET APID=14,DESC="Another example"
UB CORNER[2*7] DESC="14 point array"

.

.

.
END

When used with the #define keyword you can easily redefine a large number of telemetry points or packets:

#define ARRAY_SIZE 16
PACKET C_PACKET APID=22,DESC="A third example"

UI TEMPERTURE1[ARRAY_SIZE],DESC="Some temps"
UI TEMPERTURE2[ARRAY_SIZE/2],DESC="Half as many temps"

.

.

.
END

Meaning Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **

Unary minus -

Unary plus +
4-40 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
String concatenation

The concatenation operator (&) allows you to join multiple text strings into a a single large string. You can use this feature
to continue a string across multiple lines. For example:

PACKET D_PACKET APID=23,DESC= "This is a packet used temporarily "&
"by version 1.2 of the AED software."&
"When version 1.3 is released, in"&
"crease the size DRTE to 15"

ULI DRTE[10] DESC="Some data"
.
.
.

END
ASIST Users Guide–Version 9.6 4-41

CHAPTER 4
Tools Reference

How to syntax check telemetry definitions

To syntax check your telemetry definition file from the UNIX prompt, enter:

otlm filename [-c][-wdigit][-Idirectory] [-Tdigit] [-E] [-D]

where filename is the file containing the telemetry definition you wish to compile. Note that .rdl is the default file type,
used by the compiler, i.e. if you do not specify a file type on the command line, the compiler assumes the default and
assigns the .rdl file extension for you.

The -c switch tells the compiler to create a new database. If this switch is not included on the command line, the defini-
tion file is checked for syntax errors only (no database is created). If you elect to create a new database, the file tlm.db
is created in the local directory. If syntax errors are detected during compilation, a new database is not created.

The -w switch tells the compiler what warning messages to print. If followed by a zero (0), no warning messages are
printed. If followed by a one (1), all warning messages are printed. The default is to print all warning messages. If the -c
option (to create a database) is entered and warning messages occur, a new database is still created, regardless of whether
they are printed or not.

The -Idirectory switch tells the compiler to look in directory after looking in the local directory for any include files
encountered. This switch may occur up to sixteen times.

The -E switch enables you to view errors in an EMACS style format.

The -T switch sets the maximum number of items that can be trended. The default is 1024.

The -D switch allows you to predefine names in the preprocessor.

How to create a telemetry database

1. Edit the rdl file:

• Type dbedit at either the UNIX or STOL prompt to open a window in the EMACS editor. This window lists all RDL
files in your working directory.

• Either:

a) edit an existing file,

•Move the cursor to the name of that file (using the arrow keys)

•Press the e key to edit this file.

or

b) create a new file

•Press Ctrl-x followed by Ctrl-f

•Enter the name of the new file at the prompt.

• Edit the file.
4-42 ASIST Users Guide–Version 9.6

Telemetry Database Compiler
• When you are done editing, press Ctrl-x followed by Ctrl-c to end your EMACS session and close the EMACS
window.

2. If the file you edited is new, enter it into the list of files to be compiled (in user_tlm.rdl):

• Type dbedit in the STOL Window.

• Move the cursor to the line with the file user_tlm.rdl.

• Press the e key to edit either file.

• Add your new RDL file to this list by typing a new line containing a #include followed by the name of the new RDL
file in quotes.

For example, if your new file was tlm_new_apid.rdl, and the user_tlm.rdl file already had
tlm_apid01.rdl and tlm_some_other.rdl, the final file would look like this:

! This is the file user_tlm.rdl
! Old telemetry files
#include "tlm_apid01.rdl"
#include "tlm_some_other.rdl"
! New telemetry file
#include "tlm_new_apid.rdl"

3. Compile the database:

• Type dbcmptlm at either the UNIX or STOL prompt.

This compiles the database, including all elements in the user_tlm.rdl file. A new window opens, displaying the
status of the compilation. A copy of the errors are also placed into the file $WORK/rdl/otlmdbcmp.log. If there
were errors, fix your RDL files and recompile.

4. Once the database compiles cleanly and is ready to be used, you must load it.

• Type dbloadtlm at either the UNIX or STOL prompt. This sets up the newly compiled database to be used the next
time the system is started.

5. To use the new database, you must restart ASIST.

• If ASIST is running, type QUIT at the STOL prompt to shut it down. Wait until the start-up window is gone before
proceeding.

• Restart ASIST as usual.

Automatic Database ID Stamping

The telemetry database compiler records the following information when it runs:

The MajorVersion and Incremental numbers are determined by the contents of four files, two of which apply to telemetry:

$WORK/db/verid_tlm_MAJOR
$WORK/db/verid_tlm_INCR

Identifier Format Example Access within ASIST

Version ID MajorVersion.Incremental 1.237 VERID.version

Compile Date mm/dd/yy 03/28/04 VERID.date

Compile Time hh:mm:ss.zone 14:42:54.EST VERID.time

Who compiled it username/hostname asist/deadjake VERID.who
ASIST Users Guide–Version 9.6 4-43

CHAPTER 4
The first time you compile telemetry, the two files are created for you. The initial Version ID will be “1.1”. Each time
you compile, successful or not, the incremental part of the ID, to the right of the decimal point, will be incremented by 1.
ASIST does not change the MajorVersion number; you decide when a database version increase is appropriate.

To change to a higher version ID, edit the file $WORK/db/verid_tlm_MAJOR and change the number within. At the
same time, remove the file $WORK/db/verid_tlm_INCR and ASIST will recreate it at the next compilation.

Telemetry database ID information is stored in a packet named VERID. Thus, you may read them in ASIST by reference
to the telemetry items give in the table above, listed as Access within ASIST. The information is also available by clicking
the button labeled DB? on the ASIST status window.

How to generate a telemetry database report

Reports of the telemetry database can be created using the Data Query Tool (see CHAPTER 17: “Database Query Tool”).
Additionally, you can generate a formatted report of the contents of the telemetry database sorted by APID or name by
typing:

otlmbyapid [-f database-filename] [-t "title-string"]
or

otlmbymnem [-f database-filename] [-t "title-string"]

from the Unix command line. The optional command switch -f causes the report to be generated using the file database-
filename. If this switch is not specified, ASIST’s running database is used. If ASIST is not running, the database used is
indicated by $STOL_TDB. The optional command switch -t allows you to specify the report's title. If this option is not
selected, a default title is provided (“Telemetry Database Report”). An example using this feature is:

otlmbyapid -t "This is one heap good report"

By default, both reports are written to the screen (stdout). You can save a report by piping it to a file by typing:

otlmbymnem >my_report_file.rpt

An additional report displays the lengths of all defined packets. This includes each packets name, APID and length.

otlmsize >my_report_file.rpt
4-44 ASIST Users Guide–Version 9.6

AS
CHAPTER 5 Command Database
Compiler
Overview

ASIST uses its command database to format the CCSDS commands it sends to the spacecraft. Additionally, this database
also defines the format of directives sent to subsystems of ASIST and the FEDS.

This chapter will provide you with:

• Tools Overview - A list of the tools provided to ease command database development.

• Language Overview - A brief synopsis of the command record definition language.

• Language Reference - A detailed description of elements of the command record definition language.

• Tools Reference - Brief tutorials on how to use the command database tools.
IST Users Guide–Version 9.6 5-1

CHAPTER 5
Tools Overview

Creating and maintaining the database is left to the user. ASIST provides a number of tools to aid in this task, including:

• Command Database Compiler (dbcmpcmd) - Compiles the user-generated RDL files into a binary database readable
by the ASIST system.

• Command RDL Syntax Checker (ocmd filename) - Verifies the syntax of an RDL file.

• Command Database Reports (ocmdbyapid and ocmdbymnem) - Generates reports by APID and by name to help
ensure database correctness.

• Database Editor (dbedit) - A version of the emacs editor customized for RDL development.
5-2 ASIST Users Guide–Version 9.6

Command Database Compiler
Language Overview

The ASIST Command Record Definition Language (RDL) is a hierarchical language based on standard programming lan-
guage data structures.

• The top level of a command database begins with the DATABASE statement. The DATABASE statement contains all
of the commands and directives contained in the database.

• A database contains one or more CLASSes. A class is a group of commands sharing some common traits. If these
traits are defined as part of the class statement, then they do not need to be defined for each command individually.

• Each class contains a number of commands (instructions to the spacecraft) or directives (instructions to subsystems
within ASIST). Each command or directive defines the format of a single command packet, which may include a set of
parameters defining the data associated with the command.

• Parameters define the format of the data field of the CCSDS command packet (or directive packet). They also define
which fields are required, which fields are static, and what values are valid for those fields.
ASIST Users Guide–Version 9.6 5-3

CHAPTER 5
Language Reference

The Command Record Definition Language (RDL) has three basic statement types:

• Grouping Constructs: The DATABASE and CLASS statements group commands and/or directives.

• Command/Directive Definitions: Spacecraft command statements (CMD and CMDS), internal ground system direc-
tive statements (DIR and DIRS), and command flow directive statements (DIRC) define a single command packet.

• Parameter Definitions: These define the formats and attributes of parameters attached to commands or directives.

Two basic formats are available for Command/Directive Definitions, those with a fixed bit pattern and no parameters
(CMD or DIR), and those with parameters (CMDS or DIRS).

Grouping Constructs

DATABASE

The outer level data construct of the command database is the DATABASE statement. All command and directive defini-
tions must occur between the DATABASE statement and its accompanying END. DATABASE is required for ASIST to
generate a database. ASIST normally defines the DATABASE for you.

Format:
DATABASE database-name [DESC=text-description]
…classes…
END

Keywords:

DESC a text description of this database.

Parameters:

database-name A name which uniquely identifies this database. When you compile using dbcmpcmd, the
database-name is Command_Record_Definitions.

Example:
DATABASE Command_Record_Definitions

CLASS ROVER_COMMANDS APID=1,DESC="Bow wow?"
CMDS Rollover FCTN=1,DESC="Flip it like a pancake"

UI HowMuch MIN=1,MAX=50,DESC="How far?"
END ; Rollover
CMD PlayDead FCTN=2,DESC="Wag, Wag."
CMDS FETCH FCTN=3,DESC="Go get it, Rover"

UNION GetWhat
UI Stick STATIC,DEFAULT=1
UI Bone STATIC,DEFAULT=2
UI Newspaper STATIC,DEFAULT=3
UI Tail STATIC,DEFAULT=4

END ; Union
END ;Fetch

END ; Class ROVER_COMMANDS
CLASS SomeCommands APID=2,HAZARD,DESC="These are similar"

CMD A_COMMAND FCTN=1,DESC="I've been working"
5-4 ASIST Users Guide–Version 9.6

Command Database Compiler
CMD ANOTHER FCTN=2,DESC="On the spacecraft"
CMDS YET_AGAIN FCTN=3,DESC="All the live long day"

UB HOW
UB WHY DESC="Just to pass the time away"
UI TO_WHAT_DEGREE MIN=1,MAX=5

END ; Yet_again
END ; Class SomeCommands

END ; Database

CLASS

CLASS tells ASIST that a group of commands has attributes in common. An attribute that is defined with a class state-
ment applies to every command within the class. For example, if all commands within a class have an APID of 2 and are
HAZARDOUS, then it could be defined as:

CLASS SomeCommands APID=2,HAZARD,DESC="These are similar"
CMD A_COMMAND FCTN=1,DESC="I've been working"
CMD ANOTHER FCTN=2,DESC="On the spacecraft"
CMDS YET_AGAIN FCTN=3,DESC="All the live long day"

UB HOW
UB WHY DESC="Just to pass the time away"
UI TO_WHAT_DEGREE MIN=1,MAX=5

END ; Yet_again
END ; Class SomeCommands

All commands must be within CLASSes.

Note: Any command or directive defined within a class may override one or more of the defined class traits.

Format:
CLASS class-name [APID=apid-num,][FCTN=fctn-num,] [CHECKSUM=checksum-name], [HAZARD],

[CRITICAL], [DESC=text-description], [DEST=text-destination]
…cmd-definitions.… or …dir-definitions…

END

Keywords:

APID defines a default Application ID number for commands defined within this class.

FCTN defines a default Function Code for commands within this class.

CHECKSUM identifies the default checksum method to be used for commands within this class. Note: Dif-
ferent checksum methods are not currently implemented in ASIST.

HAZARD indicates that all commands within this class default to being hazardous.

CRITICAL indicates that all commands within this class default to being critical.

NONHAZARD indicates that all commands within this class default to being not hazardous.

NONCRITICAL indicates that all commands within this class default to being not critical.

DEST defines the default destination of directives within this class, and should only be included with
assistance from ASIST development staff.

DESC a text description of this class.
ASIST Users Guide–Version 9.6 5-5

CHAPTER 5
Parameters:

class-name A name which uniquely identifies the class. It is composed of a letter followed by zero or more
letters, digits, or underscores.

text-description A string describing the class.

cmd-definitions All command definitions within this class.

dir-definitions All directive definitions within this class.

apid-num An integer between 0 and 2047 for commands and between 2048 and 4095 for directives.

fctn-num An integer between 0 and 127 for commands.

checksum-name The name of the checksum algorithm to be used as a default for commands in this class.

text-destination This is the name of the default destination for directives in this class.

Command/Directive Definitions

CMD(S), DIR(S) and SFDUs

Instructions to the spacecraft (called Commands) are defined using CMD (for commands with no parameters) or CMDS
(for commands with parameters). Similarly, instructions to subsystems within ASIST (called Directives) are defined using
DIR and DIRS.

When a commands or directive is entered at STOL, it is built into a command or directive packet and then encapsulated
within Standard Formatted Data Units (SFDUs) for transmission to their destination. Alternatively, you can define your
own SFDU formats using the type SFDU.

Within each command, directive, or SFDU, you can define additional application data. While each command/directive
name must be unique, parameters names need only be unique within a given command.

Format:
CMD or DIR name [APID=apid-num], [ASCII_HEX], [FCTN=fctn-num], [CRITICAL], [DESC=text-descrip-

tion], [DEST=text-destination], [DEST_MACHINE=machine-name], [HAZARD], [NONCRITICAL],
[NONHAZARD], [PACKET = packet-identifier], [PREFIX_SFDUS = “sfdus-to-include”], [RESPONSE |
NOT_RESPONSE], [ROUTING_SFDUS = “sfdus-to-include”], [SC_COMMAND |
NOT_SC_COMMAND], [SFDU = sfdu-identifier], [SUFFIX_SFDUS = “sfdus-to-include”], [TVER=”logi-
cal-expression“], [VALIDATABLE | NOT_VALIDATABLE], [VERIFY_APID_FN_ONLY]

END

CMDS or DIRS or SFDU name [APID=apid-num], [ASCII_HEX], [FCTN=fctn-num], [CONTAINER], [CRIT-
ICAL], [DESC=text-description], [DEST=text-destination], [DEST_MACHINE=machine-name], [HAZ-
ARD], [NONCRITICAL], [NONHAZARD], [PACKET = packet-identifier], [PREFIX_SFDUS = “sfdus-to-
include”], [RESPONSE | NOT_RESPONSE], [ROUTING_SFDUS = “sfdus-to-include”], [SC_COMMAND
| NOT_SC_COMMAND], [SFDU = sfdu-identifier], [SUFFIX_SFDUS = “sfdus-to-include”], [TVER=”logi-
cal-expression“], [VALIDATABLE | NOT_VALIDATABLE], [VERIFY_APID_FN_ONLY]

…parameter-definitions…
END
5-6 ASIST Users Guide–Version 9.6

Command Database Compiler
Keywords: .

TABLE 5-1. Keywords available in command definitions (Sheet 1 of 2)

KEYWORD DESCRIPTION

APID=apid-num Defines this commands application ID. This value must be between 0 and 2047 for
commands, 2048 and 4095 for directives and SFDUs.

ASCII_HEX Tells ASIST to convert the resulting command data into an ASCII-hex string
before placing it into the SFDU for transmission.

COMPUTED=”functions(func-
parms)”

Specifies a function to be used in calculating the value of this parameter.

CONTAINER When you define an SFDU and include the keyword CONTAINER, entering this
from STOL causes you to enter blocking mode, creating a Container (Z-Class)
SFDU which will contain I-Class SFDUs. The contents of the SFDU, when gener-
ated, will be the I class SFDUs built between when the container is begun and
when it is completed.

When entering the container from STOL, there are three possible parameters:

• BEGIN–Open a Z-Class SFDU Block (start blocking)

• END–Close the Z-Class SFDU, and send the block of commands

• CANCEL–Cancel the block currently being built.

CRITICAL | NOT_CRITICAL Specifies whether or not this command is criticala.

DESC = text-description A one sentence description used for the T&C Handbook and the database on-line
help.
i.e. DESC=”This is descriptive”

DEST=text-destination describes the destination of this directive, and should only be included with assis-
tance from ASIST development staff. The default destination is the front end data
system (FEDS)

DEST_MACHINE=machine-
name

Indicates the machine this directive should be sent to. The default destination is
the front end data system (FEDS)

FCTN=fctn-num defines the Function Code for this command, and must be between 0 and
127.

HAZARD | NOT_HAZARD Specifies whether or not this command is hazardousa.

PACKET = packet-identifier Specifies a packet definition into which this command’s data can be placed (i.e. a
definition of a CCSDS packet) using the COMPUTED=CMD_DATA() function.
packet-identifier must be defined elsewhere in the command database.

PREFIX_SFDUS = “sfdus-to-
include”

Specifies information which should be placed before this command in the SFDU
used to transport it to its destination. sfdus-to-include is a colon-separated list of
SFDUs to include. Each SFDU must be defined in the command database.

RESPONSE |
NOT_RESPONSE

Specifies whether or not this SFDU is a response or a mandate. This is used by to
determine if the receiver of this SFDU will send back a response.

ROUTING_SFDUS = “sfdus-
to-include”

Specifies one or more SFDUs which define the where to route this command.
They will be placed before this command in the SFDU used to transport it to its
destination. sfdus-to-include is a colon-separated list of SFDUs to include. Each
SFDU must be defined in the command database
ASIST Users Guide–Version 9.6 5-7

CHAPTER 5
All keywords are optional. If they are not defined, the keyword value defined on the CLASS which encloses this com-
mand/directive is used. If none is defined, then:

• If the undefined field is APID or Function Code (which are required for all commands and directives) an error is gen-
erated and the command is not compiled.

• Otherwise, the system default is used. These system defaults are:

Example 1: Simple Command Definition

This example shows how a CMD is defined using RDL, what the command looks like in a report, and how the user
should enter the command.

RDL Definition:

CMD SNOOPCMD APID=%X1D,FCTN=5,DESC=”This command doesn't do squat”

Report Format:
Name: SNOOPCMD
Description: This command doesn't do squat

SC_COMMAND |
NOT_SC_COMMAND

Specifies whether or not this is a spacecraft command. Spacecraft commands are
more tightly monitored than non-sc-commands: you can’t send one while another
hazardous command is pending.

SFDU = sfdu-identifier Specifies an SFDU into which this command’s data is placed (in the field with the
keyword COMPUTED=CMD_DATA()) prior to sending the command. sfdu-iden-
tifier must be defined elsewhere in the command database.

SUFFIX_SFDUS = “sfdus-to-
include”

Specifies information which should be placed after this command in the SFDU
used to transport it to its destination. sfdus-to-include is a colon-separated list of
SFDUs to include. Each SFDU must be defined in the command database.

TVER = ”logical-expression“ A logical expression which, when true, indicates that this command has success-
fully executed. As the T in TVER implies, it is expected that this equation includes
telemetry point(s).
i.e. TVER=”WBatV>5”

VALIDATABLE |
NOT_VALIDATABLE

Specifies whether or not this command can be validated (disassembled by the
mandate handler).

VERIFY_APID_FN_ONLY causes all commands received with this Apid/Function Code to be accepted by
ASIST, rather than performing bit-level command validation. This is useful for
defining a certain APID/Function Code which you always allow from a specific
source (i.e. an instrumenter) without knowledge of the data it contains (see
page 9-6 for details).

a. The presence of these keywords cause ASIST to prompt you before sending this command to the spacecraft (if com-
mand verification is enabled). See “Command Validation” on page 9–5.
Note: A particular command may be hazardous and critical at the same time.

Checksum None

Hazard No

Critical No

Dest FEDS

TABLE 5-1. Keywords available in command definitions (Sheet 2 of 2)

KEYWORD DESCRIPTION
5-8 ASIST Users Guide–Version 9.6

Command Database Compiler
APID: 0x001D, (29)
Function Code: 0x0001, (1)
Data Length: 0x0000, (0)
CCSDS Format: 181D C000 0001 0001

How to enter it in STOL:

/SNOOPCMD

Parameter Definitions

Parameter definitions specify the data portion of the CCSDS command packet. They are defined in the order in which
they appear in the command packet.

There are two types of data structures used for parameter definitions:

• Scalar structures define a single parameter as a scalar data type (like integer, floating point, etc.) and form the majority
of parameter definitions.

• Aggregate structures define collections of parameters. These include records, which are a grouped sequence of param-
eters, unions, which are a group of parameters occupying the same location, and bitfields, which are parameters defin-
ing different bits of a single location.

Format
data-type name [[size]] [ABSOLUTE = value | ABSOLUTE = date-time-value], [ASCII_DECIMAL],

[ASCII_FLOAT], [ASCII_HEX], [CATMULL=(ordered-pair-list)],[COMPUTED [= “function”]],
[CORRELATED], [DEFAULT=value], [DESC=text-description], [DYNAMIC], [EXPONENTIAL = (a , b
)], [GAUSSIAN = (a,b,c)], [GENERAL_EXP = (a,b)], [INPUT_MAX=value], [INPUT_MIN=value],
[INPUT_RANGE=(min,max)], [INVERTED], [INVISIBLE], [LEAP], [LOGARITHMIC = (a,b)],
[LOOKUP=(ordered-pair-list)], [LSHIFT=value], [MASK=value], [MAX=value], [MIN=value],
[NEGATED], [OPTIONAL [= default-value]], [ORDER=value-list], [PAD_CHAR = string | number],
[PADDED=value], [POLY=coefficients-list], [PVER=string],[RANGE=(min,max)], [RELATIVE], [REPRE-
SENTATION=identifier], [REVERSED], [SIZE=value], [SPLINE=(ordered-pair-list)],[STATIC[= value]
], [SUB_SIZE=value], [TVER=string], [TICK=value], [UNIT=identifier], [VARIABLE]

Keywords

data-type One of the following spacecraft data types:

Data Type Size Description

INTEGER 1…4a Generic integer

FLOAT 4, 6, 8a Generic floating point

CUC_TIME
or TIME

4…8a Generic time

UB 1 Unsigned Byte

SB 1 Signed Byte

UI 2 Unsigned Word Integer

SI 2 Signed Word Integer

ULI 4 Unsigned Longword Integer

SLI 4 Signed Longword Integer

SFP 4 Single Precision IEEE Floating Point

DFP 8 Double Precision IEEE Floating Point
ASIST Users Guide–Version 9.6 5-9

CHAPTER 5
name [[size]] Parameter names are a series of letters, digits, or underscores beginning with a letter. The
optional size indicates that this parameter is an array with size elements.

The remaining fields are a list of keywords or keyword/value combinations. These keywords define various characteris-
tics of the parameter.

CHAR 1 Character String

FILL 1 Fill Bytes

SMET 4 Short Mission Elapsed Time

MET 8 Mission Elapsed Time

UTC 8 Universal Coordinated Time

SUTC 4 Short Universal Coordinated Time

UNXT 4 UNIX Time

STIM 4 Short Standard Time

PB5A-PB5H 4…8 PB5 standard times (there are 8 formats, each desig-
nated by a letter between A to H).

CDS_TIME6…
CDS_TIME9

6…9 A CCSDS Segmented time, between 6 and 9 bytes (the
number indicates the length).

a. The bold value is the default

TABLE 5-2. Keywords available in command parameter definitions (Sheet 1 of 5)

KEYWORD DESCRIPTION

ABSOLUTE=value

ABSOLUTE=date-time-value

Specifies that this time parameter is an absolute time, with an epoch indicated by
value (meaning value seconds after midnight, January 1, 1970) or by date-time-
value.

i.e. absolute=93-001-00:00 OR
 absolute=55

This keyword is valid only for parameters of type CUC_TIME.

ASCII_DECIMAL Tells ASIST to convert the input for this parameter (which should be a number) to
a string using an integer format (%d). This can only be used on a CHAR field.

ASCII_FLOAT Tells ASIST to convert the input for this parameter (which should be a number) to
a string using a floating-point format (%G). This can only be used on a CHAR
field.

ASCII_HEX Tells ASIST to convert the input for this parameter to an ascii-hex (half-ascii)
string. This can only be used on a CHAR field.

CATMULL=(ordered-pair-list) Indicates that a lookup table with Catmull-Romm spline interpolationa should be
used to convert this parameter to counts. The lookup values are entered in the field
ordered-pair-list, where each ordered pair is entered in the form (parameter-value,
counts-value)
i.e. catmull=((1,0.005),(10,1.222),(25,2.5),
 (50,5.0),(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can use %float(time-expression), which
allows you to use lookup tables for interpolating time values.

COMPUTED=”functions(func-
parms)”

Specifies a function to be used in calculating the value of this parameter.

Data Type Size Description
5-10 ASIST Users Guide–Version 9.6

Command Database Compiler
CORRELATED Specifies that this time parameter is correlated (meaning that a correlation factor
from telemetry will be added each time this value is retrieved). This keyword is
valid only for absolute times.

DEFAULT= value Specifies the default value of a static valuesb. If a conversion is supplied, this
value is specified in engineering units. See the description of INVISIBLE,
STATIC, DYNAMIC for more information.
i.e. DEFAULT=123

DESC = text-description A one sentence description used for the T&C Handbook and the database on-line
help.
i.e. DESC=”This is descriptive”

DYNAMIC A DYNAMIC parameter requires the user to supply a value when the command is
entered. This value is then checked to verify that it is within the inclusive range
MIN through MAX.

EXPONENTIAL=(a,b) Indicates that an exponential curve of the form with the specified coeffi-
cients should be used to convert this value from engineering units to counts.

i.e. exponential=(1.0,2.0) ;

GAUSSIAN=(a,b,c) Indicates that a general exponential curve of the form

with the specified coefficients should be used
to convert this value from engineering units to counts.

i.e. gaussian=(3,1,5.123) ;

GENERAL_EXP=(a,b)
Indicates that a general exponential curve of the form with the specified
coefficients should be used to convert this value from engineering units to counts.

i.e. general_exp=(1.0,2.0);

INPUT_MAX= value The maximum allowed value for this parameter. The command will be rejected if
the parameter value exceeds this limit. This limits the input value; to limit the
counts value, use MIN, MAX, or RANGE.
i.e. input_max=5

INPUT_MIN=value The minimum allowed value for this parameter. The command will be rejected if
the parameter value is lower than this limit This limits the input value; to limit the
counts value, use MIN, MAX, or RANGE.
i.e. input_min=5

INPUT_RANGE=(value,value) The minimum and maximum value users may enter for this parameter. This com-
mand will be rejected if the entered parameter value exceeds this limit. This value
is specified in engineering units.
i.e. input_range=(5,25)

INVERTED Specifies that this parameter should be one’s complemented after the user enters it.
For example: 10010011 becomes 01101100

INVISIBLE
INVISIBLE = value

An INVISIBLE parameter is always has the indicated value . If value is not
assigned, then it is taken from the DEFAULT=value statement. All invisible val-
ues are assumed to be static.

LEAP Specifies that this time parameter should have the leap-second field from teleme-
try added to it each time it is retrieved. This keyword is valid only for absolute
times.

TABLE 5-2. Keywords available in command parameter definitions (Sheet 2 of 5)

KEYWORD DESCRIPTION

a e
b x⋅⋅

1.0 e
2.0 x⋅⋅

a b 2 π⋅⋅()⁄() e
0.5– x c–() b⁄()2⋅⋅

3() 1 2 π⋅⋅()⁄() e
0.5– x 5.123–() 1⁄ 2⋅⋅

a b
x

+

1.0 2.0
x

+

ASIST Users Guide–Version 9.6 5-11

CHAPTER 5
LOGARITHMIC=(a,b) Indicates that a logarithmic curve of the form with the specified coeffi-
cients should be used to convert this value from engineering units to counts.

i.e. logarithmic=(1.0,2.0);

LOOKUP=(ordered-pair-list) Indicates that a lookup table with linear interpolation should be used to convert
this value from engineering units to counts. The lookup values are entered in the
field ordered-pair-list, where each ordered pair is entered in the form (engineer-
ing-units-value,counts-value)
i.e. lookup=((1,0.005),(10,1.222),(25,2.5),(50,5.0),
(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can use %float(time-expression), which
allows you to use lookup tables for interpolating time values.

LSHIFT = value The number of bits to left shift this parameter before placing it in the data field.
LSHIFT is only performed on integers. Note: If no LSHIFT value is entered, it is
assumed to be the number of shifts required to reach the first non-zero bit of the
mask value.

MASK= value A mask used to add data into a larger data field. When the value is entered, it is:
 1. shifted according to the LSHIFT value,
 2.AND-ed with this mask
 3.OR-ed into the data field.Masking is only performed on integers.
Note: See also LSHIFT (below).
i.e. MASK=%X00f8

MAX= value The maximum allowed value for this parameter. The command will be rejected if
the parameter value exceeds this limit. It is specified in counts (the units after the
conversion is applied).
i.e. max=5

MIN=value The minimum allowed value for this parameter. The command will be rejected if
the parameter value is lower than this limit. It is specified in counts (the units after
the conversion is applied).
i.e. min=5

NEGATED Specifies that this parameter should be two’s complemented after the user enters it.
For example: 11111111 becomes 00000001

NULL_TERMINATED Indicates that the character string parameter that this is specified for must have a
NULL terminator added after the string and included in the data, even for variable
length strings/commands..

OPTIONAL
OPTIONAL = value

If this value is not entered at STOL, it defaults to value. If value is not specified,
then it is taken from the DEFAULT=value statement or from the COM-
PUTED=function() statement.

ORDER=value-list Tells ASIST how to swap this data point to convert it from the ground system form
to the spacecraft form. The first byte, which is the most significant, is numbered
one in the list, the second two, …
 For example, to swap a four-byte integer (ULI) into spacecraft form requires
ORDER=(3,4,1,2). For more information on swapping, See “Data Swapping”
on page 8–6.

PAD_CHAR = string
PAD_CHAR = number

Tells ASIST what character to use to pad a character string parameter. Common
pad characters are a blank space (PAD_CHAR = “ “) or a NULL terminator
(PAD_CHAR = 0).

TABLE 5-2. Keywords available in command parameter definitions (Sheet 3 of 5)

KEYWORD DESCRIPTION

a b xln⋅+

1.0 2.0 xln⋅+
5-12 ASIST Users Guide–Version 9.6

Command Database Compiler
PADDING [= value] Tells ASIST to pad out array entries that are not entered on the command line with
value (or 0 if value isn’t specified).

POLY=coefficients-list Indicates that a polynomial with the specified coefficients should be used to con-
vert this analog value from counts to engineering units.

 i.e. poly=(1.0,5.0,2.0) ;

PVER=string String is an expression which, when evaluated at runtime, determines whether the
command should be sent. String must evaluate to true or false.

RANGE=(value,value) The minimum and maximum value users may enter for this parameter. This com-
mand will be rejected if the entered parameter value exceeds this limit. These val-
ues are specified in counts (the units after the conversion is applied).
i.e. range=(5,25)

RELATIVE Specifies that this time parameter is relative (also called a delta time). This can be
used for Mission Elapsed Times (relative to the beginning of mission) or for differ-
ences in time (i.e. ABSOLUTE_TIME1 - ABSOLUTE_TIME2). This keyword is
only valid for parameters of type CUC_TIME.

REPRESENTATION = identifier Defines how ASIST interprets this data point. Valid representations are:
For integer types: UNSIGNED, ONES_COMPLEMENT,
TWOS_COMPLEMENT, and SIGN_MAGNITUDE.
For floating point numbers, IEEE (4-byte and 8-byte) and R000_FLOAT (6-byte
or 8-byte) are supported.
For times, CCSDS_SEGMENTED_TIME
CCSDS_UNSEGMENTED_TIME , and PB5
See “User-Defined Data Representation” on page 8–7.

REVERSED Specifies that this parameter should be reversed (bitwise) after the user enters it.
For example: 10010011 becomes 11001001

SIZE=value Specifies the number of bytes each element of this field occupies. Valid sizes are:
1-4 for INTEGERs, 4 or 8 for FLOATs, 4-8 for Times, and 1 for CHAR.

SPLINE=(ordered-pair-list) Indicates that a lookup table with quadratic spline interpolation should be used to
convert this value from engineering units to counts. The lookup values are entered
in the field ordered-pair-list, where each ordered pair is entered in the form
(engineering-units-value,counts-value)
i.e. spline=((1,0.005),(10,1.222),(25,2.5),(50,5.0),
(125,14.0),(245,23.2),(255,25.0))

Note: either element of the ordered pair can be %float(time-expression), which
allows you to use lookup tables for interpolating time values.

STATIC

STATIC = value

A STATIC parameter does not take an operand value. Instead, its value comes is
either value, or the value defined in the DEFAULT=value statement. A selection
of STATIC parameters may be overlaid using the UNION directive in order to
created a discrete value selection for a particular data field (see the example on
page 5-21).

SUB_SIZE=value Specifies the number of bytes in the subsecond field of a time. For example, a Mis-
sion elapsed time is an eight byte time value whose last four bytes are subseconds,
and is defined as:
 CUC_TIME SIZE=8,SUB_SIZE=4,RELATIVE

TABLE 5-2. Keywords available in command parameter definitions (Sheet 4 of 5)

KEYWORD DESCRIPTION

2.0 x
2

5 x
1

1.0 x
0⋅+⋅+⋅
ASIST Users Guide–Version 9.6 5-13

CHAPTER 5
Example 2: Simple Command Parameter Definitions
The examples below show how commands are defined using RDL, what commands look like in a report, and how you
enter them from STOL.

Example 2.1 A Simple Command Definition
The parameter in this command defines 2 bytes for MONID, and is supplied when entering the command from STOL.

RDL Definition:
CMDS SENRPPIL APID=%X1D,FCTN=05,

DESC=”Enable RPP Individual Limit Monitoring”
UI MONID DYNAMIC,RANGE=(%x00,%x3F),DESC=”Monitor ID”

END

A report of this command:
Name: SDSRPPIL
Description: Disable RPP Individual Limit Monitoring

APID: 0x001D, (29)
Function Code: 0x0006, (6)
Data Length: 0x0002, (2)

Parameters:

ID Name Off Type Dim Sta Min Max Def First Last Description
 tic Bit Bit
a MONID 8 UI F 00 3F 00 0 15 Monitor ID

CCSDS Format: 181D C000 0003 0006 aaaa

TICK=value Tells ASIST the number of tick’s per second in a time data-type. For example,
TICK=10 defines a time where each tick is one-tenth of a second (there are 10 per
second).

TVER =string String is an expression which, when evaluated at runtime, determines whether the
command has executed succsssfully.

UNITS = “ identifier” Specifies the units of this parameter.

VARIABLE Tells ASIST that this parameter can be variable length. It may only be used if this
is: a) the last parameter in the command; and b) an array. It tells STOL that not all
elements of this array need to be entered when typing this command. Additionally,
it means that if not all elements of this array are entered, STOL should generate
only the number of bytes for this field needed to contain the elements specified
(see page 9-7 for more details).

WORD_PAD
WORD_PAD = number

Specifies that the given variable-sized structure or command must end on a word
boundary. If necessary, the structure is filled up to the boundary with the character
specified by the PAD_CHAR statement. By default, the word size is two bytes,
but it can be modified by adding the optional number.

a. Catmull-Romm splines are a form of quadratic spline which provides better smoothing, and are generally recom-
mended over the quadratic spline.

b. Default may not be used for DYNAMIC parameters.

TABLE 5-2. Keywords available in command parameter definitions (Sheet 5 of 5)

KEYWORD DESCRIPTION
5-14 ASIST Users Guide–Version 9.6

Command Database Compiler
How to enter it from STOL:
/SENRPPIL MONID=5

The CCSDS command packet it generates:
181D C000 0003 0006 0005

Example 2.2 Simple Command Definition with invisible parameters

This command contains an invisible parameter which is a 2-byte integer which always contains the value %x0006.
Because the parameter is invisible, it is not entered when typing the command at STOL.

RDL Definition:
CMDS SCTTSP06 APID=%X22,FCTN=01,DESC=”CTT SPARE PULSE CMD #06”,CRITICAL

UI CMDWD INVISIBLE,DEFAULT=%x0006,STATIC
END

A report of this command:
Name: SCTTSP06 (CRITICAL)

Description: CTT SPARE PULSE CMD #06

APID: 0x0022, (34)
Function Code: 0x0001, (1)
Data Length: 0x0002, (2)

CCSDS Format: 1822 C000 0003 0001 0006

How to enter it from STOL:
/SCTTSP06

What do the columns in the report mean?

• The ID field contains the character label used in the CCSDS format section to show where that data value will appear.
In this example the parameter MONID has a label named a which appears immediately after the CCSDS header defi-
nition as “aaaa”.

• The Name field is the name of the parameter.

• The Off field is the byte position of the parameter in the command packet.

• The Dim field shows the dimensions of the parameter if it is an array. In this case the field is blank which indicates
that the parameter is not an array.

• The Static field is set to either T or F to indicate whether the parameter is static or dynamic. If it is static the user may
not modify the value.

• The Min and Max fields are the limits of the parameter values.

• Def is the default value of the parameter. Dynamic parameters do not have a default value.

• First and Last Bits indicate the bit position within the data field for this parameter. In this case the parameter
covers the entire range from MSB to LSB. Remember that in CCSDS bit 0 is MSB.

• The Description field is a short description for the parameter.

Example 2.3 Simple Command Definition with polynomial definition

The parameter for this command contains a polynomial conversion.

RDL Definition:
CMDS STESTLIM APID=%X01,FCTN=01,DESC=”Set test S/C temp limit”,CRITICAL
ASIST Users Guide–Version 9.6 5-15

CHAPTER 5
UI TEMP Dynamic, Range=(%x0001, %xFFFF),Poly=(5,1,0,0,0,0,0,0)
END

In this example the polynomial adds 5 to whatever value you supply. For example, TEMP=4 produces

Report Format:
Name: STESTLIM (CRITICAL)

Description: Set test S/C temp limit

APID: 0x0001, (1)
Function Code: 0x0001, (1)
Data Length: 0x0002, (2)

Parameters:

ID Name Off Type Dim Sta Min Max Def First Last Description
 tic Bit Bit

a TEMP 8 UI F 00 3F 00 0 15 Monitor ID

CCSDS Format: 181D C000 0003 0006 aaaa

Note that polynomial coefficients are not listed in the report.

Command Line Format:

/STESTLIM TEMP=21

Type Definitions

ASIST allows you to define your own data types for later use in parameter declarations. This is done with a TYPES -
END_TYPES block. Its format is:

TYPES

...type-definitions....

END_TYPES

Each type definition defines a new scalar type which can be used later to define a new command parameter. These type
definitions can contain any of the attributes described in the section on “Parameter Definitions” on page 5-9. They are of
the form:

base-type new-type-name [attribute-list]

where:

base-type is either an ASIST type (i.e. INTEGER, CHAR) or a previously defined type.

new-type-name is the name you assign this new type which you are defining.

attribute-list is a list of attributes for this type.

and must be placed at the same level as CLASS or TYPES statements (not within either construct).

Example:
To define a single byte data type which is 0 when OFF and 1 when ON, you could type:

TYPES
INTEGER THREE_CARD_MONTY SIZE=3,ORDER=(2,1,3)

1 4
1× 5 4

0×+
5-16 ASIST Users Guide–Version 9.6

Command Database Compiler
CUC_TIME EO1_TIME ABSOLUTE=80-6-0:0:0,CORRELATED,LEAP,SIZE=8,SUB_SIZE=4
CUC_TIME EO1_STIME ABSOLUTE=80-6-0:0:0,CORRELATED,LEAP,SIZE=4,SUB_SIZE=0

END_TYPES

To declare a command using one of these types:
CMDS A_Command_Near_You APID=123,FCTN=45,DESC="A mythical command"

...
THREE_CARD_MONTY Shell_Game DESC="Find the card and win a prize"
EO1_STIME IS_ON_OUR_SIDE DESC="Yes it is..."
...

END

Modifying User-defined Types

You can modify your types (which you defined using the TYPES…END_TYPES construct) using the MODIFY key-
word. This will cause all parameters defined with this type after the MODIFY statement to use the new attributes. This
must be placed at the same level of the database as the TYPES and CLASS statements (not within them), and is of the
form:

MODIFY user-type-name [attribute-list]

where:

user-type-name is the user-defined type to be modified.

attribute-list is a list of attributes to change (it can contain any of the attributes described in the section on
“Parameter Definitions” on page 5-9.).

For example, to change the epoch of UTC and SUTC, you could enter:

MODIFY UTC ABSOLUTE=80-6-0:0:0
MODIFY SUTC ABSOLUTE=80-6-0:0:0

Or to change the default swap order for ULI’s, enter:

MODIFY ULI ORDER=(1,2,3,4) ; Unswapped

Computed Parameters

 You can define parameters whose values are computed when you enter the command. The functions which may be used
are defined within ASIST.

The entry is of the form:

COMPUTED=function(parm1,parm2,...)

(Note: Even if there are no parameters, the parentheses are required).
ASIST Users Guide–Version 9.6 5-17

CHAPTER 5
Functions available are:

It should be noted that:

• when computed functions are used to build PREFIX_SFDUs and ROUTING_SFDUs, the data comes from the origi-
nal command (i.e. APID and routing info...);

• the checksum function is not performed until all data has been placed into the command;

TABLE 5-3. Functions available for COMPUTED parameters

Function(parms) What it returns

checksum(cmd,parm,# bits) Calculates the checksum as a sum of words, using # bits size chunks.

checksum_offset(cmd,parm,# bits) Calculates the checksum as a sum of words, using # bits size chunks. This is offset by one
byte at the beginning, to match the way IMAGE does its checksums.

checksum_xor(cmd,parm,# bits) Calculates the checksum of data structure parm (from the indicated command), using #
bits size chunks (starts from 0). This is the same as:checksum_xor_nz(cmd,parm,#
bits,0)

checksum_xor_nz(cmd,parm,#
bits,base)

Calculates the checksum of data structure parm (from the indicated command), using #
bits size chunks, and starting the checksum with the value base. For example, to do the
XTE/TRMM/MAP/EO1 checksum:

 COMPUTED=CHECKSUM_XOR_NZ(CCSDS_PKT_733,CPKT_REC,8,%xff)

cmd_apid() The commands APID

cmd_data() Used in PACKET and SFDU definitions, this inherits the data from the command.

cmd_dest() Returns a string containing the destination of this command (i.e.
FEDS:FRAME_BUILDER)

cmd_dest_and_label(inc_by,mod_w
ith)

Returns a string with the commands destination followed by a label. For example,
FEDS:FRAME_BUILDER:001

cmd_dest_machine() Returns a string containing the destination machine of this command (i.e. FEDS)

cmd_dest_task() Returns a string containing the destination task of this command (i.e.
FRAME_BUILDER)

cmd_fn_code() The command’s function code

cmd_label(inc_by,mod_with) Returns a label, which can be used for identifying responses. Parameters: inc_by- tells
how much to increment the label after it is read (usually 1) mod_with- tells what to mod
the label with (usually 1000).

cmd_name() The command’s name.

cmd_sfid() Returns a 2-character string with this machine’s SFID (i.e. 00, 01, 02 ...)

cmd_source() Returns a string containing the source of this command (i.e. trmm1u:SPR)

cmd_source_and_label(inc_by,mod
_with)

Returns a string with the commands source followed by a label. For example,
trmm1u:SPR:001

cmd_source_machine() Returns a string containing the source machine of this command (i.e. trmm1u)

cmd_source_task() Returns a string containing the source task of this command (i.e. SPR)

current_time() A string containing the current time.

from_cvt(mnemonic) Returns the value of mnemonic from the current value table (CVT).

length_of(cmd,parm) Returns the length of the indicated parameter (of the indicated cmd).

user_name() A string containing the current account.
5-18 ASIST Users Guide–Version 9.6

Command Database Compiler
• similarly, the length_of function, where parm is variable-length, is not performed until all data is placed into the com-
mand packet.

Command Defaults

You can now specify command defaults, which are like type definitions for commands/sfdus/directives... The form is:

CMD_DEFAULTS

cmd-type [ASCII_HEX or NOT_ASCII_HEX], [PACKET = identifier], [SFDU = identifier],
[ROUTING_SFDUS="string-of-sfdu(s)"], [PREFIX_SFDUS="string-of-sfdu(s)"], [SC_COMMAND or
NOT_SC_COMMAND], [VALIDATABLE or NOT_VALIDATABLE], [RESPONSE or
NOT_RESPONSE], [APID=#],[FCTN=#],[CRITICAL or NONCRITICAL], [HAZARD or NON-
HAZARD], [DEST=string],[MACHINE=string]

(more of the same)

END_CMD_DEFAULTS
You can use this either to set the default attributes for built-in definitions (i.e. CMD, CMDS, DIR or DIRS) or to create
you own command types. For example:

CMD_DEFAULTS
CMD PACKET=CCSDS_PKT_733,SFDU=CMSG_COMMAND,ROUTING_SFDU="ROUT",

PREFIX_SFDU="MNEM",SC_COMMAND
CMDS PACKET=CCSDS_PKT_733,SFDU=CMSG_COMMAND,ROUTING_SFDU="ROUT",

PREFIX_SFDU="MNEM",SC_COMMAND
DIR SFDU=DMSG,ROUTING_SFDU="ROUT",PREFIX_SFDU="MNEM",NOT_SC_COMMAND
DIRS SFDU=DMSG,ROUTING_SFDU="ROUT",PREFIX_SFDU="MNEM",NOT_SC_COMMAND
DIRC SFDU=CMSG_DIRECTIVE,ROUTING_SFDU="ROUT",PREFIX_SFDU="MNEM"
RAW_CMDS SFDU=CMSG_COMMAND, NOT_VALIDATABLE, ROUTING_SFDU="ROUT",

PREFIX_SFDU="MNEM"
END_CMD_DEFAULTS

This defines the database to generate commands just as they were built in all previous versions of ASIST, so that the data-
base is backwards compatible, and can work with old FEDS and simulators. Also, it defines a new command type,
RAW_CMDS, which can be used to define commands also:

CLASS RAW_CLASS APID=%X7ff,DESC="Placeholder for raw commands"
RAW_CMDS RAW FCTN=1

INTEGER DATA[80] SIZE=1,VARIABLE
END

END

Aggregate Data Types

Aggregate data types allow you to define more complicated sequences of data, including switches (UNION), series of bits
(BITFIELD), and groups of sequential data items (RECORD).

For example, if the 4 most significant bits of a 16 bit field define what counter to reset, while the remaining 12 bits define
what value to reset it to, it could be defined as:

BITFIELD ResetBitfield
UI WhatCounter MASK=%Xf000
UI WhatValue MASK=%X0fff

END
ASIST Users Guide–Version 9.6 5-19

CHAPTER 5
Discrete switches are items with a fixed number of discrete states, such as ON/OFF switches or LOW/MEDIUM/HIGH
options. Such switches could be defined as:

UNION OnOffSwitch
UB ON STATIC,DEFAULT=1
UB OFF STATIC,DEFAULT=0

END

UNION HiLoSwitch
UB LOW STATIC,DEFAULT=0
UB MEDIUM STATIC,DEFAULT=1
UB HIGH STATIC,DEFAULT=2

END

Aggregate definitions using nested BITFIELD, UNION, and/or RECORD can be used to generate more complicated
structures, such as a number of ON/OFF switches defining bits within a single data field.

RECORD

A record is a group of parameters which should appear sequentially in the command's data field.

Format:
RECORD record-name [DESC=text-description]

parameter definition 1
parameter definition 2

.

.

.
parameter definition n

END

Keywords:

DESC a text description of this record.

Parameters:

record-name A name which uniquely identifies the record. It is composed of series of more letters, digits, or
underscores, beginning with a letter

text-description a string describing the record.

UNION

The UNION statement is a switch. All parameters within the UNION are mapped to the same location (offset) within the
command.

When entering a command containing a UNION from STOL, the user must enter one and only one of the parameter def-
initions within that union, or the command will be rejected.

Format:
UNION union-name

parameter definition 1
parameter definition 2

.

5-20 ASIST Users Guide–Version 9.6

Command Database Compiler
.

.
parameter definition n

END

A common use of union is the switch, where a selection between two possible states is desired (i.e. ON/OFF). When
defining multiple sets of ON/OFF pairs, remember that each must be uniquely named within the command.

Example 3: A command using a UNION as a switch

This example defines an ON/OFF pair for the command XRANGEPW. The actual parameter names are ON and OFF.

RDL Definition:
CMDS XRANGEPW APID=%X22,FCTN=01,DESC=”RANGING CHANNEL POWER”

UNION RNGPWST
UI OFF STATIC,DEFAULT=02,DESC=”RNG CHAN PWR OFF”
UI ON STATIC,DEFAULT=03,DESC=”RNG CHAN PWR ON”

END
END

Report Format:
Name: XRANGEPW

Description: RANGING CHANNEL POWER

APID: 0x0022, (34)
Function Code:0x0001, (1)
Data Length: 0x0002, (2)

Parameter:
ID Name Off Type Dim Sta Min Max Def First Last Description
 tic Bit Bit

a OFF 8 UI T 00 00 02 0 15 PWR OFF
a ON 8 UI T 00 00 03 0 15 PWR ON

CCSDS Format: 1822 C000 0003 0001 aaaa

Command Line Format:
/XRANGEPW ON

BITFIELD

BITFIELD defines a data field bit-by-bit. Like a UNION, all parameters within a BITFIELD are mapped to the same
location (offset) within the command. But unlike a UNION, all parameters within the BITFIELD must be entered or the
command will be rejected.

Format:
BITFIELD bitfield-name

parameter definition 1
parameter definition 2

.

.

.

ASIST Users Guide–Version 9.6 5-21

CHAPTER 5
parameter definition n

END

Example 4: A Command Using the Bitfield Construct

In this example the three parameters define different sections of the same data field which do not overlap. Unlike a union,
all three fields must be entered from STOL.

RDL Definition:
CMDS SAMPLE APID=%X01,FCTN=06,DESC=”SAMPLE CMDS”

BITFIELD WORD1
UI FIRST DYNAMIC, mask=%b0000000000001111
UI SECOND DYNAMIC, mask=%b0000000011110000
UI THIRD DYNAMIC, mask=%b1111111100000000

END
END

NOTE: Whatever value you type for SECOND and THIRD will be shifted to the first non-zero bit of the mask.

Report Format:
Name: SAMPLE

Description:SAMPLE CMDS

APID: 0x0001, (1)
Function Code: 0x0006, (6)
Data Length: 0x0002, (2)

Parameter:

ID Name Off Type Dim Sta Min Max Def First Last Description
 tic Bit Bit

a FIRST 8 UI F 00 FFFF 00 12 15
a SECOND 8 UI F 00 FFFF 00 8 11
a THIRD 8 UI F 00 FFFF 00 0 7

CCSDS Format: 181D C000 0003 0006 aaaa

Command Line Format:
/SAMPLE FIRST=10, SECOND=10, THIRD=25

Example 5: Using BITFIELDs to define discrete switches.

This example defines a set of switch pairs as parameters for the command ENABDATA. The parameters are packed into
an Unsigned Byte (UB), hence the first BITFIELD MASK statement. Each switch pair requires its own UNION to set the
values for the individual parameters. This example is a combination of the previous two since it defines groups of param-
eters that do not overlap but are within the same data field. Again, in almost all of these cases the parameters are static and
simply flip between the different values for the switch states. Remember that all parameter names must be unique within a
command.

RDL Definition:
CMDS ENABDATA APID=%x27,FCTN=1, -

DESC="ENABLE ASYNCHRONOUS DATA"
5-22 ASIST Users Guide–Version 9.6

Command Database Compiler
 UB BYTE0 STATIC,INVISIBLE,DEFAULT=%x55
 UB BYTE1 STATIC,INVISIBLE,DEFAULT=10
 BITFIELD MASK
 UNION MASK0
 UB HILT STATIC,DEFAULT=1,MASK=%b10000000,LSHIFT=-7,DESC="HILT"
 UB NOHILT STATIC,DEFAULT=0,MASK=%b10000000,LSHIFT=-7,DESC="NO HILT"
 END
 UNION MASK1
 UB LEICA STATIC,DEFAULT=1,MASK=%b01000000,LSHIFT=-6,DESC="LEICA"
 UB NOLEICA STATIC,DEFAULT=0,MASK=%b01000000,LSHIFT=-6,DESC="NO LEICA"
 END
 UNION MASK2
 UB MAST STATIC,DEFAULT=1,MASK=%b00100000,LSHIFT=-5,DESC="MAST"
 UB NOMAST STATIC,DEFAULT=0,MASK=%b00100000,LSHIFT=-5,DESC="NO MAST"
 END
 UNION MASK3
 UB PET STATIC,DEFAULT=1,MASK=%b00010000,LSHIFT=-4,DESC="PET"
 UB NOPET STATIC,DEFAULT=0,MASK=%b00010000,LSHIFT=-4,DESC="NO PET"
 END
 UNION MASK4
 UB HLTHRR STATIC,DEFAULT=1,MASK=%b00001000,LSHIFT=-3,DESC="HILT HRR"
 UB NOHLTHRR STATIC,DEFAULT=0,MASK=%b00001000,LSHIFT=-3,DESC="NO HILT *
 END
 UNION MASK5
 UB PETHRR STATIC,DEFAULT=1,MASK=%b00000100,LSHIFT=-2,DESC="PET HRR"
 UB NOPETHRR STATIC,DEFAULT=0,MASK=%b00000100,LSHIFT=-2,DESC=”NO PET H”
 END
 END
 UB NEWSTATE STATIC,INVISIBLE,DEFAULT=1,DESC="NEWSTATE"
 UB BYTE4 STATIC,INVISIBLE,DEFAULT=%x0
 UB BYTE5 STATIC,INVISIBLE,DEFAULT=%x0
 UB BYTE6 STATIC,INVISIBLE,DEFAULT=%x0
END

A report of this command:

Name: ENABDATA

Description: ENABLE ASYNCHRONOUS DATA SOURCES

APID: 0x0027, (39)
Function Code:0x0001, (1)
Data Length:0x0007, (7)

Parameters:

NameOff Type Dim Sta Min Max Def First Last Description
 tic Bit Bit

HILT10 UB T 00 00 01 0 0 HILT
NOHILT10 UB T 00 00 00 0 0 NO HILT
LEICA10 UB T 00 00 01 1 1 LEICA
NOLEICA10UB T 00 00 00 1 1 NO LEICA
MAST10 UB T 00 00 01 2 2 MAST
ASIST Users Guide–Version 9.6 5-23

CHAPTER 5
NOMAST10 UB T 00 00 00 2 2 NO MAST
PET10 UB T 00 00 01 3 3 PET
NOPET10 UB T 00 00 00 3 3 NO PET
HLTHRR10 UB T 00 00 01 4 4 HILT HRR
NOHLTHRR10UB T 00 00 00 4 4 NO HILT HRR
PETHRR10 UB T 00 00 01 5 5 PET HRR
NOPETHRR10UB T 00 00 00 5 5 NO PET HRR

How to enter it from STOL:
/ENABDATA HILT, NOLEICA, PET, MAST, NOPETHRR, HLTHRR

Special Constructs

Comments

Comments are introduced by the semi-colon (;). The compiler ignores all text on a line from the semi-colon (or exclama-
tion point) to the end of the line.

For example:

; This is a line which contains only a comment
UI AN_ITEM ; This line has a definition and a comment

Delimiters

The most common delimiters are commas and spaces. Commas are used between keywords to differentiate them. Spaces
are used to separate major components from each other (such as data type from name).

The end of a line is not a delimiter. Thus, you can have multi-line definitions of RDL without a continuation statement (;;),
which is only supported for compatibility with older missions.

C Preprocessor Directives

ASIST supports the directives which conform to the ANSI standard for the C preprocessor1. For information on these
directives, see APPENDIX G: “C-Preprocessor” . It also predefines a constant identifying the operating system; either
OS_AIX or OS_Linux (note: this is case-sensitive).

Predefined Names

ASIST's command compiler predefines a variable with the name of the mission (i.e. TRMM for the Tropical Rainforest
Measurement Mission, or CIRS for the CIRS instrument).

Example
CLASS SomeCommandsAPID=2,HAZARD,DESC="These are similar"

CMD A_COMMAND FCTN=1,DESC="I've been working"
CMD ANOTHER FCTN=2,DESC="On the spacecraft"
CMDS YET_AGAIN FCTN=3,DESC="All the live long day"

UB HOW

1. Actually, the ASIST command compiler invokes the C preprocessor prior to compiling your RDL. See Appendix G for further infor-
mation.
5-24 ASIST Users Guide–Version 9.6

Command Database Compiler
UB WHY DESC="Just to pass the time away"
UI TO_WHAT_DEGREE MIN=1,MAX=5

END ; Yet_again
END ; Class SomeCommands

Include files

RDL files may be included within other RDL files. This is used to include files containing commands for individual apids
into the user_cmd.rdl file, and also to include common structures within your commands.

Format:
#include "include-filename"

Keywords:
None

Parameters

include-filename The name of the file to insert. If the file does not exist in the current directory, a full path spec-
ification may be required.

Note:The #include must begin in column 1.

Example:
#include "another_rdl_file.rdl"
#include "one_more_rdl.rdl"

Constant numeric expressions

You can use a constant expression in an RDL definition anywhere that a number is called for. Valid operators within these
expressions are:

For example, you can define the function code of a command by:

CMD MY_CMD APID=2,FCTN=2*2,DESC="Some command"

Or you can define the size of a parameter array with:

CMDS ANOTHER_ONE APID=3,FCTN=5,DESC="Ditto"
UB DATA_ARRAY[40+2] DYNAMIC,DESC="Data to send"

END

Meaning Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **

Unary minus -

Unary plus +
ASIST Users Guide–Version 9.6 5-25

CHAPTER 5
This feature is especially handy when used in conjunction with the #define keyword. For example:

#define fc 2
CLASS APID=3

CMD CMD1 FCTN=fc+0,DESC="Command FCTN=2"
CMD CMD2 FCTN=fc+1,DESC="Command FCTN=3"
CMD CMD3 FCTN=fc+2,DESC="Command FCTN=4"

END

By simply changing the value of fc at the top of the command definition, you can modify the function codes for all of the
commands.

String concatenation

The concatenation operator (&) allows you to join multiple text strings into a a single large string. You can use this feature
to continue a string across multiple lines. For example, you can define a long telemetry verification string into more easily
readable chunks:

CMDS JONX APID=6,FCTN=3, DESC= "Sets multiple things",
TVER= "?ABA AND ABA_VALUE=#ABA OR "&

"?ABB AND ABB_VALUE=#ABB OR "&
"?BBB AND BBB_VALUE=#BBB"

UI ABA DYNAMIC,DESC="Set ABA"
UI ABB DYNAMIC,DESC="Set ABB"
UI BBB DYNAMIC,DESC="Set BBB"

END

Or you can use #define and string concatenation in order to create a fixed string prefix:

#define prefix "Heater command "
…

CMD HTR_ON APID=12,FCTN=0,DESC=prefix&" to turn on heater"
CMD HTR_OFF APID=12,FCTN=1,DESC=prefix&" to turn off heater"
5-26 ASIST Users Guide–Version 9.6

Command Database Compiler
Tools Reference

How to syntax check

To syntax check your command definition file, at the shell prompt enter:

ocmd filename [-c] [-Dname[=def]] [-E] [-Idirectory] [-w0] [-w1]

where:

An additional option of ocmd which is not useful for syntax checking but may be worth noting is the -c switch, which tells
ocmd to create a new database. If this switch is not included on the command line, the definition file is checked for syntax
errors only (no database is created).If you elect to create a new database, the file cmd.db is created in the local directory.
If syntax errors are detected during compilation, a new database is not created.

How to create a database

1. Edit the rdl file:

• Type dbedit at either the STOL or UNIX prompt.

This puts you into a window in the EMACS editor. This window lists all RDL files in your working directory.

• Either: (a) select a file to edit, or (b)create a new file:

a) To edit an existing file,

•Move the cursor to the name of that file (using the arrow keys)

•Press the e key to edit this file.

or

b) To create a new file, press Ctrl-x followed by Ctrl-f and enter the name of the new file at the prompt.

•Edit the file.

•When you are done editing, press Ctrl-x followed by Ctrl-c to end your EMACS session and close the
EMACS window.

2. If this is a new file, add it to the list of files to be compiled (in user_cmd.rdl):

•Type dbedit from the STOL Window.

•Move the cursor to the line with the file user_cmd.rdl.

 filename is the name of the file containing the command definition you wish to compile. Note that .rdl is the
default file type, used by the compiler, i.e. if you do not specify a file type on the command line, the
compiler will assume the default and assign the .rdl file extension for you.

-I tells the compiler to look in the specified directory after looking in the local directory for any include
files encountered. This switch may occur up to sixteen times.

-D allows you to predefine names in the preprocessor.

-E enables you to view the errors of the RDL compilation in an EMACS style format.

-w tells the compiler what warning messages to print. If followed by a zero (0), no warning messages are
printed. If followed by a one (1), all warning messages are printed. The default is to print all warning
messages. If the -c option (to create a database) is entered and warning messages occur, a new data-
base is still created, regardless of whether they are printed or not.
ASIST Users Guide–Version 9.6 5-27

CHAPTER 5
•Press the e key to edit this file.

•Add your new RDL file to this list by typing a new line containing a #include followed by the name of the
new RDL file in quotes.

•For example, if your new file was cmd_new_apid.rdl, and the user_cmd.rdl file already had
cmd_apid01.rdl and cmd_some_other.rdl, the final file would look like this:

; This is the file user_cmd.rdl
; Old command files
#include "cmd_apid01.rdl"
#include "cmd_some_other.rdl"
; New command file
#include "cmd_new_apid.rdl"

3. Compile the database:

• Type dbcmpcmd at either the STOL or UNIX prompt.

This compiles the database, including all elements in the user_cmd.rdl. A new window opens, displaying the status of
the compile. A copy of the errors are also placed into the file $WORK/rdl/ocmddbcmp.log. If there were errors,
fix your RDL files and recompile.

4. Load the database (this tells ASIST to use the newly-compiled database the next time it starts):

• Type dbloadcmd at the STOL or UNIX prompt. This sets up the newly compiled database to be used the next time
the system is started.

5. Restart ASIST:

• If ASIST is running, type QUIT at the STOL prompt to shut it down. Wait until the start-up window is gone before
proceeding.

• Restart ASIST as usual.

Automatic Database ID Stamping

The command database compiler records the following information whenever it runs:

The MajorVersion and Incremental numbers are determined by the contents of four files, two of which apply to com-
mands:

$WORK/db/verid_cmd_MAJOR
$WORK/db/verid_cmd_INCR

The first time you compile commands, the two files are created for you. The initial Version ID will be “1.1”. Each time
you compile, successful or not, the incremental part of the ID, to the right of the decimal point, will be incremented by 1.
ASIST does not change the MajorVersion number; you decide when a database version increase is appropriate.

Identifier Format Example

Version ID MajorVersion.Incremental 1.237

Compile Date mm/dd/yy 03/28/04

Compile Time hh:mm:ss.zone 14:42:54.EST

Who compiled it username/hostname asist/deadjake
5-28 ASIST Users Guide–Version 9.6

Command Database Compiler
To change to a higher version ID, edit the file $WORK/db/verid_cmd_MAJOR and change the number within. At the
same time, remove the file $WORK/db/verid_cmd_INCR and ASIST will recreate it at the next compilation.

Command database ID information is stored in the description field of a fake command named VERID_CMD . You may
read them in ASIST by using the command_parm_attr function as show below. The information is also available by
clicking the button labeled DB? on the ASIST status window.

command_parm_attr(“verid_cmd”, “version”, “description”)

command_parm_attr(“verid_cmd”, “date”, “description”)

command_parm_attr(“verid_cmd”, “timeof”, “description”)

command_parm_attr(“verid_cmd”, “who”, “description”)

How to generate a command database report

Reports of the command database can be created using the Data Query Tool (see CHAPTER 17: “Database Query Tool”
). Additionally, you can generate a formatted report of the contents of the command database sorted by APID or name by
typing:
➔ ocmdbyapid [-f db-filename] [-t "title-string"] [-d]
or
➔ ocmdbymnem [-f db-filename] [-t "title-string"][-d]

from the Unix command line.

The optional command switch -f causes the report to be generated using the file db-filename. If this command switch is
not used, the default is to use the currently loaded database from shared memory. If there is no loaded and running data-
base, the file used to produce the report is found in $STOL_CDB.

The optional command switch -t allows you to specify the report's title. If this option is not selected, a default title is used
(“Command Database Report”). An example using this feature is:

➔ ocmdbyapid -t "This is one heap good report"

The optional command switch -d causes a line of dashes to separate each command or directive.

By default, both reports are written to the screen (stdout). If desired, you can save a report by piping it to a file by typing:

➔ ocmdbymnem >my_report_file.rpt
ASIST Users Guide–Version 9.6 5-29

CHAPTER 5
5-30 ASIST Users Guide–Version 9.6

AS
CHAPTER 6 Editing Telemetry Pages
You can display telemetry data in ASIST in special windows called telemetry pages that you design and build with a
graphical Page Editor. In the Page Editor, you can define the appearance, behavior, and content of telemetry pages tai-
lored to your needs. A wide range of options for displaying telemetry and pseudo-telemetry in text, numeric, and graphical
forms is provided. To see the many possibilities of the Page Editor, start ASIST and enter this directive to STOL:

 page “_example_pages”

A page of buttons will open to lead you to other pages containing examples built with the editor. If you see something
useful, make note of the page’s name. You may open that page in the editor and save it to your own work area under a dif-

ferent name.1 We encourage you to borrow freely from the examples.

The editor is a product of the Kinesix Corporation that we have customized in minor ways for ASIST. However, it is

essentially the same editor as that which is thoroughly documented in the Sammi Format Editor Guide (FEG).
2
 That doc-

ument is more than 800 pages long. Few ASIST users will need more than a handful of the features available. This chap-
ter introduces only the fundamentals of page editing, perhaps all you will ever need. To explore advanced editing options,
you must refer to the FEG. Your ASIST Technical Representative can point you in the right direction.

The best way to learn the Page Editor is to use it in ASIST. This chapter should be followed as a tutorial, while sitting at
an ASIST workstation. Each step depends heavily on illustrations like those you will see on your workstation.

When you have completed this chapter you will understand how to create and modify telemetry pages, how to connect
telemetry display fields to telemetry data, and how to employ different display types in your pages.

1. Many of the pages in ASIST’s system area begin with an underscore character. The File Open panels, in ASIST and in the editor,
do not display files beginning with an underscore; to open them, you must type the name of the file you wish to open.

2. In Sammi's terminology, pages are called formats and they exist as files of type fmt. In general, the terms page and format are inter-
changeable. The FEG is distributed as a Portable Document File (PDF) on the CD you received when you purchased your perma-
nent FE license from Kinesix Corporation.
IST Users Guide–Version 9.6 6-1

CHAPTER 6
Page Concepts and Terminology

The Page Editor operates on binary files whose file type is fmt, such as STOLSTAT.fmt. Editing a page is similar to
using a text editor to edit a text file. Many editing operations are probably familiar to you: create a new page, open an
existing page, save a page to disk, and so on. If you've ever used a computer drawing program, you may also be familiar
with many of the graphic design options available through the Editor.

The pages you create can include text labels, lines, boxes, circles, and other elements for visual communication. Back-
ground images in X-windows bitmap and GIF formats can also be imported. These kinds of unchanging graphical ele-
ments in pages are called Static Objects in Sammi's terminology. For most of them you can select sizes and colors as you
wish.

The more important features of the Page Editor, however, are found when editing telemetry fields, in the ease and flexibil-
ity it gives you for viewing telemetry. A telemetry field, also called a Dynamic Data Object (DDO), is a template for spec-
ifying how a telemetry or pseudo-telemetry point will be displayed whenever a particular page is added to ASIST's

running environment by the Add-Window command or by the STOL PAGE directive.
1

You may choose from many different telemetry field types (methods of displaying your data), including numeric and text
display fields, graphical telemetry fields such as trend charts plotted with time on the X axis, gauges, bar charts, and
meters. Here is a list of supported DDO types:

FIGURE 6-1. Telemetry Field Types

1. Adding (or opening) a page in ASIST's running environment is different from opening a page with the Editor. In the Page Editor
you open, create, modify, and save telemetry pages (i.e., format files), but you cannot connect those pages to live telemetry with the
Editor. Real data for telemetry fields can only be seen by adding pages from STOL or from Windows of ASIST's main menu.

Textual Graphs Meters/Gauges Buttons

Text Trend Gauge Push-Button

Integer Bar Graph Meter Toggle Button

Real

Menu Text

Plot X-Y
Pie Chart
Dynamic Object

Linear meter (with a
fixed or moving scale)

Radio Buttons
6-2 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Page Editor Quick-Start

Starting the Page Editor

To start the Page Editor from ASIST,

• Select Editors from ASIST's main menu

• Select Page Editor from the menu that drops down.

• Soon after, you will see the logon prompt; just left-click the button.

To start the Page Editor from a UNIX window, type start_format_editor at the prompt1.

1. The editor can only operate on one file at a time. When you become more experienced, you may find a need to have two or more
instances of the editor running at the same time. For example, if you want to take parts from one page and put them in another you
can write objects to a library with one editor and read them from the library with a second editor. Use start_format_editor
N (where N = 2 ... 8) to run another session of the editor. Before choosing a number, check to see if you have any Xterm consoles
running, since those instances of the editor belong to the enumerated consoles.
ASIST Users Guide–Version 9.6 6-3

CHAPTER 6
After you click the Logon button, you will see the Page (Format) Editor Command Window and the ASIST Page Editing
Palette, shown here.

This diagram shows the parts of the Editor
6-4 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Basic Editing Operations

This section covers basic use of the editor in creating and modifying pages. For more detailed information (on a specific
display type, for example), please refer to the Sammi Format Editor Guide.

Create a new page

Select File – New from the main menu. A blank drawing area pops up and
the editor is now ready to add new objects to the page. Whenever you edit
pages you will be working in the window whose title is prefixed with $fb-
bkgd. Before you save it, it will be labeled untitled, as here.

Change Your Page Properties

Select Edit – Format Prop... from the editor’s menu. This opens the Format Proper-
ties panel, shown below. You may ignore four of the six tabbed folders in this panel;
you will probably never need them. You are likely to use the Background and Geom-
etry folders. To change the page’s color from black to gray, put your cursor in the
Window Color field, right-click to pop up the colors menu, scroll, and choose gray or
another color. Alternatively, you may click the ellipsis button to the right of the field
to see a palette of colors for selection...
ASIST Users Guide–Version 9.6 6-5

CHAPTER 6
In the Geometry folder of the Format Proper-
ties window, you can set the initial screen posi-
tion of the upper left corner of your page and
the initial and maximum width and height of
your page, in pixels. The normal ASIST dis-
play is 1280 wide (X) and 1024 high (Y) with
position {1,1} in the upper left corner.

If you set the maximum width or height to be
greater than the initial value, the page will
open with the initial dimensions and have
scroll bars in X or Y.

After you set the color and dimensions you
want for your page, click the OK button. The
OK button saves your settings, but does not
commit them to the file. If you change your
mind about changing things, just click Cancel.

Now, let’s save your page to disk. Select the File Menu as shown to the
right. Notice that the editor informs you that the file needs to be saved.
Select Save and the Save As..Format window opens, as shown below.

Save Your Page

•First, double-click the .../global/sam/fmt directory
(usually at the top). It will become highlighted and the
full path name will be set in the Selection box.

•Next, click in the Selection box and type the name
for your new page at the end of the directory path as
shown by the lower right oval. Don’t type the
“.fmt”, that is implied.

•Click the OK button to save your page.

When you first save a page, the title of the edit win-
dow will change to indicate the new name. In the
example here, you see FIRSTPAGE.fmt
6-6 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Add text labels to your page

Now, lets add some static objects to your page. Start by clicking the
Label Text button, in the Selected Tools section at the bottom of the
ASIST Palette. When you move your mouse back to your edit panel
your cursor turns into a pencil icon. Place the pencil where you want
your text to start, left-click, and start typing. Press the enter key
when you are done. At first the text will be white and tiny; you’ll
change that soon. It will look something like this.

Now click on the Select tool (arrowhead), and then click your text to
select it. When the text is highlighted as shown to the right, you can
drag it with the cursor, or cut or copy it to the paste buffer (see Edit
menu). Double-click the text to change it; the Basic Properties panel
will pop up. Using the Font and Color folders, select the typeface
and text colors for your label. When you are done, click OK.
ASIST Users Guide–Version 9.6 6-7

CHAPTER 6
Add a telemetry DDO to your page

First, click the button on the ASIST Palette for a Text DDO (the Properties window will open). Then,
position your cursor where you want the DDO and left-click. Before you do anything else, click Save,
and then Cancel (trust me, it will be easier this way). Select the DDO again and it will be highlighted
as shown on the far right.

When you select an ASIST-ready DDO, most
attributes have been preset. You may want to
change Geometry and Options (text style). You
will need to enter your own Read key.

Double-click on your DDO now to re-open the
DDO Properties window. To get to the place to
enter a Read Key,

1. Click the General Tab

2. Click the Data... button to open the Universal
Data Access Properties (UDAP) window.

3. Click the Key Tab to show the Read and
Write keys input fields.

If you forget this sequence later, click the button
on the palette that says, “Where’s my Readkey?”

The read key is a text expression entered in the
Key Tab that connects a display telemetry field
to the Current Value Table (telemetry and
pseudo-telemetry), like the one here. Don’t be
daunted by the highfalutin title of this window.
The simplest read key is the name of a telemetry
or pseudo telemetry point, such as SINE,
battery_voltage, or GSE_IPKTS.

Click in the Read key field and type your teleme-
try point expression; notice that the field turns
white on blue. In the example, we’re using a
built-in point, RAMP, which counts from zero to
50 endlessly. Unless you already know how to
acquire telemetry, please use a built-in value,
such as RAMP or SINE. If you press the Enter
key or click the Apply button, the text changes to
black on gray.

After you enter your expression, click OK.
6-8 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Before saving everything, let’s take a quick look at the important tabbed folders in the DDO Properties window.

We’ll skip the Geometry folder; it is self-explana-
tory. Here’s the Input folder of the DDO Proper-
ties which has two sections, Entry and Popup
DDO. The latter is an advanced feature, not cov-
ered here, that allows you to popup a selection list
to feed an enterable DDO field.

Unfortunately, Kinesix changed the behavior of
the Entry buttons in the upgrade from Sammi
version 4.8.0 to 4.8.4. ASIST has been forced to
create a workaround to allow you to get informa-
tion about a telemetry point by clicking on it (a
feature available in ASIST since the first release).

Normally, just leave this folder alone. The top-
most button was previously labeled Enterable. It
only had meaning if you wanted to be able to type
text into a DDO. Sammi will now disable Notify
on Select (explained below) unless the ASIST
NOTICE! button is set to Yes.

The two middle buttons, Log Entries and Confirm Entry, concern input text DDOs, which only apply to DDOs used to
communicate with STOL, which are discussed later in this chapter.

If you leave Notify on Select set to Yes (and ASIST NOTICE! to Yes), you will be able to lookup database information
about your telemetry point just by left-clicking the DDO (at runtime, not in the editor).

However, if you want to use the DDO for enter-
ing text, Notify on Select should be set to No.
Also, you will need to apply part two of the
Sammi Workaround: In the General folder, you
will need to name your DDO with a keyword to
tell ASIST to allow this DDO to be truely enter-
able. The keyword/names are these: ENTER00,
ENTER01, ... ENTER09. ENTER00 is shown in
the example.
ASIST Users Guide–Version 9.6 6-9

CHAPTER 6
Now, let’s look at the Options folder. Here you
can set the colors and font for the text of the
DDO. These work just like changing label text
characteristics. You may use only a Courier or
other fixed-spacing font in DDOs.

Normally you will want to leave Runtime Data
Annotations(RTAs) set to Yes. Only if you do so,
will you be able to see specially colored annota-
tions indicating limit violations, uninitialized
data, bad data quality, etc. A section below
describes RTAs in detail. In the example below,
you see yellow-low violation (YL), yellow-high
(YH), and normal range values (ok) being dis-
played.

Save your page and open it in the runtime ASIST

Now, let’s save your page and see what it looks like with genuine telemetry
being displayed. First, Save it again. This time you only need to click Save
(needed) because you are re-writing it.

If your page were already open in ASIST, you would need to first delete it
from the display and press the Purge button under the Time values of
ASIST’s main panel, before Adding it again. This forces Sammi to clear a
memory copy of the page and re-read the new version of the page from disk.
Remember the sequence: Save, Delete, Purge, Add.
6-10 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Now open (or reopen) your page with Add-Window menu or
from the STOL command line using the PAGE directive. You
should see your page with changing telemetry. Here’s the

Elvis needs boats1 example we’ve been following.

Background pictures2 and layers

If you want to use a digital photo as a background for your
page, you should create a separate layer in the page so that
you can control the overlaying of text and DDOs on that
background.

Layers allow you to hide or show different things on your
page with Sammi commands. They also allow you to iso-
late parts of the page while editing.

Select Layers... from the Edit menu to open the
Layer Properties window, shown at the right.
Click the Add button and Sammi will create
Layer 1 and make it the current active layer. In
the editor you can only operate on objects in the
current layer. You cannot operate on (or damage)
things in other layers.

Now click the Import Image button in the ASIST
palette. Any image you import will land in the
currently active layer. That will open the File
Selection Popup

1. Boat equations courtesy Mojo Nixon (Elvis is Everywhere, 1987, Capitol Records).

2. Sammi supports 3 X-window image formats and the well-known (but limited to 256-colors) GIF format. Images that you install
must be placed in the $WORK/sam/image/ directory. Unless there are files existing in that directory before you log on to ASIST,
the directory will not be visible to the editor. You are welcome to practice with images in the /s/opr/system/sam/image/ directory.
ASIST Users Guide–Version 9.6 6-11

CHAPTER 6
To import an image,

• Select the type, GIF in this example.

• Double click /s/opr/accounts/global/sam/image/
directory (aka $WORK/sam/image/).

• Select the image file from the files list.

• Click OK

Your cursor will show the outline of the image. Just
left click to position it. When the image first comes
in, some text or DDOs may be obscured.

To fix this, click on the image to select it, and then
click the Redisplay icon on the editor’s tool menu,
shown on the right.

Before you forget, go back to the Layer Properties
and select Layer 0 as the active layer and click Close.
The finished Hunka Burnin’ Toast page is on the right.

To align objects, first select all the items you wish to
align, as shown to the right. After you have selected
the objects, choose one of the four alignments buttons:
top, left, right, or bottom (below). In this example
(right bottom), all objects are aligned with the left-
most object selected.
6-12 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Add Sammi buttons to your page

Dismisser Button

First, select Dismisser Button from
the ASIST Palette. Position it in
your page with a single left-click.
Select Save and Cancel in DDO
Properties.

Repeat the file saving sequence --
Save, Delete, Purge, Add -- to see
changes to your page in the ASIST
runtime. (Refer to the section above
titled Save your page and open it in
the runtime ASIST.)

A Dismisser Button is like the X
icon in the upper-right border of
your pages; it closes the page it is in
with a single click. If you look in
the General/Display.../State folder
(not shown) you’ll see the command
string -- delete-window $local-win\
-- which tells Sammi to close the
page from which the command
comes.

Sammi Toggle Button

Select Sammi Toggle Button. Position it, Save
and Cancel, as before. Now click the rightmost
edge of the button box. The button will be high-
lighted; the cursor will become an arrow pointing
right against a vertical line when you’re in the cor-
rect spot. Depress and hold the left mouse button
to grab the edge and move the mouse to the right.
Release the mouse button to resize the DDO field.

Double-click the button DDO to raise DDO Prop-
erties. In the General Tab, select Display... to
change the button’s label text and the actions of
the button.

Notice in the Data area, you will see Local, indi-
cating that Sammi is the logical server for the
DDO. No read key exists for the DDO and no
interface to the ASIST Current Value Table (CVT)
is needed.
ASIST Users Guide–Version 9.6 6-13

CHAPTER 6
The Display... button opens the Button
Properties window. Choose the Label Tab,
shown at the left,to set label text content
and font for the button. This is a toggle but-
ton, so it has both Out and In states and cor-
responding labels.

Click the Apply button after labeling your
button.

Now move to the State Tab. You’ll see
boxes indicating what happens when the
button get selected and when it gets unse-
lected. In both cases, Sammi is the logical
server, specified by the name $local-cmd.
Sammi is the program that receives and
responds to the Command.

Both of the commands are valid Sammi
runtime commands, one to add a window
and one to close it. (The backslash tells
Sammi where the end of the string is; just
leave it.)

After you have entered commands to open
and close the page STOLSTAT, click OK.

Repeat the runtime sequence: Save, Delete,
Purge, Add. to see and operate your modi-
fied page.
6-14 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Connecting Pages to STOL

With the page editor you can create pages that send directives or other text to STOL just as if you had typed the text into
the STOL input line. You’ve already seen one of ASIST’s two interfaces (logical servers) to Sammi pages, dpd_server,
which handles all telemetry display. The other interface is stol_server. Directives are sent to STOL with STOL Buttons,
that is, button DDOs whose server is stol_server. Two STOL button DDOs are available in the ASIST Palette, a Toggle
button and a Push button. Additionally, a text input DDO is available to input variable data into a page for sending to
STOL.

STOL interface example

To understand the page interface to STOL, open the STOL
Connection example page, shown on the right. From
STOL:

 page “_stol_connection”

Position your event window onscreen to see the effects of
the STOL buttons. Click the button in the upper-right a
couple of times. You’ll see this text in the event window: “;
You pressed…” and “; You released…” repeating.

Now type a message in the input field of the middle box.
Press the Enter key (colors change as previously noted) and
then click the green Send it to STOL button.

The first form of STOL button can only send string con-
stants that you specify while editing. The second form can
send variable text and can substitute values at runtime. The
second form employs Page Local Variables (PLVs). These
are like local variables in a STOL procedure, except that
they are only known in the display page where they are
used. The text you typed in the input field is stored in the
page and sent to STOL when you press the green button.
When you close the page, the PLV goes away, too.

The final box in this example page shows advanced ways to
set PLVs from popup menus and radio buttons and send
them to STOL with icon buttons, like Stop and Play icons
seen here. Feel free to explore these on your own.

With the concepts clear, let’s now add a STOL interface to a
page of your own.
ASIST Users Guide–Version 9.6 6-15

CHAPTER 6
Add a STOL text input field

Select Text DDO from the ASIST Palette. Position it, Save and Cancel.
Select it again (not shown) and go to the General Tab and choose the
Data... button. Choose General Tab again, this one in the UDAPs win-
dow. There, enter stol_server in the Server Name field. .

Next, select the Key Tab and enter the name
of your Page Local Variable in the Write Key
field. Leave the Read Key empty.

The name of the variable follows the same
rules as a STOL variable name. It also must
be unique to the page you are editing.

Finish with Data... by clicking OK.
6-16 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
After you change the server and enter
the PLV name in the Write Key, go to
the Input Tab of DDO Properties and
set Enterable to Yes and Notify on
Select to No.

Next, for the STOL input field, go to the
Options Tab and disable Runtime Annota-
tions.

Finish the step, as usual, with Save and
Cancel.

Add a STOL button to send Page Local Variable entries to STOL

Select the STOL Push button from the ASIST palette. Position it
in your page with a single left-click, then click Save and Cancel in
DDO Properties.

Set the button label text as you did for a Sammi button above (Gen-
eral Tab/Display.../Label Tab).
ASIST Users Guide–Version 9.6 6-17

CHAPTER 6
Next, go to the State Tab and make sure
that Logical Server is stol_server.

In the button Command field, enter the same
name for the PLV that you gave in the step
above. Use the syntax shown in the exam-
ple: {PLOVAR1:(value missing)}

When you press this button in ASIST, the
value of the variable PLOVAR1 will be
inserted in the place of PLOVAR1 in the
Command string. Curly braces indicate a
reference to a page local variable. The
colon separates the variable’s name from its
default assignment. If nothing is entered
into PLOVAR1’s text DDO, the text follow-
ing the colon is sent, “(value missing)”, in
this case.

Here are the three forms for referencing a
page-local variable in a button’s Command
string field:

• {VARIABLE} : the argument is required. If missing, an error is logged saying, “Value missing for VARIABLE”.

• {VARIABLE :} : the argument is not required, no default is sent.

• {VARIABLE : default} : the default will be sent if nothing is entered.

When finished, click OK, save your page, and open it in the runtime ASIST.

Cautions about stol_server

Don’t forget what will happen when you press a stol_server button. If you are running a STOL procedure, the text
attached to the button goes straight to STOL, inserting itself into the executing code as if it were typed on the STOL com-
mand line. For instance, if STOL happens to be waiting for input to an ASK statement when you press the stol_server
button, the button’s output will become ASK’s input.

In the case of ASIST X-terminal consoles, the workstation hosting the console can disable STOL directives coming from
a console. Therefore, any STOL buttons on those consoles would not operate. (See directive START_XTERM).
6-18 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
How to read and write DDO libraries (Composite Objects)

The editor allows you to read and save grouped sets of DDOs called Composite Objects. You
can also work with libraries of individual DDOs, but they are less useful than Composites;
refer to the Kinesix Guide to use DDO libraries.

Add a fully-loaded Trend Composite to your page

Select the TREND object in the
ASIST palette. The page that opens is
the instruction for adding a large trend
to your page. Before adding the
Trend, go to Edit/Format Properties...,
Geometry Tab, and increase the size
of your page to at least 1100 wide by
900 high.

Now select Libraries/Composite/Read
from the editor menu. You will see the
familiar File Open panel with a differ-
ent name, Read Composites (below).
Select the composite named
afe_stdtrend from /s/opr/system/
sam/fe/, ASIST’s system area. The
imported Trend, partly shown in the
lower right, has many DDOs, which
are highlighted when you position them. .
ASIST Users Guide–Version 9.6 6-19

CHAPTER 6
Save your page now and look at it in the runtime. It will look like the one below. Several features are built-in; please
explore them. Delete those items you don’t need.

• Popup and drop-down menus for changing axis scales (right-click the background for the popup menus)

• Enterable fields for changing axis scales

• Horizontal pan buttons

• Update rate control
6-20 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Back in the editor, double-click the large rectan-
gle that shows the outline of graph and then go to
the Key Tab. The read key has three expressions
separated by vertical bars, one expression for each
of the three curves being plotted. The number of
expressions must match the number of curves you
wish to plot. (Syntax details are below.)

To change the number of items being trended,
select DDO Properties/General Tab, Display...
button. Go to the Curves Tab of the Trend Prop-
erties window, shown at the right

The curves are named in a panel in the upper left;
the selected curve is highlighted and described in
the Y-Axis box. You can delete a curve or add
another with the Add/Delete buttons. The color
given for Label Color will also be used to graph
the curve’s symbols.

Normally, to customize a trend, you will modify
the Read Key, Curves Label, Label Color, and
Minimum, and Maximum Y-value. Full redesign
of the ASIST Composite Trend DDO may require
changing dozens of properties, which is beyond
the scope of this introduction. Please refer to the
Kinesix Format Editor Guide (FEG) for complete
details.

Add a fully-loaded Plot Composite to your page

The procedure for adding a Plot Composite to your page is the same as adding a Trend Composite. In fact, a Plot DDO is
the same as a Trend, except that you must provide data for the X axis rather than the Time being provided automatically.
As with Trend DDOs, Plot DDO have dozens of characteristics that may be changed, so refer to the FEG. Read the sec-
tion below titled More Details about Read Keys and you will be able to add a plot to your pages using your own telemetry
data.

Create your own Composite Library

Use the selector tool to place a bounding box
around any group of static or dynamic objects.
Then, choose Libraries/Composite/Save from
the menu. Saving a composite object is the same
as saving a page, except, you should save com-
posites to your $WORK/sam/fe/ directory.
ASIST Users Guide–Version 9.6 6-21

CHAPTER 6
How to Delete Pages and Exit the Editor

To Delete a Page, permanently,
from the disk, select Delete... from
the File Menu. Select the page you
want to dispose of, and then click
OK. You will be asked to confirm
the file removal, as shown to the
right.

To exit the editor, select the File
menu. If you are editing a page, you
must Close it first.

If you try to close it while it still
needs saving , you will get a warning
to that effect, like the one on the far
right.

After closing, Exit from the File
menu. Here also, you will be
prompted before exiting.
6-22 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
 Data Quality (Runtime Annotations) in Telemetry Fields

Runtime Annotations (RTAs) are special characters appended to the displayed value of a telemetry field. RTAs also cause
a field's colors to change to signal when important events occur, such as when data become stale or when safe limits are
exceeded. The button to enable RTAs is found in the Options Tab of the DDO Properties window, as noted earlier in this
chapter. The table below lists the colors and the appended characters that characterize each RTA condition in ASIST.

The table is listed in order of priority from top to bottom. The first condition that applies to a particular telemetry field will
be the one displayed. Thus, if a telemetry point is being limit-checked and has exceeded one of its limit values, it will not
be characterized as stale, no matter how old it is. Likewise, none of the other conditions are meaningful if a telemetry
point has not been initialized.

Checklist for Displaying RTAs

Here are the things that must be done to actively check limits and display Runtime Annotations in ASIST. An item, X, is
a telemetry-point name and V is a value.

1. Item has at least one limit defined, in RDL or from STOL. (LIMIT DEF X rl=V, ...)

2. Item has limit-checking enabled from STOL. (LIMIT on X)

3. Item's packet has limit-checking enabled, also, from STOL or PRC. (LIMIT on Packet-Name)

4. Limit-checking is globally enabled from STOL. (CHECK ON)

5. From the Editor, in the item’s DDO Properties, Options Tab, RTAs are set to Enabled = "Yes".

TABLE 6-1. Table of Runtime Annotation Characteristics

Colors of DDO Field
Foreground/
Background

Characters
Appended

Colors of RTA Chars
Foreground/
Background Meaning

Magenta on Gray ?u Same as DDO field Telemetry point is uninitialized.

Yellow on Gray ?q Same as DDO field Bad packet quality condition.

White on Red R* Same as DDO field Red Rail limit condition.

Black on Yellow Y* Same as DDO field Yellow Rail limit condition.

White on Red RH Same as DDO field Red High limit condition.

White on Red RL Same as DDO field Red Low limit condition.

Black on Yellow YH Same as DDO field Yellow High limit condition.

Black on Yellow YL Same as DDO field Yellow Low limit condition.

Black on Red DV Same as DDO field Discrete data type violation.

Yellow on Black ?? Same as DDO field General Error in Displaying Value.

Green on Black (blank) Same as DDO field Initial value, first received, now on display.

Blue on Gray ?s Same as DDO field Telemetry point is stale.

(existing colors) G* Green on (existing color) Value in Green range, but at Rail.

(existing colors) on Green on (existing color) Limit-checking has been turned on for this point,
but no data has been received since then.

(existing colors) ok Green on (existing color) Telemetry point is being actively limit-checked.
ASIST Users Guide–Version 9.6 6-23

CHAPTER 6
More Details About Read Keys

As you’ve seen, the read key tells ASIST what data to display in a DDO and how to format it. Read keys may be entered
in two different formats, single-value and multi-value.

Single-Value Read Keys

Single-value read keys are of the form:

expression [format-string]

The syntax of expression is the same as pseudo-telemetry, except that IF-THEN-ELSE and BLOCKs are not supported.
Alternatively, it can be of the form shown below.

[conversion-specifier] telemetry-point[index]]
1

where:

 conversion-specifier may be:

telemetry-point is the name of the telemetry-point to be displayed. If it is an array, an index must be supplied to select
one item from the array.

format-string is a standard C printf format string which specifies how to format the output. The format string is:

% [flags] [width] [.prec] format

where:

 flags are one or more of:

width is the minimum number of characters to print.

prec is how many digits to print to the right of the decimal point for a floating point number, or the maximum
number of characters to print for a string.

format is a single character from the table on the next page:

1. no space permitted between conversion-specifier and telemetry-point.

specifier What is displayed

P@ data converted to engineering units,

R@ the raw data as received in telemetry

none data converted to counts

flag Causes to formatted data to:

- Be left-justified

+ Always begin with a sign

0 Be zero-filled (for an integer field)
6-24 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Multi-Value Read Keys

ASIST also allows multi-value read keys for DDO types that can use them, such as plots, trends, pie-charts and dynamic
object DDOs.

The form of multi-value read keys is shown below. Use the vertical bar (|) to separate expressions.

expression [| expression [| expression …]]

As in single-value read keys, the syntax of expression is the same as pseudo-telemetry, except that IF-THEN-ELSE and
BLOCKs are not supported.

 Specify read keys for Plot DDOs as x,y pairs in the form

x1 | y1 | x2 | y2 …

All other multi-value read keys, such as Trend DDOs, are specified as:

 y1 | y2 | y3 | …

For example:

longitude_a | latitude_a | longitude_b | latitude_b

could specify two xy pairs for a plot DDO.

tlm_item_a | tlm_item_b

could specify two y values for a trend DDO (each plotted against time).

Char Means convert to:

d a signed decimal string

o unsigned octal

u unsigned decimal

x unsigned hexadecimal

b unsigned binary

f floating point notation (ddd.ddd)

e exponential notation (ddd.ddde dd)

g e or f notation, as appropriate

s a string
ASIST Users Guide–Version 9.6 6-25

CHAPTER 6
Array Display in Pages with %slice() Readkeys

ASIST can display arrays from the CVT in pages using a single DDO and the %slice function. The following functions
related to this feature are:

%numdims(array_var) - returns the number of dimensions that are defined for telemetry point array_val.

%dimension(array_var, dim_number) - returns the number of elements in array dimension dim_number of telemetry
point array_var.

%slice(array_var, low_x, high_x, low_y, high_y, low_z, high_z) - returns an array containing a "slice" of array_var. with
the requested number of elements.

The page "_dpd_tables" delivered with ASIST contains an example using %slice().

How to implement %slice() in a readkey:

1. Create a numeric DDO (Integer or Real); Text DDOs won't work.

2. Enter a valid %slice() readkey text in the editor's Readkey panel, such as:
%slice(dpd_itable, 1,5, 1,2, 1,1)
In this case, dpd_itable is a three dimensional array defined in the CVT.

3. Click on Show Expert Panel in the Readkey Panel. There enter a value for Number of Values. The number must match
the number of items that will be returned by the %slice() call. In the example above, there are 10 values from
%slice(), 5 rows of 2.

4. In the Editor's "DDO Display" panel, Geometry Section, change the number of characters in the Height field to match
the number of values returned from the %slice() call, as in step 3.

Limitations:

• As with STOL, arrays are limited to 3 dimensions.

• DDO types for arrays must be one of these: short, long, float, or double. Strings, Trends, Plots and other DDO types
are not supported.

• No more than 64 items can be displayed in a single DDO that uses %slice().

• Because of the interface to Sammi, arrays can only be displayed in a single vertical columns, one column per DDO. To
display more than one column of a two-dimensional array, use a new DDO for each column. Here's an example to dis-
play the 10 values from the example above as 5 rows of 2 columns:

DDO_1's readkey DDO_2's readkey

%slice(dpd_itable, 1,5, 1,1, 1,1) %slice(dpd_itable, 1,5, 2,2, 1,1)
6-26 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Page Editor Reference

Page Editor Menus

This section describes the Editor's pull-down menus. In many cases the same tasks can be done by clicking buttons in the
body of the Page Editor window. If you allow the cursor to hover over an icon on the tools bar, its title will appear in
small text.

File Menu

Menu Option Used to...

New Create a new page (page file names are appended with .fmt).

Open Edit an existing page.

Close Close the current page without saving changes.

Save Save a page with the current name.

Save as... Save a page with a new name.

Export… Export a page.

Delete... Delete a format file from the disk.

Purge Clears the editor’s cache.

Import Format... Import the contents of an entire page into the editor drawing
area.

Load Defaults... Load a set of default attributes.

Reload Reload tables, etc.

Exit Quit the page editor.
ASIST Users Guide–Version 9.6 6-27

CHAPTER 6
Edit Menu

View Menu

Menu Option Used to...

Undo Undo the previous operation.

Cut Remove from display but save in paste buffer.

Copy Copy a static or dynamic object to paste buffer.

Paste Fetch the contents of the paste buffer.

Move Move a static or dynamic object.

Delete Delete a static or dynamic object.

Format Prop... Change properties of the page.

Object Prop... Change properties of static or dynamic objects.

Layers... Manages layers in the drawing area

Keys... Edit a list of Read/Write keys on this page.

Preferences... Change basic setups.

Tabless... Edit tables in this page

Menu Option Used to...

Redisplay Redraw all objects in the editor drawing area.

Show DDOs Show the DDOs on the page.

Preview Show how this page will look when opened in ASIST (except no data).

Zoom In Enlarge the image.

Zoom Out Reduce the image.

Zoom Box Zoom the boxed area.

Full View Undo zooms.

Reset Initial Display page with initial dimensions.

Reset Maximum Display page with maximum dimensions

Pan To Pan to a new location.
6-28 ASIST Users Guide–Version 9.6

Editing Telemetry Pages
Arrange Menu

Draw Menu

Menu Option Used to...

Group Group selected objects.

Ungroup Ungroup a group of objects upon selection.

Front Move object to front.

Back Move object to back.

Align Align selected objects, choose directions.

Flip Up/Down Flip object vertically.

Flip Left/Right Flip object horizontally.

Rotate CW Rotate object clockwise.

Rotate CCW Rotate object counter-clockwise.

Add Point Add a point to a line segment.

Delete Point Delete a point from a line segment.

Move Point Move a point in a line segment.

Menu Option Used to...

Arc Draw an arc

Circle (Dia.) Draw a circle, stretching diameter.

Circle (Rad.) Draw a circle, stretching radius.

Ellipse (Dia.) Draw an ellipse, by diameter.

Ellipse (Dia.) Draw an ellipse, by radius.

Frame Draw a picture frame.

Image Import an image.

Line Draw a straight line.

Polygon Draw a polygon with closure.

Polyline Draw a multiline segment, no closure.

Rectangle Draw a rectangle.

Spline (Open) Spline fit (smooth) an open ended line segment.

Spline (Closed) Spline fit (smooth) a closed line segment.

Text Enter label text.

Palette.. Open a separate icon toolbar with all the drawing tools.
ASIST Users Guide–Version 9.6 6-29

CHAPTER 6
Dynamics Menu

Libraries Menu

Style Menu

Menu Option Used to...

Character Add one of the character text DDOs (eg, text, real, integer).

Control Add one of the control DDOs (eg, buttons).

Interpretive Add one of the interpretive DDOs.

Scale Add one of the scale DDOs.

Palette Open a separate icon toolbar with all DDO objects.

Menu Option Used to...

Composite Read, Save, or Delete a composite object in a library.

DDO Read, Save, or Delete a DDO in a library.

Vector Symbol Read, Save, or Delete a Vector Symbol in a library.

Menu Option Used to...

Color Select a new active color for foreground & background

Fill Select a new active fill style for drawings.

Font... Select a new active font

Line... Select a new active line style
6-30 ASIST Users Guide–Version 9.6

AS
CHAPTER 7 Event Message Handling
Overview

Programs throughout ASIST generate event messages to provide user-feedback and to record a traceable history of all
transactions. Internal messages are sent directly to the Event Handler (GEVH). Spacecraft flight data systems also gener-
ate event messages which are sent via telemetry and relayed to GEVH by ASIST's telemetry processing subsystem.
GEVH receives event messages, displays them in the Events Window, prints them to the Event Printer, saves them in a
disk file, and sometimes forwards them to any of 4 special Sammi event pages. Here are summaries of STOL directives
that affect event messages; see APPENDIX A: “Directives” for details.

TABLE 7-1. STOL Directives that affect event messages

Directive What it does Page

CLEARLP interrupts printing in progress on the Event Printer. A-13

SETLOG sets filters for reducing the volume of messages to the Events Window (device X), the Event
Printer (device LP), or to the special event pages identified as devices E1, E2, E3, and E4.
Under all filter settings, all event messages are recorded in the Event Log File.

A-76

SHOWLOG shows the current filter settings for event messages. A-83

LOG_FILE inserts the text of a file into the event log. A-60

NEWLOG closes the current event log file and opens a new one. A-61
IST Users Guide–Version 9.6 7-1

CHAPTER 7
Event message characteristics

Each event is assigned 3 characteristics - level, class, and subsystem.

The event level describes the severity of the event. These levels are:

The event class describes the general group to which the event belongs. These classes are:

TABLE 7-2. Valid levels for events

Level Description

DEBUG debugging information only,

INFO a description of a current condition, execution continues,

WARNING a possible problem, execution continues,

ERROR a problem, execution may continue,

FATAL a serious problem, execution terminated.

LUSR0-LUSR7 user-definable levels 0, 1, …, 7

TABLE 7-3. Valid classes for events

Class Description

ACEA a spacecraft event on ACE side A,

ACEB a spacecraft event on ACE side B,

ACS a spacecraft ACS event,

CLTU echo of spacecraft command CLTU bits,

CMD a spacecraft command,

COMM General raw communications,

DBG debugging information only,

DIR a ground system directive,

ERES ASIST end-to-end responses,

FILE a message about a file inserted into the event log by GEVH,

LF a telemetry limit failure,

LRES ASIST local responses,

OPRI a STOL operator key-in,

OPRO a STOL operator output line,

PACS a spacecraft ACS event from telemetry playback,

PAEA a spacecraft event from telemetry playback of ACE side A,

PAEB a spacecraft event from telemetry playback of ACE side B,

PKT a telemetry packet,

PROC a STOL procedure key-in,

PSC a spacecraft C&DH event from telemetry playback,

SC a spacecraft C&DH event,

STS a ground system status,
7-2 ASIST Users Guide–Version 9.6

Event Message Handling
The event subsystem describes the ground subsystem that originated the event. These subsystems are:

STTE a STOL wait-state event message,

TLM a telemetry event,

XFRM echo of spacecraft command Transfer Frame counter.

CUSR0-
CUSR7

user-definable classes 0, 1, …, 7

TABLE 7-4. Valid subsystems for events

Subsystem Description

CITM Image and Table Manager,

CMH Mandate Handler,

DKEY (not currently used),

DPD Page Display,

DPE (not currently used),

FCP FEDS Command Processor,

FEDC (not currently used),

FEDE (not currently used),

FEDS Front End Data System generic,

FEDT (not currently used),

FFP FEDS Frame Processor (telemetry frames),

FPP FEDS Packet Processor (telemetry packets),

FSM (not curently used),

GENS Generic I/O system,

GEVH Event Handler,

GPIB General Purpose Interface Bus subsystem,

OGSE GSE environment monitor,

ORDC (not currently used),

OSCC (not currently used),

SPR STOL parser,

SPTP Pseudo-Telemetry Processor,

TIO Telemetry I/O Controller,

TIME (not currenty used),

TLMH Telemetry Handler,

TSDS Telemetry Server for Decommutated Streams,

UCMD Command Generator,

VCVT Current Value Table.

SUSR0-SUSR7 user-definable subsystems 0, 1, …, 7

TABLE 7-3. Valid classes for events

Class Description
ASIST Users Guide–Version 9.6 7-3

CHAPTER 7
Format of an event message

Most event messages are formatted like this:

Date-time machine_id subsystem-level, class -- text

Here is an example:

205-14:25:05.123 00 SPR-I, STS -- Wait mode exited.

Note that 205 means the two hundred and fifth day of the year, and the level is abbreviated to one character. The time
given is the ground system time when the event was logged.

There is a special format when STOL procedure statements are echoed (these are messages of class PROC from subsystem
SPR):

Date-time machine_id proc_name line_#: proc_statement

Here is a typical message followed by a STOL procedure echo:

205-14:26:00.000 00 SPR-I, OPRI -- START ACS_INIT

205-14:26:00.050 00 ACS_INIT /1: " /acs_mw low"

The space which normally holds the subsystem/level/class is instead used to hold the name of the STOL procedure.

Message are displayed as shown above, but when they are printed and written to the Event Log File the current year is
included with each message.

For example:

93-205-14:26:00.000 00 SPR-I, OPRI -- START ACS_INIT
7-4 ASIST Users Guide–Version 9.6

Event Message Handling
Where do event messages go?

All event messages are stored in the Event Log File ($STOL_LOG/seqevh.log). Selected event messages are printed
on the Event Printer. Selected event messages are also displayed in the X Events Window (this window comes up auto-
matically when ASIST is started). In addition, there are 4 events pages to which event messages can be sent. These pages
are named EVENTS1, EVENTS2, EVENTS3, and EVENTS4. Use the PAGE directive (see page A-64) to display
them - for example: PAGE EVENTS1.

Filtering event messages

Event filtering can be used to reduce the number of messages displayed and printed. It can also be used to create custom-
ized event pages. For example, the page EVENTS2 might be set up to display only those event messages which were gen-
erated on the spacecraft.

Filtering is done by class, level, subsystem, and destination. Destinations are X (the X events window), LP (the events line
printer), and E1, E2, E3, & E4 (the events pages EVENTS1, EVENTS2, EVENTS3, and EVENTS4). Note that the
events log file cannot be filtered.

Directives related to filtering are SETLOG and SHOWLOG.

SHOWLOG shows current filter settings for any one event destination. Syntax:

SHOWLOG destination

Destination can be any one of those listed above or one of the special destinations HELP and ALL. SHOWLOG ALL dis-
plays filter settings for all the destinations. SHOWLOG HELP displays all the available levels, classes, and subsystems.
Examples:

SHOWLOG E2
Levels: DEBUG ERROR FATAL INFO WARNING
Classes: ACEA ---- ACS ---- --- ---- --- --- ---- -- ---- ----

---- ---- ---- ---- --- --- SC ---- --- --- ----
Subsystems: CITM CMH DKEY DPD DPE DPH FEDC FEDE FEDS FEDT

FCP FFP FPP FSM GENS GEVH GPIB OGSE ORDC OSCC
SPR SPTP TIME TIO TLMH TSDS UCMD VCVT

SHOWLOG HELP
Levels: DEBUG ERROR FATAL INFO WARNING
Classes: ACEA ACEB ACS CLTU CMD COMM DBG DIR ERES

FILE LF LRES OPRI PAEA PAEB PACS PKT PSC SC
STS STTE TLM XFRM

Subsystems: CITM CMH DKEY DPD DPE DPH FEDC FEDE FEDS FEDT
FCP FFP FPP FSM GENS GEVH GPIB OGSE ORDC OSCC
SPR SPTP TIME TIO TLMH TSDS UCMD VCVT

In the above examples, note that those levels, classes, and subsystems which are filtered out have names which are repre-
sented as dashes.

SETLOG will change filter settings for one or more destinations. Syntax:

SETLOG filter_list ON|OFF … TO destination_list
ASIST Users Guide–Version 9.6 7-5

CHAPTER 7
The filter_list consists of one or more of the available classes, levels, or subsystems. The destination_list consists of one
or more of the available destinations. Examples:

SETLOG DEBUG OFF TO X,LP

SETLOG ACEA,ACS,SC ON TO E2

There are some special filter names:

ALL_CLASSES

ALL_LEVELS

ALL_SUBSYSTEMS

ALL_FILTERS (all classes, levels, and subsystems)

There are also some special destinations:

ALL_DEVICES (all destinations)

ALL_PAGES (all destinations except the events printer)

More examples:

SETLOG ALL_FILTERS OFF TO ALL_DEVICES (turn off all logging)
SETLOG ALL_CLASSES OFF TO E2
SETLOG ALL_C ALL_L ON TO ALL_P (special filters/destinations can be

abbreviated)

One directive can contain both an ON and an OFF. Example:

SETLOG ALL_F OFF ACEA,ACS,SC,ALL_L,ALL_S ON TO E2

This example sets up page EVENTS2 to display only those events generated on the spacecraft.

Note that an event message is displayed only if its class AND level AND subsystem are all enabled. Suppose that all fil-
ters are turned off for page EVENTS2. If we want to display all messages of level FATAL on EVENTS2, then the first
directive will NOT work (the second directive will work):

SETLOG FATAL ON TO E2
SETLOG FATAL ALL_C ALL_S ON TO E2

Default filter settings at ASIST start-up:

LP, X, E1 - All filters on except level DEBUG and class DBG.

E2, E3, E4 - All filters off.

The default filter settings can be restored at any time by: SETLOG DEFAULT.

Event Filter Pages

A set of pages are provided to set the event filters for any destination. They are available by selecting the Event Pages but-
ton on the Command Status Window. From this window, you can either open a page to set filters for any desired destina-
tion, show the current filter settings in the event window, or open one of the SAMMI event pages (E1 - E4).
7-6 ASIST Users Guide–Version 9.6

Event Message Handling
Event Printer output

GEVH wraps message lines to the printer when they are longer than 132 characters. In the Event Window and the EVENT
pages, lines are wrapped at 105 characters to accommodate an internal Sammi requirement. Event messages going to the
Event Log File are sent exactly as they are received by GEVH with no line-wrapping inserted.

GEVH uses a printer spooler. The spooler buffers messages when they arrive faster than they can be printed. The print
spooler can currently buffer up to 145,000 lines of events. Under some conditions this may not be enough–if, for example,
the printer is left off-line or if commanding occurs in a tight loop for a long period. The spooler has two checks built in to
try to avoid buffer overflow. The first is notification via an event message when the printer has been turned off for an
extended period of time. The second is based upon the size of the spool, if the spool approaches its maximum number of
lines GEVH will notify the user via an event message with an appropriate action to take to correct this problem. Once the
spool area has reached the maximum size the printer will cease printing events and notify the user via several event mes-
sages. Event messages are not lost when the spooler drops lines. The spooler uses temporary files on the workstation’s
hard drive for buffering. If the disk becomes full, printer messages are thrown away. Event messages are not lost when the
spooler drops lines. They still go to the Event Log File, they just don't get printed. The user can correct this problem by
freeing disk space in the /tmp directory.

The print spooler has limited command capability. The user can turn event printing on/off and clear out the print spool
through the use of the foreign directive:

EVENT_PRINTER ON|OFF|CLEAR

Examples:

To turn print spooling and event printing on, type:
EVENT_PRINTER ON

To remove all events in the printer’s spool area, type:
EVENT_PRINTER CLEAR

Notes

The commercial product (Sammi) which we are using to implement event pages has two quirks. First, at start-up the pages
may show some messages from a previous run of ASIST. Second, messages sometimes disappear from a page. This can
happen if, say, no event messages arrive for 15 minutes or more. One by one, the leftover messages are removed from the
page.

In order for a workstation to be able to print event messages the Unix environment variable
GEVH_I_HAVE_A_PRINTER must be set equal to one (1) before ASIST is started. This can be set in the user profile
file. If this variable is not set, GEVH will not load the code necessary for printing. This can be used to improve system
performance by decreasing the overall system load, especially if no printer is attached to the workstation.
ASIST Users Guide–Version 9.6 7-7

CHAPTER 7
Defining your own Event Types

A set of event classes, subsystems, and levels exist which you can rename. These are:

To define your own name for these events, you must define the following environment variables in Unix:

Subsystem 0: export EVENT_SUSR0="your-name-for-susr0"

Subsystem 1: export EVENT_SUSR1="your-name-for-susr1"

.…

Subsystem 7: export EVENT_SUSR7="your-name-for-susr7"

and similarly:

Class 0: export EVENT_CUSR0="your-name-for-cusr0"

…

Level0: export EVENT_LUSR0="your-name-for-lusr0"

…
These can be defined in your ASIST_user_profile so that they are the same each time ASIST is started. For exam-
ple, to create your own set of subsystems, each named after a different spacecraft subsystem, you could put the following
lines in your ASIST_user_profile:

Create subsystems named after spacecraft parts
export EVENT_SUSR0="MONGOOSE"
export EVENT_SUSR1="PSE"
export EVENT_SUSR2="INSTR"
 . . .

Similarly, to define classes of events, you could enter:

Event classes I would like to use
export EVENT_CUSR0="RTSC"
export EVENT_CUSR1="PBSC"
export EVENT_CUSR2="STUPID"

And finally, to introduce new levels, you could enter:

This is my very own level
export EVENT_LUSR0="Useless"

After entering these into your ASIST_user_profile, you must log out and then back in for them to take effect.

To create events with these Subsystems, Levels, Classes…, just use them as you would any existing subsystem/level/class
on the event directive.

For example:

event "PSE","RTSC","Useless","Why did the spacecraft cross the road?"
event "MONGOOSE","STUPID","INFO","To avoid the ISO-9000 auditor."

TABLE 7-5. User-definable event classes, subsystems, and levels

Subsystems SUSR0, SUSR1, …, SUSR7

Classes CUSR0, CUSR1, …, CUSR7

Levels LUSR0, LUSR1, …, LUSR7
7-8 ASIST Users Guide–Version 9.6

Event Message Handling
Creates the following events:

043-16:14:28.706 00 PSE-U:RTSC Why did the spacecraft cross the road?
043-16:15:14.719 00 MONGOOSE-I:STUP To avoid the ISO-9000 auditor.

You can also use these names with the setlog directive. For example:

-->showlog x
043-20:04:00.623 01 SPR-I:OPRI --> showlog x
043-20:04:00.753 01 GEVH-I:STS Filter settings for Events X Window:
043-20:04:00.754 01 GEVH-I:STS Levels: INFO WARNING ERROR FATAL ----- Useless LUSR1 LUSR2 LUSR3 LUSR4 LUS
 R5 LUSR6 LUSR7
043-20:04:00.756 01 GEVH-I:STS Classes: TLM --- CMD LF STS SC ACS DIR LRES ERES ACEA PROC OPRI OPRO COMM C
 LTU XFRM PACS PAEA PSC PKT ACEB PAEB STTE FILE RTSC PBSC STUPID CUSR3 CUSR4 CUS
 R5 CUSR6 CUSR7
043-20:04:00.770 01 GEVH-I:STS Subsystems: CITM CMH DCUS DPD FCP FEDC FEDE FEDS FEDT FFP FPP FSM GENS GEVH GP
 IB IDLA OGSE ORDC OSCC PSPR SPR SPTP SPUD TCOM TIME TIO TLMH TSDS UCMD MONGOOSE
 PSE INSTR SUSR3 SUSR4 SUSR5 SUSR6 SUSR7 VCVT

-->setlog stupid off to x
043-20:06:10.905 01 SPR-I:OPRI --> setlog stupid off to x
043-20:06:11.082 01 GEVH-I:STS Setlog operation performed.

-->showlog x
043-20:06:12.411 01 SPR-I:OPRI --> showlog x
043-20:06:12.540 01 GEVH-I:STS Filter settings for Events X Window:
043-20:06:12.551 01 GEVH-I:STS Levels: INFO WARNING ERROR FATAL ----- Useless LUSR1 LUSR2 LUSR3 LUSR4 LUS
 R5 LUSR6 LUSR7
043-20:06:12.553 01 GEVH-I:STS Classes: TLM --- CMD LF STS SC ACS DIR LRES ERES ACEA PROC OPRI OPRO COMM C
 LTU XFRM PACS PAEA PSC PKT ACEB PAEB STTE FILE RTSC PBSC ------ CUSR3 CUSR4 CUS
 R5 CUSR6 CUSR7
043-20:06:12.556 01 GEVH-I:STS Subsystems: CITM CMH DCUS DPD FCP FEDC FEDE FEDS FEDT FFP FPP FSM GENS GEVH GP
 IB IDLA OGSE ORDC OSCC PSPR SPR SPTP SPUD TCOM TIME TIO TLMH TSDS UCMD MONGOOSE
 PSE INSTR SUSR3 SUSR4 SUSR5 SUSR6 SUSR7 VCVT

Warning:

• Only the first letter of the Level is printed in event messages. Thus, you should make sure to define only levels with
unique first letters, which don't collide with the predefined levels (D,I,W,E,F).

• User-defined classes, and subsystems may be used in color-filter statements (when defining the colors for the colorized
event window). The level will not work here, however, and all user-defined levels will act as if the were INFO level
events.
ASIST Users Guide–Version 9.6 7-9

CHAPTER 7
Closing and reopening the current event log

You may close the current event log and open a new one using the NEWLOG directive in STOL. The syntax of this for-
eign directive is:

NEWLOG [UNCOMPRESSED | DISCARD | COMPRESSED | filename]

If no argument is specified, the old event log is renamed to:

seqevh.log.941225.1201

(where the numeric portion is the date the event log was created, in the form YYMMDD.HHMM) and is then compressed
to the file:

seqevh.log.941225.1201.gz

If an argument is given, it is interpreted as:

Note: When saving in a dated format, if file seqevh.log.YYMMDD.HHMM already exists, then the new file will also
include the seconds (seqevh.log.YYMMDD.HHMM.SS). For example, if you saved one event log at 12:05:12 and
another at 12:05:45 of December 25, 1994, the resulting files would be named seqevh.log.941225.1205 and
seqevh.log.941225.1205.45

TABLE 7-6. How NEWLOG arguments are interpreted

Argument Meaning

UNCOMPRESSED Don't compress, but name based upon creation date.

DISCARD Throw out the old event log.

COMPRESSED Name based upon creation date & compress (the default).

filename This is what to name the old event log.
7-10 ASIST Users Guide–Version 9.6

Event Message Handling
Event log viewers

A number of event log filter/viewing programs are available at the UNIX prompt. They allow you to view selected events
(based upon user-specified filter settings) from either an event log file, or from ASIST as they occur (either on your work-
station, or on the PTCW).

Tailing the Current Event Log

Two programs are available which tail the current event log using the color event filter file defined in $WORK/db/
evtail_filter_file (See “Setting Up Color Event Log Filters” below to learn how to set this up). To use them,
open a Unix xterm/aixterm, and enter one of the following commands:

These event windows will continue to follow the event log after newlogs are issued (although there is a delay of up to 15
seconds for the program to synchronize with the new event log), and will close when ASIST is shut down.

Setting Up Color Event Log Filters

The viewers described above allow you to set up filters for viewing different event types in color. For the primary.events
and event.window programs, you should create the file $WORK/db/evtail_filter_file in the following format.

Filters are specified in the form:

(subsystem,level,class) color-attribute

where:

subsystem, level, and class are the same as those defined in earlier in this chapter. A wildcard (*) can be used instead of
any of these three to indicate all of that type of message (i.e. (*,INFO,STS) would mean event messages from any sub-
system with level INFO and class STS [status]).

color-attribute is the string required to generate the desired color/attribute of text, or the word OFF, indicating that this
set of events should not be displayed. This string can include definitions of the foreground color, the background color,
and certain attributes about the text.

TABLE 7-7. How to follow along with the current event log

Unix Command What it does

primary.events This opens a window containing a view of the events from the primary workstation.

event.window [hostname] Opens a window containing a view of the events from the indicated machine. If host-
name is not specified, events are viewed from the machine you are logged into.

TABLE 7-8. color-attributes which change the foreground and background color in color event log filters

To set this color to the Foreground, use: to the Background, use:

White __FG_WH_ __BG_WH_

Black __FG_BK_ __BG_BK_

Blue __FG_BL_ __BG_BL_

Cyan __FG_CY_ __BG_CY_
ASIST Users Guide–Version 9.6 7-11

CHAPTER 7
To change an attribute, use __AT_BL_ to turn on blinking, __AT_UL_ to turn on underlining, and __AT_BO_ to turn
bold.

To turn on a combination, append the strings for the desired attribute (i.e. __FG_WH___BG_RE_ would make the
foreground white and the background red, while __FG_BK___BG_BL___AT_BL_ would make the foreground
black, the background blue, and the letters blink on and off).

Additionally, color-attribute can be set to DELETE, which will cause the given events not to be printed.

Additional Color Event Viewing Programs

Each of the following programs accepts one or more event-filter setups either from a file or from the command line (using
the -f option), which it uses to either filter events already in the event log (the view.old.events program) , or to filter
the events as they are generated by ASIST (the view.current.events and view.primary.events programs).

Filter settings are passed to these programs by redirecting a file containing the filter settings into the command (i.e.
view.old.cevents < my.filters).

To use these commands, you must:

1. Generate a file containing the desired filter settings

For example, the following file, flight.message.settings, sets up filters for all flight software messages:

(TLMH,*,SC) __FG_WH_
(TLMH,*,ACS) __FG_BL_
(TLMH,*,ACEA) __FG_CY_
(TLMH,*,ACEB) __FG_YE_
(TLMH,*,PSC) __FG_WH___BG_RE_
(TLMH,*,PACS) __FG_BL___BG_RE_
(TLMH,*,PAEA) __FG_MA___BG_RE_
(TLMH,*,PAEB) __FG_BK___BG_RE_

2. Open a window containing a UNIX shell.

3. Run one of the color viewing programs with the filter file as input.

For example: To open a window with the above settings, type:

view.current.events <flight.message.settings

The syntax of these commands are:

➔ view.old.cevents [-l filename] < filter-file-name

This command filters the event log based upon the input filter settings.

➔ view.current.cevents < filter-file-name

Yellow __FG_YE_ __BG_YE_

Red __FG_RE_ __BG_RE_

Green __FG_GR_ __BG_GR_

Magenta __FG_MA_ __BG_MA_

Default __FG_DF_ __BG_DF_

TABLE 7-8. color-attributes which change the foreground and background color in color event log filters

To set this color to the Foreground, use: to the Background, use:
7-12 ASIST Users Guide–Version 9.6

Event Message Handling
This command filters the events now being received based upon the input filter settings.

To end this operation, hit ctrl-c.

➔ view.primary.cevents < filter-file-name

This command filters the events now being received on the Primary Test Conductor Workstation based upon the input
filter settings.

To end this operation, hit ctrl-c.

➔ primary.events [host-name]

This views events now being received on the given host (or the Primary Test Conductor Workstation if host-name isn’t
specified). SSH is used to communicate, so you may be asked to enter a password in the event window.

To end this operation, hit ctrl-c.

To use view.primary.cevents to emulate the primary events page previously provided with ASIST:

1. Create the file pev.filters:

(*,INFO,*) __FG_WH_
(*,WARNING,*) __FG_YE_
(*,ERROR,*) __FG_YE_
(*,FATAL,*) __FG_YE_
(SPR,INFO,*) __FG_GR_
(SPR,INFO,OPRO) __FG_11_
(SPR,INFO,OPRI) __FG_CY_
(TLMH,INFO,*) __FG_GR_
(TLMH,INFO,SC) __FG_10_
(TLMH,INFO,ACS) __FG_15_
(TLMH,INFO,ACEA) __FG_15_
(TLMH,INFO,ACEB) __FG_15_
(VCVT,WARNING,LF) __FG_RE___BG_YE_

2. At the UNIX prompt, type:

view.primary.cevents <pev.filters

Normal (monochrome) event log filters:

These viewers accept filter settings in a syntax similar to the setlog directive. They accept one or more event-filter setups
either from a file or from the command line (using the -f option), and use them to either filter events already in the event
log (the view.old.events program) , or to follow the current events as they occur (the view.current.events
and view.primary.events programs).

Filter settings are passed to these programs by:

• specifying them on the command line using the -f option.
 (i.e. view.old.events -f “SPR INFO PROC”)

OR

• redirecting a file containing the filter settings into the command
(i.e. view.old.events < my.filters).
ASIST Users Guide–Version 9.6 7-13

CHAPTER 7
To invoke these utilities from the UNIX prompt, type:

➔ view.old.events [-l filename] [-f "filters..."]

This command filters the event log based upon the input filter settings.

For example:

view.old.events -f "SPR INFO PROC"

lists all SPR-I:PROC events (all procedure lines) from the event log file.

view.old.events -f "SPR INFO PROC" >my.events
lists all SPR-I:PROC events (all procedure lines) from the event log file into the file my.events.

view.old.events -l $STOL_LOG/seqevh.log.941225.08 “SPR INFO PROC” >xmas

lists the SPR-I:PROC (all procedure line) events from the file indicated in the -l option to the file xmas.events.

➔ view.current.events [-f "filters..."]

This command filters the events now being received (or a file specified in the -l option) based upon the input filter set-
tings.

For example:

view.current.events -f "SPR INFO PROC"

lists all SPR-I:PROC events as they occur at your workstation.

view.current.events -f "SPR INFO PROC" >my.events

lists all SPR-I:PROC events (all procedure lines) into the file my.events.

view.current.events <my.filters >flight.events where file my.filters contains:

TLMH INFO
SC ACS ACEA ACEB
PSC PACS PAEA PAEB

lists all flight software messages to the file flight.events as they are received.

To end this operation, hit ctrl-c.

➔ view.primary.events [-f "filters..."]

This command filters the events now being received at the Primary Test Conductor Workstation based upon the input filter
settings.

For example:

view.primary.events -f "SPR INFO PROC"

lists all SPR-I:PROC events as they occur at the PTCW.

view.current.events -f "SPR INFO PROC" >my.events

lists all SPR-I:PROC events (all procedure lines) into the file my.events as they occur at the PTCW.

view.current.events <my.filters >flight.events
7-14 ASIST Users Guide–Version 9.6

Event Message Handling
where file my.filters contains:

TLMH INFO
SC ACS ACEA ACEB
PSC PACS PAEA PAEB

lists all flight software messages to the file flight.events as they are received at the PTCW.

To end this operation, hit ctrl-c.

How to Tail the Event Log for Programmers

If you want to write a program which tails the current event log, you should use the Unix shell script:

follow_event_log [machine-name]

where machine-name is the workstation whose event log should be followed. If none is specified, the event log of the
machine it is run on is used.

Its advantages over the traditional tail -f are:

• it recognizes when a newlog has been issued, and reopens the new log file;

• it can follow the event log on either your current workstation or on a remote workstation (for which it uses remote
shell commands); and

• it closes when the event handler closes.
ASIST Users Guide–Version 9.6 7-15

CHAPTER 7
How to Make ASIST’s Main Event Page Color

By adding:

export EVENTS_IN_COLOR=1

to your ASIST_user_profile, you can have your main event window (X) be display events in color. You can set the colors
yourself by defining a color event filter file (see “Setting Up Color Event Log Filters” on page 7-11 for how this is done),
and then create an event control file by typing at the Unix prompt:

GEVH_gen_color_awk <event_filter_file >$WORK/db/event_colorer.awk

The next time you start ASIST, it will use your color settings.

The color events window uses the event control file, event_colorer.awk, from your $WORK/db directory. If it doesn't find
one there, it looks in the system area.

• When defining the event_filter_file, make sure it defines all events. You can still use the SETLOG directive from
STOL to turn on and off viewing of events, but if a set of events isn't defined in you filter file, you will have no way of
viewing them.

• A sample event_filter_file is contained in $sgse_root/db/event_filter_file. You can copy this to your local directory as
a basis to start from. The file looks like this:

(*,INFO,*) __FG_WH_
(*,WARNING,*) __FG_YE_
(*,ERROR,*) __FG_YE_
(*,FATAL,*) __FG_YE___BG_RE_
(SPR,INFO,*) __FG_GR_
(SPR,INFO,OPRO) __FG_11_
(SPR,INFO,OPRI) __FG_CY_
(SPR,INFO,PROC) __FG_14_
(TLMH,INFO,*) __FG_GR_
(VCVT,INFO,LF) __FG_GR_
(VCVT,WARNING,LF) __FG_BK___BG_YE_
(VCVT,ERROR,LF) __FG_WH___BG_RE_
(*,DEBUG,*) __FG_BL_
(*,*,DBG) __FG_BL_

• The event control file is only read when you start ASIST, so if you want to change it, you have to bring ASIST down
and back up.
7-16 ASIST Users Guide–Version 9.6

AS
CHAPTER 8 Telemetry Processing
In ASIST, telemetry is defined as data received from outside the ASIST workstation. The most common form of telemetry
is spacecraft telemetry, which comes through the SIS. ASIST can also handle telemetry from other devices, such as test
equipment on the GPIB bus (see the chapter describing the GPIB bus interface) or from custom equipment, such as the
Hybrid Dynamic Simulator or the ACS Stimulator of XTE/TRMM.

Telemetry is received in packages called SFDUs. Each SFDU contains one or more packets of data (which are identified
by their application IDs) and information about the SFDU and each of these packets of data (called annotation data).

Each telemetry source is assigned a physical channel between A and Z. You can control the use of these channels with the
ACQUIRE, ARCHIVE, and PLAYBACK directives described in this chapter.

Each packet is also assigned a virtual channel, between 0 and 63, by the telemetry source. You can control acquisition of
data on these virtual channels (within the physical channels you are acquiring) by using the ENABLE_VC and
DISABLE_VC directives described in Appendix A.
IST Users Guide–Version 9.6 8-1

CHAPTER 8
How a telemetry SFDU is processed

When ASIST receives an SFDU, it determines:

When the telemetry processor receives an SFDU (which is being acquired), it splits the SFDU into individual packets.
Each packet, in turn is checked by the telemetry processor to see whether should be placed in the Current Value Table
(CVT). A packet will not be put in the CVT if:

After the packet is put into the CVT, its quality is checked to determine if it should be processed (the quality is included as
part of the annotation data). If the packet has bad quality (either it was not complete, or it contained unrecoverable errors),
a warning-level event message is printed. Otherwise, it is:

To view information about telemetry flow while ASIST is running, open the following telemetry pages:

Should the data be: If so, then:

archived to disk? Append it to the current archive file.

“acquired” (put in CVT)? Send it to the telemetry processor

Condition Indication

Its APID is not defined in the telemetry database An error-level event message

Its Virtual Channel is not being acquired None

It is longer than the length defined in the database A warning-level event message

It is shorter than the length defined in the database and it is not
defined as variable length

A warning-level event message

Limit Checked Any items within this packet for which limit-checking has been requested are checked to deter-
mine if they are within their defined limits.

Trended Added to on-going trending statistics.

Used to trigger event-
driven pseudo-telemetry

Any pseudo-telemetry equations which are supposed to occur when this packet arrives (as
described in“Event-Driven Pseudo-Telemetry” on page 4-32) are performed.

Sequential Printed Sent to any processes who requested sequential printing of a telemetry point within this packet.

Page Displays:

Link Status A graphical overview of the telemetry and command processes.

TLM Status A summary of the telemetry received.

LAST PKT Information about the last telemetry packet received

FSM Status (For those with a FEDS) Information about the front-end telemetry link.
8-2 ASIST Users Guide–Version 9.6

Telemetry Processing
How a telemetry point is interpreted

All data is stored in the CVT in the same manner in which it was received in telemetry. This is not, however, how you
always want to see it. Thus, ASIST gives you many ways to view the same data.

Processed vs. Swapped vs. Raw

When requesting data, you can request it any of the following three ways:

Conversion to swapped

To read a swapped value from the CVT, ASIST must:

1. Get from the CVT the correct number of bytes for this data type.
2. AND this value with the mask (from MASK in RDL).
3. Shift this value to the right the defined number of bits (from LSHIFT).
4. IF this value is to be inverted (INVERT in RDL) THEN
4.1. Invert all the bits in the value.
4.2. ENDIF
5. IF this value is to be reversed (REVERSE in RDL) THEN
5.1. Reverse all bits in this value (# of bits to reverse=# in mask).
5.2. ENDIF
6. AND this value again with the mask shifted by the LSHIFT, to remove excess bits from Invert and Reverse.
7. IF the representation is unusual, THEN
7.1. Call a routine to convert from that format to workstation format.
7.2. ENDIF
8. IF this value should be negated (NEGATE in RDL) THEN
8.1. Value=-Value
8.2. ENDIF
9. RETURN swapped value.

Conversion to Processed

To read a processed value from the CVT, ASIST must:

1. Get the swapped value.
2. IF the telemetry point is analog THEN
2.1. Apply a conversion (i.e. polynomial) using the defined coefficients.

Method Prefix What you get

Raw R@ A hex value in exactly the order it was received. This value is not swapped or
masked.

Swapped none Counts. The value you requested, swapped, masked, shifted, and interpreted
according to its database definition.

Processed P@ Engineering units. This is the swapped value which is then converted, using
the polynomial defined in the database (if analog) or the discrete label (if dis-
crete).
ASIST Users Guide–Version 9.6 8-3

CHAPTER 8
3. ELSE
3.1. Find the discrete label for this value.
4. ENDIF

For discrete telemetry points, the value returned is a string.

For analog telemetry points, if a set of coefficients has been defined for the telemetry point, a floating point value is
returned. Otherwise, the swapped value is returned.

Putting values back into the CVT

To put values back into the CVT, such as assigning them in STOL, ASIST reverses the above algorithm. Assignments in
STOL that do not use the P@ modifier on the target of the assignment are assumed to be swapped values.

Scalar Data Types

All telemetry data within ASIST can be broken down to four base data types: INTEGER, FLOAT, TIME, and CHAR.
Using these base types and the SIZE (number of bytes), ORDER (data swapping), and REPRESENTATION (how to
interpret the data) keywords in RDL, you can define almost any type a spacecraft can generate. A set of standard defined
types are delivered with ASIST to maintain backwards compatibility (they are the data types used on XTE and TRMM).

Data Type Size Description Valid Representation

INTEGER 1…4a

a. Bold items are the default.

Integer UNSIGNED,
TWOS_COMPLEMENT,
ONES_COMPLEMENT,
SIGNED_MAGNITUDE

FLOAT 4,8 Floating point number IEEE, R000_FLOAT

TIME 4…8 Time CCSDS_UNSEGMENTED_TIME,
CCSDS_SEGMENTED_TIME, PB5

CHAR 1 Character string TWOS_COMPLEMENT

Data Type Size Definition

UB 1 Integer Size=1, Representation = Unsigned, Desc=" Unsigned Byte"

SB 1 Integer Size=1, Representation = Twos_complement, Desc=" Signed Byte"

UI 2 Integer Size=2, Representation = Unsigned, Desc=" Unsigned Word Integer"

SI 2 Integer Size=2, Representation = Twos_complement, Desc=" Signed Word
Integer"

ULI 4 Integer Size=4, Representation = Unsigned, Order=(3,4,1,2), Desc=" Unsigned
Long Word Integer"

SLI 4 Integer Size=1, Representation = Twos_complement, Order=(3,4,1,2), Desc="
Signed Long Word Integer"
8-4 ASIST Users Guide–Version 9.6

Telemetry Processing
SFP 4 Float Size=4, Representation = IEEE, Order=(3,4,1,2), Desc=" Single Preci-
sion IEEE Floating Point"

DFP 8 Float Size=4, Representation = IEEE, Order=(7,8,5,6,3,4,1,2), Desc=" Double
Precision IEEE Floating Point”

FILL 1 Integer Size=1, Representation = Unsigned, Desc=" Fill Bytes"

CUC_TIME 8 Time Representation=CCSDS_Unsegmented_Time,Size=8,Sub_Size=4, Rela-
tive, Desc="A CCSDS Unsegmented Time”:

STIM 4 Time Representation=CCSDS_Unsegmented_Time, Size=4,Sub_Size=0, Rel-
ative, Desc="Short Standard Time”

MET 8 Time Representation=CCSDS_Unsegmented_Time, Size=8,Sub_Size=4, Rel-
ative, Desc="Mission Elapsed Time”

SMET 4 Time Representation=CCSDS_Unsegmented_Time, Size=4,Sub_Size=0, Rel-
ative, Desc="Short Mission Elapsed Time”

CUT 8 Time Representation=CCSDS_Unsegmented_Time, Size=8,Sub_Size=4,
Absolute=93-1-0:0:0, Desc="Correlated UTC”

SCUT 4 Time Representation=CCSDS_Unsegmented_Time, Size=4,Sub_Size=0,
Absolute=93-1-0:0:0, Desc="Short Correlated UTC”

UTC 8 Time Representation=CCSDS_Unsegmented_Time, Size=8,Sub_Size=4,
Absolute=93-1-0:0:0, Correlated, Desc="Universal Coordinated Time”

SUTC 4 Time Representation=CCSDS_Unsegmented_Time, Size=4,Sub_Size=0,
Absolute=93-1-0:0:0, Correlated, Desc="Short Universal Coordinated Time”

UNXT 4 Time Representation=CCSDS_Unsegmented_Time, Size=4,Sub_Size=0,
Absolute=70-1-0:0:0, Desc="UNIX Time”

PB5A 4 Time Representation=PB5,Size=4,Sub_Size=0,Desc=”PB5 Time with no msec
or usec”

PB5B 6 Time Representation=PB5,Size=6,Sub_Size=0,Desc=”PB5 Time with 2 bytes
of msec since last sec.”

PB5C 7 Time Representation=PB5,Size=7,Sub_Size=0,Desc=”PB5 Time with 2 bytes
of msec since last sec + 1 byte usec.”

PB5D 8 Time Representation=PB5,Size=8,Sub_Size=0,Desc=”PB5 Time with 2 bytes
of msec since last sec + 1 byte usec + 1 byte nsec”

PB5E 5 Time Representation=PB5,Size=5,Sub_Size=1,Desc=”PB5 Time with 1 byte
of binary fraction subseconds”

PB5F 6 Time Representation=PB5,Size=6,Sub_Size=2,Desc=”PB5 Time with 2 bytes
of binary fraction subseconds”

PB5G 7 Time Representation=PB5,Size=7,Sub_Size=3,Desc=”PB5 Time with 3 bytes
of binary fraction subseconds”

PB5H 8 Time Representation=PB5,Size=8,Sub_Size=4,Desc=”PB5 Time with 4 bytes
of binary fraction subseconds”

CDS_TIME6 6 Time Representation=ccsds_segmented_time,Size=6, Desc=”CCSDS Stan-
dard Segmented Time with Bytes 1-2=Day of epoch, 3-6=msec of day”

CDS_TIME7 7 Time Representation=ccsds_segmented_time,Size=7, Desc=”CCSDS Stan-
dard Segmented Time with Bytes 1-3=Day of epoch, 4-7=msec of day”

Data Type Size Definition
ASIST Users Guide–Version 9.6 8-5

CHAPTER 8
Data Swapping

In order to convert values from the way they are received to a format ASIST can process, their bytes must often be
swapped. ASIST allows you to swap bytes in any order desired. For example:

CHAR and UB arrays can be swapped over the entire array. The swap order list can contain up to eight (8) values (i.e.
order=(1,2,3,4,5,6,7,8)). After that, the pattern repeats itself, adding 8 to each value. For example, the variable SwapMe
(defined below) would be swapped as shown in the following table:

CHAR SwapMe[16] ORDER=(4,3,2,1,8,7,6,5)

All base data types are, by default, unswapped. The defined data types defaults are:

CDS_TIME8 8 Time Representation=ccsds_segmented_time,Size=8, Desc=”CCSDS Stan-
dard Segmented Time with Bytes 1-2=Day of epoch, 3-6=msec of day, 7-
8=usec after msec”

CDS_TIME9 9 Time Representation=ccsds_segmented_time,Size=9, Desc=”CCSDS Stan-
dard Segmented Time with Bytes 1-3=Day of epoch, 4-7=msec of day, 8-
9=usec after msec”

Entry in RDL Causes

ULI FUNNY_VALUE ORDER=(4,3,2,1) Swapping from big to little endian.

ULI FUNNY_VALUE ORDER=(1,2,3,4) No swapping to occur

ULI FUNNY_VALUE ORDER=(3,4,1,2) Swapping the way XTE or TRMM does.

Swap Order 4 3 2 1 8 7 6 5
4
+8

3
+8

2
+8

1
+8

8
+8

7
+8

6
+8

5
+8

Original A B C D E F G H I J K L M N O P

Swapped D C B A H G F E L K J I P O N M

Data Type Default Representation Default Swap Order

UB Unsigned 1

SB Twos Complement 1

UI Unsigned 1,2

SI Twos Complement 1, 2

ULI Unsigned 3, 4, 1, 2

SLI Twos Complement 3, 4, 1, 2

SFP IEEE 3, 4, 1, 2

DFP IEEE 7, 8, 5, 6, 3, 4, 1, 2

All Others As downlinked 1,2,3,4,5,6,7,8

Data Type Size Definition
8-6 ASIST Users Guide–Version 9.6

Telemetry Processing
User-Defined Data Representation

The representation of data received may also be defined by the user. ASIST supports the following integer representa-
tions.

ASIST supports two floating point types, IEEE and R000_FLOAT.

For times, ASIST supports the following representations:

Representation Meaning

UNSIGNED The high-order bit is part of the magnitude.

TWOS_COMPLEMENT A sign bit, followed by the magnitude, which is converted to ones complement plus
one if negative. This is the usual definition of a signed integer.

ONES_COMPLEMENT A sign bit, followed by the magnitude, which is inverted if negative.

SIGN_MAGNITUDE A sign bit, followed by the actual magnitude.

Representation Meaning

IEEE The floating point data types defined in the IEEE floating point standard (either 4 or 8
bytes). This is the default for floating points.

R000_FLOAT The floating point data type used by the UTMC 69R000 processor.

Representation Meaning

CCSDS_UNSEGMENTED_TIME Time data in the format defined by CCSDS for unsegmented time. This form is sec-
onds since a given epoch, optionally followed by a binary fraction containing subsec-
onds.

CCSDS_SEGMENTED_TIME Time data in the format defined by CCSDS for segmented time. This form includes
days since a specified epoch, and msec of day, and optionally the usec since that
msec.

PB5 Segmented time in the format called PB5. All forms of PB5 include truncated julian
days since a specified epoch, and second of day. Additionally, the various forms may
include subseconds, either as a binary fraction (PB5E-PB5H) or in separate fields for
msec, usec, and nsec (PB5A-PB5D).
ASIST Users Guide–Version 9.6 8-7

CHAPTER 8
Physical Channel Control

Real-Time Acquisition

The ground system can receive real-time telemetry data from up to 26 physical channels. Usually, the channels used for
receiving real-time telemetry from the spacecraft are the I and Q channels. You may at any time select whether or not to
receive data from either of these channels (or both) using the ACQUIRE command in STOL. The syntax of this com-
mand is:

ACQUIRE channel ON|OFF

 (or ACQ for short)

To acquire both the I and the Q channels, an ACQUIRE directive must be entered for each channel as illustrated below.

ACQUIRE I ON

ACQUIRE Q ON

As each packet is received, the telemetry handler checks the quality flag. If the quality flag is good, the packet is limit-
checked, sent to the sequential print process, and placed in the current value table. If the quality flag is bad, the packet is
placed in the current value table and an error message is reported, but no further processing takes place.

The telemetry handler also maintains the number of messages received, the number of packets received, the number of
packets processed, rejected, of good quality, of bad quality, etc. These statistics are placed in the current value table and
updated each time a new telemetry message is received.

Archival

The ground system can save archives of data from any of the telemetry channels, even those not currently being acquired.
To do so, use the ARCHIVE command in STOL. Each archive is logged with a start and end time (in ground time) and an
identifier up to 32 characters long describing the data. All combinations of the 26 channels can be archived at any time.
To start archiving, type:

ARCHIVE ON identifier channels

 and to stop archiving:

ARCHIVE OFF

Archives are stored on the machine's hard drive, and recorded in a catalog which can be viewed by typing LISTARC
from the STOL window. The format of this report is:

Seq. # ID Start Time End Time # SFDUs
 0 MORNING 1993 197 16:13:43 1993 197 16:14:19 38
 1 NOTHING 1993 197 17:47:27 1993 197 17:47:32 0
 2 RUN3 1993 197 17:49:17 1993 197 17:50:49 93

If archiving is currently on, and a new archive command is issued, the old archive is closed, and a new one is created. For
example:

ARCHIVE ON MYARC I
8-8 ASIST Users Guide–Version 9.6

Telemetry Processing
turns on archiving of channel I into an archive with an ID of MYARC. If this is done after the LISTARC command
above, the new archive has a sequence number of three. If you then type:

ARCHIVE ON MOREARC IQ

the archive MYARC (sequence number three) is closed. Then a new archive, with ID=MOREARC and sequence number
four, is opened, and both I and Q data are stored in it. If you type:

ARCHIVE OFF

the current archive (MOREARC) is closed and archiving is turned off.

Playback

The ground system can also play back archived data. This may be done for any combination of channels that was
archived. Playback is performed from local archive files which were created using the ARCHIVE command. Select
which archive to use by looking at the report generated by LISTARC (see above) and use the name of the desired archive.
To begin playback, type the following command:

ACQUIRE PLBK ON archive-name channels [FROM start-time] [TO end-time]
[RATE (MANUAL | Xrate-multiplier | constant-rate)]

To stop playback before it ends on its own, type:

ACQUIRE PLBK OFF

Playback reads the indicated archive and sends it to the ground system at the same rate at which the data entered the
ground system. This continues until the end of the archive is reached or until you send a directive to turn off playback.
Then, the ground system switches back to real-time mode with acquisition off. An event message is printed indicating the
number of frames played back.

Playback normally plays back from the beginning of the archive to the end. To start playback at some time after the start
of an archive, use the FROM option on the ACQ PLBK ON command. This will cause the playback software to find the
first SFDU received after the given time and start playback from there.

Similarly, playback normally plays back until the end of the archive. To end playback at some time before the end of an
archive, use the TO option on the ACQ PLBK ON command. This will cause the playback software to stop when it sees
an SFDU which was received after the time indicated in the TO option.

Playback is normally performed at the same rate the telemetry was originally received (called real-time). Using the RATE
option, you may play back at a number of different rates. These are:

• A multiple of real-time: By adding the option RATE Xrate-multiplier to the acquire directive, you can cause telemetry
to be played back at a multiple of the original rate. For example:

ACQ PLBK ON 1 IQ RATE X4
ACQ PLBK ON MYARC IQ RATE X4

would playback archive number 1 and archive MYARC on both I and Q channels at four times the original rate (4 ×
real-time).

• A constant rate: By adding the option RATE constant-rate, where constant-rate is the number of seconds between
each SFDU, you cause the telemetry to be played back at a constant rate. For example:

ACQ PLBK ON 1 IQ RATE 2
ASIST Users Guide–Version 9.6 8-9

CHAPTER 8
would playback archive number 1 on both I and Q channels, sending one SFDU every two seconds.

• Manually: By adding the option RATE MANUAL, you cause the playback software to send SFDUs only when you
request them. To request one (or more) SFDUs in MANUAL rate, send the ACQ TRIGGER directive. This is useful
for single- stepping through data.

When in Manual Rate playback, the ACQ TRIGGER directive is used. When sent without a parameter, it means send
one SFDU.

ACQ TRIGGER

When sent with a parameter, it means send the indicated number of SFDUs.

ACQ TRIGGER 5 ! Send 5 SFDUs NOW

While playing back telemetry, you can look at the telemetry point PLAYBACK_TIME to see the ground receipt time of the
last SFDU played back.
8-10 ASIST Users Guide–Version 9.6

Telemetry Processing
Archive Tools

Several tools are provided to help in the management of archives:

LISTARC: This utility gives a list of the archive files currently on line. The syntax for this command is:

LISTARC

Typing LISTARC will generate a report of the following form:

Seq. # ID Start Time End Time # SFDUs
 0 MORNING 1993 197 16:13:43 1993 197 16:14:19 38
 1 NOTHING 1993 197 17:47:27 1993 197 17:47:32 0
 2 RUN3 1993 197 17:49:17 1993 197 17:50:49 93

DELETEARC: This utility allows you to delete an archive from the hard drive. This is necessary to prevent the hard
drive from becoming full. The syntax for this command is:

DELETEARC archive-name

STATARC: This utility creates a report for a specified telemetry archive. The syntax is:

STATARC [-x] archive-name

The report will contain the number of I and Q channel packets, the number of packets from each virtual channel, the num-
ber of packets for each APID, and the total number of packets in the archive. The optional -x argument generates addi-
tional statistics on each physical channel, virtual channel, and telemetry packet.

From STOL, the report output is placed in the file $WORK/arc_stats.log. Here is what a STATARC report looks
like:

Archive Statistics Utility
Run on 94-012-17:23:43.914 from Archive #0

Physical Channel I Q
Count 3994 0

Virtual Channel 0x0
Count 3994

Application ID 0x1 0x2 0x4 0x5 0x7 0xD 0xE 0xF
Count 35 36 22 22 118 6 442 111
Application ID 0x10 0x11 0x13 0x14 0x15 0x16 0x17 0x18
Count 110 110 110 111 110 110 110 111
Application ID 0x1A 0x1B 0x1C 0x1D 0x1E 0x62 0x63 0x64
Count 110 110 111 110 110 442 442 221
Application ID 0x65 0x66 0x67 0x6B
Count 221 221 221 1

Total packets processed: 3994
First header sequence : 67
Last header sequence : 494
ASIST Users Guide–Version 9.6 8-11

CHAPTER 8
DUMPARC: This utility creates a report containing a dump of the contents of the specified archive. The syntax for this
command is:

DUMPARC [qualifiers] archive-name

where qualifiers may be one or more of the following:

-p display the message header,

-a display the annotation data,

-s display the packet header,

-z display the archive header,

-d display the packet data,

-oapid display packets with the specified apid only . If apid is non-numeric, then it is assumed to be an SFDU’s
ddid, and only SFDUs with that ddid are displayed.,

-m Interpret any following times as METs, not GMTs,

-ftime display packets which are time-stamped on or after time,

-ttime display packets which are time-stamped on or before time,

-c exclusion-file interprets all SFDU data as CCSDS packets. The optional exclusion-file allows you to specify a file containing
a list of SFDU ddids which should not be interpreted as CCSDS.

This report may contain one or more of: message header, annotation data, packet header, or packet data, at the discretion
of the user. From STOL, The report output is placed in the file $WORK/arc_dump.log. If the -f option is not specified,
the dump report begins with the first record in the archive. Likewise, if the -t is not specified, the dump report ends with
the last record in the archive. Output is generated in the following format:

Archive Dump Utility
Run on 94-012-17:45:26.337 from Archive #0

Packet #1, APID = 0x2, 158 bytes

Message Header:
Header Sequence = 67
Packet Count = 3
Physical Channel = I
Generation Time = 93-264-12:03:12.090

Packet Annotation:
Quality Flags = 0x0
VCDU Counter = 0
Virtual Channel = 0
Recorder ID = 0
Recorded VCDU = 0
Packet Sequence = 128
Processed Time = 93-264-12:03:20.110

Packet Header:
Packet APID = 0x2
Packet Seq Cntl = 128
Packet Length = 151
8-12 ASIST Users Guide–Version 9.6

Telemetry Processing
Packet Time = 00-000-00:10:38.501

Packet Data:
0000 08 02 C0 80 00 97 00 00 02 7E 80 38 F0 04 00 00 ~.8....
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This report was created by entering: DUMPARC -p -a -s -d MYARC.

CMPFIXED: This utility compares a fixed pattern with the specified archive. The syntax for this command is:

CMPFIXED archive-name vcid apid filter pattern [output [miscompare]]

where:

vcid is the virtual channel identifier (0-63),

apid is the packet APID (0-2047),

filter is the filter parameters in the form integer:integer,

pattern is the name of the input pattern file,

output is the name of the output report file,

miscompare is the name of the file that contains the contents of all packets that incorrectly compared.

Each record in the specified archive is read and if the current record contains a telemetry packet with the given APID and
from the given virtual channel, it is compared byte by byte to the patterns specified in the input pattern file. If the packet
compares successfully, processing continues with the next record. If the packet does not compare correctly, an error is
written to the report file and the incorrect packet is written to the miscompare file. This utility also monitors the sequence
number of each packet and if a packet number is not in the correct sequence, an error is written to the report file.

Unless otherwise specified, the report file and the miscompare file are written to the $WORK directory. If the report file
and the miscompare file are specified, all output is directed to a separate window. The pattern file is read from the $PRI-
VATE directory.

The input pattern file requires a fixed format of three fields. Each field is separated from the next by one or more spaces or
tabs. Lines that start with a semicolon are comments and are ignored.

The first field specifies an address range for the pattern, in the format:

start_offset-end_offset.

The values are interpreted as offsets from the beginning of the packet.

The second field specifies the pattern type. There are three different pattern types: FIXED, REPEAT, and RAMP. A
FIXED pattern compares each specified data byte with the corresponding data byte in the telemetry packet. The pattern
does not wrap if the specified address range is larger than the pattern. A REPEAT pattern is similar to a FIXED pattern,
ASIST Users Guide–Version 9.6 8-13

CHAPTER 8
except that a REPEAT pattern wraps if the address range is longer than the pattern. A RAMP pattern compares a single
byte in each packet. The pattern starts with the specified starting value and after each comparison, the pattern value is
incremented by the specified amount.

The following is an example of a pattern file:

;
;;
; Address Range Pattern Type Pattern Data
 0x00-0x03 FIXED 0x01 0x10 0x22 0xFF
 0x04-0x04 RAMP 00 BY 1
 0x06-0x0F REPEAT 0x55 0x00 0xAA 0xFF

Observe that numbers may be entered in decimal, octal, or hexadecimal format. Octal numbers are entered by preceding
the number with 0, for example 0123. Hexadecimal numbers are entered by beginning the number with 0x, for example
0x123.

Here is an example report file:

Archive Compare With Fixed Pattern Utility
 Run on 94-012-19:50:38.270 from Archive #0
 with VCID = 0 (0x0), APID = 13 (0xD), Filter = 1:2

Error #1
 FIXED pattern/data mismatch
 Packet 0
 Offset 0 (0x0)
 Expected 0x01 Found 0x08

Error #2
 Sequence Gap
 Expected 2 Found 1
 Missed 1 packets between sequence #0 and sequence #1

Last Packet Annotation:
 Quality Flags = 0x0
 VCDU Counter = 0
 Virtual Channel = 0
 Recorder ID = 0
 Recorded VCDU = 0
 Packet Sequence = 0
 Processed Time = 93-264-12:04:16.730

Current Packet Annotation:
 Quality Flags = 0x0
 VCDU Counter = 0
 Virtual Channel = 0
 Recorder ID = 0
 Recorded VCDU = 0
 Packet Sequence = 1
 Processed Time = 93-264-12:04:16.730
8-14 ASIST Users Guide–Version 9.6

Telemetry Processing
Summary Statistics
 Total Packets Read : 3995
 Total Packets Processed : 6
 Starting Packet Sequence: 0
 Ending Packet Sequence: 5
 Total Errors : 2
 Total Miscompares : 1
 Total Sequence Gaps : 1
 Total Missing Packets : 1

The following is an example miscompare file:

Archive Compare With Fixed Pattern Utility
 Run on 94-012-19:50:38.271 from Archive #0
 with VCID = 0 (0x0), APID = 13 (0xD), Filter = 1:2

Error #1
Packet Sequence #0 Data:
0000 08 0D C0 00 00 0D 00 00 00 01 65 51 80 00 10 00 eQ....
0010 00 00 00 00

CMPVAR: This utility compares two archives and reports any differences in the packets you specify. Its syntax is:

CMPVAR archive1 archive2 channel apid [output]

where:

CMPVAR allows you to compare a packets in a specified physical channel, or in ALL physical channels; it likewise can
compare packets of a specific APID or for ALL APIDs. CMPVAR does a byte-by-byte comparison and reports any dis-
crepancy between the two archives. When there is a miscompare, CMPVAR will stop the byte-by-byte comparison for
that particular packet and report the miscompare starting with the byte that is different between the archives.

CMPVAR will also check for bad quality flags, and packet sequence counter, message sequence counter and VCDU
counter sequence errors. When checking VCDU counters, CMPVAR makes a “best guess” at the “correct” VCDU
counter, since the actual VCDU information is removed by the FEDS. If there was “fill” in a VCDU, CMPVAR has no
way of knowing and may report a VCDU sequence error even though it actually might be OK.

Specifically, for science packets, where the packet sizes are huge and there are in general minimal fill, the VCDU counter
is calculated correctly by CMPVAR while for housekeeping packets where the packet sizes are small and there is a lot of
fill, CMPVAR may report VCDU sequence errors where FILL was used to maintain VCDU sequence.

When processing is complete, CMPVAR prints summary statistics including the number of errors and the number of pack-
ets processed.

archive1 is the name of the first archive to be compared

archive2 is the name of the second archive to be compared

channel is the physical channel for those packets to be compared (or ALL to compare all physical channels)

apid is the APID of packets to be compared (or ALL to compare all APIDs)

output is the name of the output report file
ASIST Users Guide–Version 9.6 8-15

CHAPTER 8
The following is an example of running CMPVAR:

CMPVAR EFUNCOMP efunc3 I all

In this example, the archives “EFUNCOMP” and “efunc3” were compared. All packets on the I channel were compared.
The following is the output:

Archive Compare With Variable Packets Utility
Run on 96-285-19:52:14.294 with:

 Archive 1 = EFUNCOMP
 Archive 2 = efunc3
 Physical Channel = I
 APID = ALL

***** Error #1 (Miscompare #1) *****

APID 59 (Hex), Packet Sequence #204

Data in Archive 1:
0000 08 59 C0 CC 00 7F 2E 79 4C BE 02 4E 00 00 87 87 .Y.....yL..N....
0010 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0020 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0030 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0040 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0050 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0060 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0070 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0080 87 87 87 87 87 87

Data in Archive 2:
0000 08 59 C0 CC 00 7F 2E 79 4C BE 02 4E 00 00 87 87 .Y.....yL..N....
0010 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0020 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0030 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0040 87 87 87 87 87 87 87 87 88 87 87 87 87 87 87 87
0050 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0060 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0070 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
0080 87 87 87 87 87 87

Error 1: Miscompare on Byte 48

***** Error #2 (Miscompare #2) *****

APID 24 (Hex), Packet Sequence #203

Data in Archive 1:
0000 08 24 C0 CB 00 4D 2E 79 4C BE 02 4E 00 00 00 17 .$...M.yL..N....
8-16 ASIST Users Guide–Version 9.6

Telemetry Processing
0010 20 E8 FE EF BD 07 08 09 0A 0B 0C 0D 0E F5 60 11 `.
0020 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
0030 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
0040 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 23456789:;<=>?@A
0050 42 43 44 45 BCDE

Data in Archive 2:
0000 08 24 C0 CB 00 4D 2E 79 4C BE 02 4E 00 00 00 17 .$...M.yL..N....
0010 20 E8 FE EF BD 07 08 09 0A 0B 0C 0D 0E F5 60 11 `.
0020 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
0030 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 39 "#$%&'()*+,-./09
0040 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 23456789:;<=>?@A
0050 42 43 44 45 BCDE

Error 2: Miscompare on Byte 3F

***** Error #3 (Miscompare #3) *****

APID 24 (Hex), Packet Sequence #208

Data in Archive 1:
0000 08 24 C0 D0 00 4D 2E 79 4C BE 02 EE 00 00 00 1C .$...M.yL.......
0010 25 FB F2 B4 4E 07 08 09 0A 0B 0C 0D 0E 83 B0 11 %...N...........
0020 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
0030 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
0040 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 23456789:;<=>?@A
0050 42 43 44 45 BCDE

Data in Archive 2:
0000 08 24 C0 D0 00 4D 2E 79 4C BE 02 EE 00 00 00 1C .$...M.yL.......
0010 25 FB F2 B4 4E 07 08 09 0A 0B 0C 0D 0E 83 B0 11 %...N...........
0020 12 13 14 15 99 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
0030 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
0040 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 23456789:;<=>?@A
0050 42 43 44 45 BCDE

Error 3: Miscompare on Byte 24

==

SUMMARY OF STATISTICS

Archive 1: EFUNCOMP
Archive 2: efunc3
Physical Channel: I
Run at: 96-285-19:52:14.351
ASIST Users Guide–Version 9.6 8-17

CHAPTER 8
--
Number of Packets Processed in Archive 1 : 79
Number of Packets Processed in Archive 2 : 79
Number of APID's Processed (Both Archives) : 11
Number of Packets Compared : 79
Number of Virtual Channels in Archive 1 : 1
Number of Virtual Channels in Archive 2 : 1

Number of Miscompares : 3
Number of Pkt Seq Errors (Both Archives) : 0
Number of Missed Pkts, Archive 1 : 0
Number of Missed Pkts, Archive 2 : 0
Number of VCDU Seq Errors, Archive 1 : 0
Number of VCDU Seq Errors, Archive 2 : 0
Number of VCDU's Missed, Archive 1 : 0
Number of VCDU's Missed, Archive 2 : 0
Number of Bad Quality Flags, Archive 1 : 0
Number of Bad Quality Flags, Archive 2 : 0

Total Number of Errors : 3

packet_files: This utility converts archives into binary files containing raw packet data. You specify what archive to use,
the name of the file(s) generated, and what apid(s) to put into each. This command is available only from the Unix
prompt, and is of the syntax:

 packet_files archive-name [-s start-time] [-e end-time] -f output-file [-A] -a apid1[-apid2] [-a apid1[-apid2] ...] [-f
...]

where:

archive-name specifies the archive to convert,

start-time time in the archive to begin the conversion from (for subsetting data from an archive),

end-time time in the archive to end the conversion from (for subsetting data from an archive),

output-file specifies the file to write the packet data to (Note: multiple files may be specified),

-A specifies that all packets should be put in the output file,

-a apid1 specifies that apid1 should be placed in the output file. This apid can be specified in decimal, or as a
C-formatted hex value (i.e. 0x2f),

-a apid1-apid2 specifies that the range from apid1 to apid2 (inclusive) should be placed in the output file. These
apids can be specified in decimal, or as a C-formatted hex value (i.e. 0x2f),

-oapid display packets with the specified apid only . If apid is non-numeric, then it is assumed to be an
SFDU’s ddid, and only SFDUs with that ddid are displayed.,

The generated files are similar to the Level-Zero files generated on the front-end. You can generate multiple output files in
the same command by specifying multiple -f arguments; only the apids specified between the -f’s go into a given output
file. For example:

packet_files big_archive -f one_thru_ten -a1-10 -f eleven_seventeen -a11 -
a17 -f twozero_to_twof -a0x20-0x2f
8-18 ASIST Users Guide–Version 9.6

Telemetry Processing
generates three files: one_thru_ten will contain apids 1-10 (decimal), eleven_seventeen will contain packets with apid 11
and with apid 17, and twozero_to_twof will contain packets between 20(hex) and 2f(hex) (or 32 and 47 decimal).
ASIST Users Guide–Version 9.6 8-19

CHAPTER 8
Limit Checking

ASIST can monitor any telemetry point, determining whether it is within a set of user-defined limits. When a value
exceeds these limits, the user is notified.

Turning Limit Checking On

To turn ASIST's limit checker on or off, type:

CHECK [ON | OFF]

Enabling Limits for Telemetry Points

Once the limit checker is on, ASIST still needs to know what packets and variables should be monitored. This is done by
using the LIMIT directive from STOL. The syntax for this directive is:

LIMIT [ON | OFF] system-variable-name [ALL]

where system-variable-name is either a telemetry packet name or a telemetry point name

A telemetry point is monitored if:

• Limit checking is enabled for the packet that contains it.

• Limit checking is enabled for the telemetry point.

• Checking is globally enabled by CHECK ON.

To enable limit checking for a packet, type:

LIMIT ON packet-name

This causes limit checking to be performed for any values within the packet for which limit checking is enabled.

To turn on limit checking for an individual telemetry point, type:

LIMIT ON telemetry-point-name

Alternatively, to enable limit checking for all items within a given packet, and for the packet, type:

LIMIT ON packet-name ALL

For example:

To monitor the value of telemetry item THERMVALUE in packet P002, type:

LIMIT ON THERMVALUE; Enable checking for this item
LIMIT ON P002; Enable checking of its packet
CHECK ON; Turns limit checking on.
8-20 ASIST Users Guide–Version 9.6

Telemetry Processing
Is limit checking on?

To find out if the limit checker is on, type:

CHECK

and to find out if limit checking is enabled for a given telemetry item, type:

LIMIT system-variable-name

What do limits mean?

A telemetry point may be in one of three possible limit states: GREEN, YELLOW, or RED.

• GREEN means the value is within the specified safety limits.

• YELLOW means the value is approaching a safety violation.

• RED means the value is a safety violation.

For example:

Assume there is a power supply which must output 50 Volts. The acceptable range of error for this supply is plus or minus
two Volts. If the supply is more than three volts off, then it could cause other components to be destroyed.

A GREEN state is any value between 48 and 52 Volts.

A YELLOW state is reached if the voltage is less than 48 Volts or greater than 52 Volts. Note: When you are in a RED
state, you ALWAYS exceed the yellow limits also.

Thus, a RED state is reached if the voltage is less than 47 Volts or greater than 53 Volts.

To define this, set the limits in your RDL file to:

UI PowerSupplyVoltage RL=47,YL=48,YH=52,RH=53

or from STOL, type:

LIMIT DEFINE PowerSupplyVoltage RL=47,YL=48,YH=52,RH=53

What happens at limit boundaries?

In the above example, a value of 47.5 Volts is in a YELLOW state. But, what would the value 48 Volts be?

When defining limits, you must also define whether the limit boundary (i.e. 48 volts) is a violation. This is done using
INTERVALS.

There are two types of intervals, OPEN and CLOSED.

• An OPEN interval means the boundaries are violations. Thus, 48 Volts in the above example means the value is in a
YELLOW state if the interval is OPEN.
ASIST Users Guide–Version 9.6 8-21

CHAPTER 8
• A CLOSED interval means the boundaries are NOT violations. Thus, 48 Volts in the above example means the value
is in a GREEN state if the interval is CLOSED.

The default interval setting is OPEN.

What order are the states in?

Ranges provide a way to define the order of the GREEN, YELLOW, and RED states.

An INCLUSIVE range means that values must be inside the specified boundaries or they are in violation. Thus, the
GREEN state is between the Yellow Low and Yellow High boundaries (as shown below).

An EXCLUSIVE range means that values must be outside the specified range or they are in violation. Thus, the GREEN
state is below the Yellow Low OR above Yellow High boundaries (as shown below).

The default range setting is INCLUSIVE.

Use of Intervals and Ranges

Intervals and ranges provide a way to define exactly what values are and are not violations. This is important for values
with few possible states. Thus, for a relay which may only have the values 0 and 1, it is important to know exactly which
value causes a violation.
8-22 ASIST Users Guide–Version 9.6

Telemetry Processing
Common uses are:

• To define only one value as legal in RDL:

UI MyPoint CLOSED,RL=legal-value,RH=legal-value

Thus any value not equal to legal -value is in a RED state.

• To define all values except a certain value as legal in RDL:

UI MyPoint OPEN, EXCLUSIVE,RL=illegal-value,RH=illegal-value

Thus, any value not equal to illegal-value is in a GREEN state.
A value equal to illegal-value is in a RED state.

What Types of Limits are Available?

You can define your limits to be either RANGE limits or DELTA limits. These define what should be compared to the
Limit Boundary values to determine this points limits state:

• RANGE tells ASIST to compare the limit boundaries to the current value of this telemetry point, while

• DELTA tells ASIST to compare the limit boundaries to the difference between the current and previous values of this
telemetry point.

Limit types are defined using the LIMTYPE keyword in your telemetry definitions, i.e.:

UI RangerRick LIMTYPE=RANGE,RL=5,YL=10,YH=155,RH=555,Desc=”Goes into exception
when the value falls outside the range between YL and YH”

UI DeltaHouse LIMTYPE=DELTA,RL=-5.0, RH=7.5,Desc=”In exception when a new
value is received which is either 7.5 greater than the previous value, or
5.0 less than the previous value.”

The default is RANGE limits.

When Limits are Exceeded

When a monitored value is in a RED exception state, ASIST:

• Generates an event message about the exception. Note: By default, an event is generated each time the telemetry point

is received1.

• Changes the attributes of the value on all displayed pages. The quality flag is changed to “RH” or “RL,” and the color
is changed to red. Note: this feature is disabled if runtime annotations were turned off for the item when the page was
created.

• Halt any running STOL procedures.

When a monitored value exceeds a YELLOW limit (but not a RED limit), ASIST:

1. This can be modified using the RESHOW mnemonic frequency directive, which causes red limit violations to be reported only after
frequency packets in violation have been received (although you still receive an event when limits change state). See RESHOW’s
definition on page A-73.
ASIST Users Guide–Version 9.6 8-23

CHAPTER 8
• Generates an event message about the exception when:

•The value first enters the YELLOW state

•The value leaves the YELLOW state (either to RED or GREEN).

•The value changes more than the DELTA value specified for this item in the telemetry database.

• Changes the attributes of the value on all displayed pages. The quality flag is changed to “YH” or “YL,” and the color
is changed to yellow. Note: this feature is disabled if runtime annotations were turned off for the item when the page
was created.

Assigning multiple limits to a single telemetry point

You can define more than one set of limits for a given telemetry point. When you define multiple sets of limits, you must
assign a telemetry (or pseudo-telemetry) point whose value indicates which set to use (i.e. set 1, set 2, set 3, ...). Each limit
set is defined in telemetry RDL using the LIMIT_SETS=((set1),(set2),...) keyword, and can include any limit definition
(i.e. YL,RH,...), Open/closed, and inclusive/exclusive designations.

Syntax in RDL:

LIMSETS= [(limit-set-0), (limit-set-1), ...]

and

LIM_SWITCH="telemetry-point"

A limit switch value greater than the number of limit sets, or less than zero causes an error and disables limit checking of
this point.

Example:

UI which_side DESC="Which side is on?",
DISCRETE,DRANGE=(1,2,3,4),DLABEL=("A","B","BOTH","NEITHER"),

 equation =if (SideABusVoltage > 3.8) THEN
IF (SideBBusVoltage > 3.8) THEN

which_side = 3 /** Both **/
ELSE

which_side=1 /** A **/
ENDIF

ELSEIF (SideBBusVoltage > 3.8) THEN
which_side = 2 /** B **/

else
which_side = 4 /** Neither **/

endif
UI AAA Desc="AAA", Lim_switch="which_side",

Limsets=[(open, rl=3, yl=5, yh=7, rh=9),
(inclusive, limits=(10,12,14,18)),
(exclusive, rl=5, yl=3, yh=9, rh=7),
(open, inclusive, rl=20, yl=22, yh=24, rh=26)]
8-24 ASIST Users Guide–Version 9.6

Telemetry Processing
Rail Limits

Rail limits signal when an analog telemetry point has become saturated (“at the rail") . Like other limits, when a point
reaches saturation any telemetry page that contains the point will indicate the condition (with a trailing *). Unlike other
limits, no separate event message is generated. However, if an additional limit exception occurs (such as YL, YH, RL, or
RH), the event message created for that violation will also include an indication of the rail limit violation.

Turning it on and off

Rail checking is only performed when limit checking is on for a point.

To enable rail limits for a point, enter:

rail_on pt [,pt ...]

(as well as turning on limit checking for the pt).

To turn off rail checking for a point, enter:

rail_off pt [,pt ...]

Indications of being "Railed"

When a point is at the rail, its annotation on a page will contain a * (either R* (Red Rail), Y* (Yellow Rail), or G* (Green
Rail)). Additionally, any limit failure event messages will mention that the point is AT RAIL.

What is the rail?

By default, the rail is defined as the lowest and highest possible counts value for a telemetry point. For example:

UI ForExample MASK=%xFFF

has a lower rail of 0 and an upper rail of FFF (hex).

You can override either rail in RDL using the keywords LOWER_RAIL and UPPER_RAIL. For example:

UI AnotherExample MASK=%xFFF,LOWER_RAIL=3,UPPER_RAIL=%xFF0

goes into rail exception when the counts value of AnotherExample is less than or equal to 3, or greater than or equal to
FF0 (hex).

Changing default for rail checking

By default, rail checking is disabled for all points. To have rail checking default to ON for a point (whenever it is limit
checked) add the keyword CHECK_RAIL to its definition. For example:

UI YetAnotherExample MASK=%xFFF,CHECK_RAIL

Rail Notes

• Rail checking can be enabled for any type of data (i.e. Ints, Reals, Times, ...) It doesn’t always make sense, so be judi-
cious in Rail limits use.

• Similarly, they may be used on analogs or discretes. In some places this makes sense, while in others it does not. Use
common sense.
ASIST Users Guide–Version 9.6 8-25

CHAPTER 8
Triggering event-driven pseudo-telemetry on RAIL states:

You can trigger event-driven pseudo-telemetry equations upon the rail state of a telemetry point, using the form:

EQUATION=WHEN pt-name [ENTERS | EXITS | IS] [RAIL | LOWER_RAIL | UPPER_RAIL] DO

 . . .

ENDDO

This causes the equation to be run whenever the given state occurs:

For example:

UI Train EQUATION=WHEN my_voltage ENTERS RAIL DO
event "Locomotive coming thru---Choo Choo"
stol "START TRAIN_IS_A_COMING"

ENDDO
UI Train2 EQUATION=WHEN my_voltage IS RAIL DO

event "Chugga-Chugga-Chugga-Chugga"
ENDDO
UI Train3 EQUATION=WHEN my_voltage EXITS RAIL DO

event "Choo Choooooooo---Here’s the caboose"
stol "START TRAIN_IS_A_LEAVING"

ENDDO

Types of limit-failure messages

ASIST provides two types of limit failure event messages:

Point messages are placed in the event log each time an out-of-bounds telemetry point is received.

VCVT-E:LF [GLML1REFT] = (19.2462) is now RED LOW.

Summary messages give only one message for each limit failure stating how long the point was out of range.

VCVT-E:LF MY_POINT was RED LOW for 5 packets (from 01-322-06:02:32.011 to
01-322-06:02:37.011)

To control which reports you get, use the directive:

LIMIT_REPORTS [None | Point | Summary | All]

Calling this directive with no arguments prints the current report style. You can also look at the telemetry point
GSE_LIMIT_REPORT_TYPE to see the current report style.

The default is to report limit failures each time the point is received but not give summaries.

State What it means

ENTERS When pt-name is received, and it is a rail exception and the previous point was not.

EXITS When pt-name is received, and it is a not a rail exception but the previous point was;.

IS When pt-name is received and is a rail exception.
8-26 ASIST Users Guide–Version 9.6

Telemetry Processing
Trending

ASIST can calculate statistical data about telemetry points through the use of trending functions. Among the standard sta-
tistical functions provided are mean, standard deviation, variance, and slope. Additionally, for telemetry points with limits
defined and limit checking on, ASIST can predict when a yellow or red limit violations would occur if the data follows the
current slope.

Trending is applied to the engineering units of a telemetry point if an engineering units conversion is defined for it. If no
conversion is supplied, trending is applied to the counts.

To apply trending to a telemetry point, you must enable trending for the point with the STOL command:

TREND ON telemetry-point-name [interval-size]

The interval-size argument defines how many points ASIST should sample in order to perform the trending calculations.
If none is entered, ASIST will default to ten (10) points. Thereafter, trend statistics calculated for telemetry-point-name
will be done from the last interval-size number of points received in telemetry. If interval-size is set to one (1), then statis-
tics will be calculated based upon all values received thereafter.

Statistics are accessed through the trending functions. These are accessible in STOL, page displays, or pseudo-telemetry
equations. They are of the form:

TREND_<function>(“telemetry-point-name”)

To disable trending for an item, type:

Function Return Value Example

Min Minimum value of the sampled points. trend_min(“xspwr”)

Max Maximum value of the sampled points. trend_max(“xspwr”)

Mean Mean value of the sampled points. trend_mean(“xspwr”)

SDev Standard deviation of the sampled points. trend_sdev(“xspwr”)

Var Variance of the sampled points. trend_var(“xspwr”)

Sum Sum of the sampled points trend_sum(“xspwr”)

SumSq Sum of squares for sampled points. trend_sumsq(“xspwr”)

Num Number of items that have been sampled trend_num(“xspwr”)

State Is trending on for this item (True or False)? trend_state(“xspwr”)

MeanTime The mean time of the sampled points. trend_meantime(“xspwr”)

Slope Slope of a line fitted through the sampled points (using
least-squares approximation).

trend_slope(“xspwr”)

YelFailTimea

a. limit checking must be ON and limits must be defined for the requested mnemonic for TREND_YELFAILTIME and
TREND_REDFAILTIME to be computed.

Number of seconds until the value exceeds a yellow limit if
it follows the currently calculated slope.

trend_yefailtime(“xspwr”)

RedFailTimea Number of seconds until the value exceeds a red limit if it
follows the currently calculated slope.

trend_redfailtime(“xspwr”)
ASIST Users Guide–Version 9.6 8-27

CHAPTER 8
TREND OFF telemetry-point-name
Examples:

To turn trending on for telemetry point float1, type:

➔ trend on float1

SPR-I:OPRI --> trend on float1
SPR-I:STS Trending enabled for FLOAT1 with interval 10.

Look at the mean value of float1.

➔ write "The mean is ",trend_mean("float1")

SPR-I:OPRI --> write “The mean is “,trend_mean("float1")
SPR-I:OPRO The mean is 10.39767317

To turn it off again, type:

➔ trend off float1

SPR-I:OPRI --> trend off float1
SPR-I:STS Trending disabled for FLOAT1

To turn trending on telemetry point float1 with an interval size of 20 points, type:

➔ trend on float1 20

SPR-I:OPRI --> trend on float1 20
SPR-I:STS Trending enabled for FLOAT1 with interval 20.

Is trending on for float1?

➔ trend float1

SPR-I:OPRI --> trend float1
SPR-I:STS Trending enabled for FLOAT1 with interval 20.

I don't trust that. Is there another way?

➔ write trend_state("float1")

SPR-I:OPRI --> write trend_state("float1")
SPR-I:OPRO T

OK. Turn it off again.

➔ trend off float1

SPR-I:OPRI --> trend off float1
SPR-I:STS Trending disabled for FLOAT1

Is it really off?
8-28 ASIST Users Guide–Version 9.6

Telemetry Processing
➔ write trend_state("float1")

SPR-I:OPRI --> write trend_state("float1")
SPR-I:OPRO F

What happens if you ask for trend values for a telemetry point not currently being trended?

➔ write trend_num("float2")

SPR-I:OPRI --> write trend_num("float2")
SPR-E:STS No trend data for FLOAT2.

The following sessions show the values the given trend functions returned after receipt of each item.

➔ trend on float1 5

After each point came in, the user typed:

➔ write float1, " ", trend_num("float1"), " ", trend_mean("float1"), " ",
trend_sdev("float1"), " ", trend_var("float1"), " ", trend_min("float1"), " ",
trend_max("float1")

➔ trend off float1

➔ trend on float1

After each point came in, the user typed:

FLOAT1 Num Mean SDEV Variance Min Max

10.79777431 1 10.79777431 0 0 10.797774310 10.79777431

14.40978050 2 12.60377740 1.806003093 3.26164717 10.797774310 14.40978050

6.53614425 3 10.58123302 3.218043352 10.35580300 6.536144256 14.40978050

12.36044692 4 11.02603650 2.891436090 8.36040266 6.536144256 14.40978050

14.19881629 5 11.66059246 2.880792806 8.29896719 6.536144256 14.40978050

15.82817268 5 12.66667213 3.257548900 10.61162483 6.536144256 15.82817268

13.13004207 5 12.41072444 3.159331037 9.98137260 6.536144256 15.82817268

14.86832714 5 14.07716102 1.228896028 1.51018544 12.360446920 15.82817268

4.01278540 5 12.40762872 4.288561192 18.39175710 4.012785400 15.82817268

-2.16555786 5 9.13475389 7.036613554 49.51393031 -2.165557861 15.82817268

14.57041931 5 8.88320322 6.811723222 46.39957326 -2.165557861 14.86832714

2.69377517 5 6.79594984 6.789522990 46.09762244 -2.165557861 14.86832714

9.88232994 5 5.79875040 5.828868594 33.97570900 -2.165557861 14.57041931

12.83871078 5 7.56393547 6.335148382 40.13410502 -2.165557861 14.57041931

7.26475334 5 9.44999771 4.202638235 17.66216814 2.693775177 14.57041931
ASIST Users Guide–Version 9.6 8-29

CHAPTER 8
➔ write float1, " ", trend_num("float1"), " ", trend_mean("float1"), " ",
trend_sdev("float1"), " ", trend_var("float1"), " ", trend_min("float1"), " ",
trend_max("float1")

➔ trend off float1

FLOAT1 Num Mean SDEV Variance Min Max

10.79777431 1 10.79777431 0 0 10.797774310 10.79777431

14.40978050 2 12.60377740 1.806003093 3.26164717 10.797774310 14.40978050

6.53614425 3 10.58123302 3.218043352 10.35580300 6.536144256 14.40978050

12.36044692 4 11.02603650 2.891436090 8.36040266 6.536144256 14.40978050

14.19881629 5 11.66059246 2.880792806 8.29896719 6.536144256 14.40978050

15.82817268 6 12.35518916 3.054198569 9.32812890 6.536144256 15.82817268

13.13004207 7 12.46588243 2.840608572 8.06905706 6.536144256 15.82817268

14.86832714 8 12.76618802 2.773393057 7.69170905 6.536144256 15.82817268

4.01278540 9 11.79358773 3.795350480 14.40468527 4.012785400 15.82817268

-2.16555786 10 10.39767317 5.522808513 30.50141387 -2.165557861 15.82817268

14.57041931 10 10.77493767 5.664296806 32.08425830 -2.165557861 15.82817268

2.69377517 10 9.60333714 5.993406460 35.92092099 -2.165557861 15.82817268

9.88232994 10 9.93795571 5.905587852 34.87596788 -2.165557861 15.82817268

12.83871078 10 9.98578209 5.926910844 35.12827215 -2.165557861 15.82817268
8-30 ASIST Users Guide–Version 9.6

Telemetry Processing
Sampling

ASIST can write the current values of a group of telemetry points, formatted according to your specifications, into a file.

To initiate sampling from STOL, type:

SAMPLE_CVT specification-file output-file [subtitle]

where:

specification-file is a file1 containing a list of telemetry points you want sampled. Each line is of the form:

[P@]telemetry-point [C-style-format-code]

where

telemetry-point is the point you want sampled.

C-style-format-code defines how to print the telemetry point. If none is given, ASIST will use a default format.

This file may also contain comments (beginning with #) or blank lines.

An example of a specification-file is:

sample test data

gmt %f
asist_version

ramp
p@ramp %g

sine
p@sawtooth

output-file is the file to which this “sample” will be appended. The output consists of:

• a comment line (preceded by a # character) with the date and time of this sample,

• a comment line (preceded by a # character) with the specified subtitle,

• a blank line,

• and one line for each telemetry point sampled, containing its name, value, and description field (from the telemetry
database).

For example, if you run the SAMPLE_CVT directive using the input file above and subtitle “Example subtitle”, then the
output file will contain:

CVT sample taken on 95-297-16:32:06.582
Example subtitle

1. Both files used by SAMPLE_CVT are read from/written to the directory indicated by the UNIX environment variable
$STOL_DATA.
ASIST Users Guide–Version 9.6 8-31

CHAPTER 8
 GMT = 814552325.000000 ;GSE Current Time (UIT)
 ASIST_VERSION = 4.2.g ;Current Software Version Number
 RAMP = 11 ;GSE Test Mnemonic. Ramps from 0 to 255 by 5
 p@RAMP = 55 ;GSE Test Mnemonic. Ramps from 0 to 255 by 5
 SINE = 49.114352 ;GSE Test Mnemonic
 p@SAWTOOTH = 110.000000 ;GSE Test Mnemonic

This directive appends each sample to the end of output-file. Invoking SAMPLE_CVT multiple times with the same out-
put-file builds a file with a history of telemetry point values, useful for plotting or checkpointing.
8-32 ASIST Users Guide–Version 9.6

Telemetry Processing
Time and Telemetry

Every telemetry point within ASIST has an associated time, while each telemetry packet has both a time and a sequence
counter.

Packet Time and Sequence Count

You define what telemetry point is used to assign a packet's time and sequence count in your telemetry RDL using the
keywords PACKET_TIME and PACKET_COUNT. These keywords may be used in one of two ways:

1. By placing PACKET_TIME = "mnemonic" or PACKET_COUNT = "mnemonic" in the packet definition; i.e.
PACKET P001 PACKET_TIME="P001STIME",PACKET_COUNT="P001SCNT"

2. By placing the keyword PACKET_TIME or PACKET_COUNT in the definition of a telemetry point contained
within the packet; i.e.

PACKET P001
...
UTC P001STIME PACKET_TIME
...
UI P001SCNT PACKET_COUNT

Any time this packet (P001 in this case) is received in telemetry, or a point within this packet is updated by pseudo-telem-
etry, this packets time and sequence counter are updated by reading its PACKET_TIME and PACKET_COUNT telemetry
points.

If no packet time field is defined, the packets time is set to the current GSE time (GMT). If no packet count field is
defined, PACKET_COUNT is a running counter.

You can ask for a packets time or sequence through the telemetry attribute routines:

telemetry_attr("P001","TIME")
telemetry_attr("P001","SEQ_COUNT")

To find out what telemetry points are the source of the packet time and sequence count, you can ask for the packet's
attributes "TIME_FIELD" and "SEQ_COUNT_FIELD".

Helpful hint: You can easily convert your RDL to use this feature if you use a standard file for the CCSDS Header (as
many missions do). Just add the PACKET_TIME keyword to the UTC time field in the header, and the
PACKET_COUNT keyword to the sequence counter, and include that file in each packet;

i.e.

RECORD CCSDS_Header APPEND,DESC="CCSDS Header"
UNION HDR1 DESC="CCSDS Header 1st 16 bits"

ui pvno mask=%xe000 ,desc="Version #"
ui pckt mask=%x1000, desc="Packet Type"
ui shdf mask=%x0800, desc="Secondary Hdr Present Flag"
ui id mask=%x07ff, desc="Application ID"

END
UNION HDR2 DESC="CCSDS Header 2nd 16 bits"

ui segf mask=%xC000, desc="Segment Flags"
ui scnt mask=%x3FFF, PACKET_COUNT,desc="Sequence count"

END
ASIST Users Guide–Version 9.6 8-33

CHAPTER 8
UI plen Desc="Packet Length"
UNION u_time

UTC stime PACKET_TIME,desc="Secondary Header Time (64 bits)"
MET mtime desc="Secondary Header time/mission elapsed"

END
END

Telemetry Point Time

Normally, the measured time of a telemetry point is the same as the time of the packet that contains it. To display the cur-
rent measured time of a telemetry point, call the STOL TELEMETRY_ATTR function using the TIME_MEASURED
attribute:

WRITE TELEMETRY_ATTR("A_POINT", "TIME_MEASURED")

You can override this default and specify a new time source if you need to. The new time source depends upon whether
the telemetry point is spacecraft telemetry or pseudo-telemetry.

For spacecraft telemetry, you may define in your RDL a fixed floating-point offset from the packet time using
TIME_OFFSET = offset-in-seconds in the definition. For example:

UI FunnyPoint

You can view the time offset for a telemetry point by calling the TELEMETRY_ATTR function with the
TIME_OFFSET attribute:

WRITE TELEMETRY_ATTR("FunnyPoint", "TIME_OFFSET")

For pseudo-telemetry, you can define the time of an individual point to be the value of some other telemetry point by
using the SC_TIME ="telemetry-point" in the definition. For example:

UI PseudoPoint SC_TIME="P001STIME"

Warning: Use the SC_TIME keyword on pseudo-telemetry points only.

Whenever the pseudo-telemetry point is assigned a value, the value of the specified SC_TIME point (P001STIME in
this example) is read and is used to set the measured time of the pseudo-telemetry point.

You can display the name of the time source for a pseudo-telemetry point by calling the TELEMETRY_ATTR function
with the TIME_FIELD attribute:

WRITE TELEMETRY_ATTR("PseudoPoint", "TIME_FIELD")

Note: Do not use the SC_TIME keyword on spacecraft telemetry.
8-34 ASIST Users Guide–Version 9.6

Telemetry Processing
Packet Quality

Packet Staleness A packet (and all telemetry points it contains) is defined as stale if it hasn’t been received for the num-
ber of seconds indicated by the STALE=number keyword on the RDL line defining the packet.

For example, the following packet, and all the telemetry points it contains, would be STALE if it had been more than 25
seconds since it was last received.

PACKET P001 APID=1,STALE=25,DESC="The very first packet"
…

END

The default staleness value is infinity. Thus, if no staleness value is defined for a packet, it can never go stale.

Packet Quality ASIST provides information about the quality of packets through the following functions:

Each of these functions can be used in STOL, Pseudo-Telemetry, or on a telemetry page.

By default, ASIST reports in the event log any questionable or bad packets. You can control what conditions are reported
by setting the following control variables to 1 (reporting ON) or 0 (reporting off) either from STOL or via buttons from
the TLM page. .

Function What it returns

PACKET_INITIALIZED(“mnemonic”) Returns true if mnemonic’s packet has been received since ASIST was last
started.

PACKET_AGE(“mnemonic”) Returns the number of seconds since mnemonic’s packet was received in
telemetry.

PACKET_STALE(“mnemonic”) Returns true if the PACKET_AGE of mnemonic is greater than the STALE
value defined for this packet (see Packet Staleness above). Otherwise, the
function returns False, including when no staleness value is defined for a
packet.

PACKET_QUALITY(“mnemonic”) Returns the quality flag from the annotation header of this packet (see the
Telemetry ICD for your spacecraft for more information).

PACKET_VALID(“mnemonic”) Returns TRUE if mnemonic has been initialized, is not stale, and is not bad
quality.

Condition What It Means Control Variable

Missing Packets This packet is not defined in the telemetry database. ReportMissingPackets

Wrong Length The length of the received packet does not match the length
defined in the telemetry database

ReportWrongLengthPackets

Bad Apid The packet’s APID is out of range (outside of 0-7FF for a
spacecraft telemetry packet).

ReportBadApidPackets

Malformed Packets Either packet too long (>66K) or the annotation data is too
long (malformed).

ReportMalformedPackets

Bad Quality Packets Packet has been marked by the Front End as having bad
quality. This can happen when only a partial packet was
received due to missing VCDUs.

ReportBadQualityPackets
ASIST Users Guide–Version 9.6 8-35

CHAPTER 8
Packet Limit Status- You can check the packet attributes RED_EXCEPTIONS, YELLOW_EXCEPTIONS, and
GREEN_PTS to find out how many points in this packet are either in RED, YELLOW, and/or GREEN states. By adding
the three together, you will be able to determine how many points are being limit-checked within the packet. For example,
to find out how many points within packet 1 are currently in a red state, ask for the value:

TELEMETRY_ATTR("P001","RED_EXCEPTIONS")
8-36 ASIST Users Guide–Version 9.6

Telemetry Processing
Data Quality

What is data quality?

Data quality is an inherent attribute of each item in the Current Value Table (CVT) and each STOL variable. The data
quality of a particular item gives you an idea of how much faith to have in the item's value. For example, suppose a telem-
etry item is supposed to hold the current temperature of some box on the spacecraft. If the telemetry packet which con-
tains that item has been received recently (and bits were not garbled) then the data quality would be "Good". But, if the
telemetry packet which contains that item had not been received even once since ASIST was started, then the data quality
would be "Uninitialized". So, data quality can be used to disregard data items that have incorrect (or possibly incorrect)
values.

Data quality is fairly straightforward for telemetry items (such as the above example), but it gets more complicated when
the value of one item is based on the values of other items.

For example, suppose a pseudo-telemetry point exists:

POWER = VOLTAGE * CURRENT
In this case the data quality of POWER must be calculated based on the data quality of VOLTAGE and the data quality of
CURRENT -- e.g. if the value for voltage is currently suspect then the value for power should also be suspect. This prin-
ciple is referred to as "inherited data quality".

The rest of this section describes each possible value for data quality and how inherited data quality works.

The table is in descending order in terms of the priority of each state. That is, the condition of BAD always overrides any
other condition, the condition of UNINIT always overrides all other conditions but BAD, and so on.

How is data quality used?

Whenever two or more values are combined, (added, subtracted, etc.) the data quality of the resulting value is determined
from the data quality of each operand. So, for example, if you add a telemetry point with GOOD quality to a telemetry
point with STALE quality the result has STALE quality (a higher priority in the above table). The following table shows
the results of combining any two operands of different qualities.

TABLE 8-1. Possible Data Quality States

Quality Description

BAD Data was received by the front end processor but contained errors

UNINIT Data has not been received since ASIST start-up

STALE Data was received OK, but has aged beyond its staleness time

GOOD Data is valid and has not aged beyond its staleness time

NEUTRAL Data has no quality, but is assumed to be valid
ASIST Users Guide–Version 9.6 8-37

CHAPTER 8
The action of transferring data quality from one sub-expression to another is called inheritance. Given the assignment,

 X = B + C - D

the quality of B and C determine the quality of B+C and the quality of B+C and D determine the quality of B+C-D. The
quality of X is determined by the quality of the whole expression B+C-D. When the final assignment to X is done, the data
quality that is stored for X is the quality inherited from the expression B+C-D.

Where is data quality used?

Inheritance of quality is automatically performed by the pseudo- telemetry processor and the page display handler. STOL
can also perform automatic inheritance but you must enable that feature explicitly.

When data quality is automatically inherited, each of these subsystems checks all expression operands and computes new
quality values based on them. For pseudo-telemetry, the data quality is stored any time an assignment is made. For the
page display handler, the data quality is computed and displayed (if runtime annotations are enabled). For STOL, the data
quality is checked for each operation and if an operation uses an operand with data quality that is neither GOOD nor
NEUTRAL, then an error occurs and your procedure will halt (halting on poor data quality can be disabled if desired).

Automatic data quality inheritance can be overridden or manually maintained in the pseudo-telemetry processor or STOL
by using the %QUALITY function to assign a new quality to a variable or telemetry point. You don't need to know the
actual numeric values for each of the quality conditions because they are provided by simple functions as shown in the
table below:

TABLE 8-2. Results of combination of two qualities

Input Quality #2

where:

• B = BAD,

• U = UNINIT,

• S = STALE,

• G = GOOD,

• N = NEUTRAL

B U S G N

In
pu

t
Q

ua
lit

y
#1

B B B B B B

U B U U U U

S B U S S S

G B U S G G

N B U S G N

TABLE 8-3. Function-to-Quality Value Mapping

 Function Name Quality value

 %BADQ BAD

 %UNINITQ UNINIT

 %STALEQ STALE

 %GOODQ GOOD

 %NEUTRALQ NEUTRAL
8-38 ASIST Users Guide–Version 9.6

Telemetry Processing
For example, if you want to manually set the data quality of buspower to STALE use the following:

buspower = esspower + nespower + ...
%QUALITY(buspower) = %STALEQ

NOTE: If automatic quality inheritance is enabled, you must assign the new quality value AFTER you assign the data
value.

You can easily test for a given quality condition by using the provided functions, with:

IF (%QUALITY(buspower) <> %GOODQ) THEN
 ...
ENDIF

How is NEUTRAL quality used?

The data quality of NEUTRAL is used when you don't want a variable or telemetry point to inherit any quality. One com-
mon situation where this can occur is when you create a running sum of a variable. For example, suppose that you want to
compute the average value of NEW_DATA in pseudo-telemetry:

DFP MEAN EQUATION
ULI COUNT EQUATION
ULI TOTAL
 EQUATION=BLOCK
 TOTAL = TOTAL + NEW_DATA
 COUNT = COUNT + 1
 MEAN = TOTAL / COUNT
 ENDBLOCK

If NEW_DATA is ever received with BAD quality, then TOTAL will have BAD quality forever. This is because it inherits
its own quality. Remember, the quality which is inherited is always the worst quality of all of its operands. We resolve this
problem, by replacing the declaration of TOTAL with:

ULI TOTAL QUAL=%NEUTRALQ,
 EQUATION=BLOCK
 TOTAL = TOTAL + NEW_DATA
 COUNT = COUNT + 1
 MEAN = TOTAL / COUNT
 ENDBLOCK

This sets the initial quality of TOTAL to NEUTRAL quality. Once TOTAL is set to NEUTRAL quality, it will never
inherit any other quality. It remains NEUTRAL forever, unless it is changed manually with %QUALITY. However, when
a NEUTRAL quality is encountered in an expression it is always overridden by the quality of the other operand (see the
table above).
ASIST Users Guide–Version 9.6 8-39

CHAPTER 8
Telemetry Statistics

The telemetry processor maintains statistics about the telemetry stream in the following CVT variables:

Pressing the TLM button on the command window opens a page that displays all of these variables.

Variable Meaning

MSGS_RECEIVED The number of telemetry messages received since the telemetry processor started.

MSGS_PER_SEC The telemetry message rate (the number of telemetry messages received per second,
calculated using ground time).

PKTS_RECEIVED The number of packets received since the telemetry processor started.

PKTS_PER_SEC The packet rate (the number of packets received per second, calculated using ground
time).

PKTS_PROCESSED The number of packets placed into the current value table.

PKTS_GOOD_QUALITY The number of good quality packets received.

PKTS_BAD_QUALITY The number of bad quality packets received.

PKTS_REJECTED The number of packets received but NOT placed into the current value table for var-
ious reasons (see the following system variables).

PKTS_MALFORMED The number of packets rejected due to malformed annotation data.

PKTS_ILLEGAL_LENGTH The number of packets rejected because their length did not match the length speci-
fied in the telemetry database.

PKTS_UNDEFINED The number of packets rejected because they were not defined in the telemetry data-
base.

PKT_BAD_APPID The number of packets rejected because of an invalid application ID.
8-40 ASIST Users Guide–Version 9.6

Telemetry Processing
Supercommutation

Any array of data objects can be defined as supercommutated-meaning that each element of the array represents the same
measurement(s), separated in time by a defined interval. This is probably best demonstrated with an example:

The following telemetry RDL defines an array of ten sets of measurements, each with an X and a Y:

RECORD SuperDeDuper[10]
UI X
UI Y

END

If SuperDeDuper is supercommutated, each of the ten elements of the array (each SuperDeDuper[i].X and .Y) represent
the same measurement, displaced in time by a defined offset.

ASIST will allow you to define supercommutated data and have it processed as another PACKET (apid), when you add
the statement

SUPERCOM = destination-apid

to the definition. This tells ASIST that each time this array is received, each element of this array should be processed by
ASIST as packet destination-apid.

For example:

RECORD SuperDeDuper[10] SUPERCOM=%x9AB
UI X
UI Y

END

Every time SuperDeDuper is received in telemetry, ten smaller packets are created (each containing a single element of
the array) with apid x9AB and reprocessed by the telemetry handler as if each of the smaller packets had been received in
telemetry. The smaller packets seen by the telemetry handler look like:

PACKET XY_PAIRS APID=%x9AB
UI X
UI Y

END

To be useful, however, you must define two additional attributes of the supercommutated array (SuperDeDuper in this
case):

TIME_OFFSET = value

which defines the number of seconds to add to this packets time to find the time of the first element of this array.

TIME_BETWEEN_ELEMENTS = value

which tells ASIST that each measurement in this array was taken value seconds apart.

So, if in the above example, the first measurement in SuperDeDuper is always taken 0.9 seconds before the packet time
of the packet containing SuperDeDuper, and each element is 0.1 seconds apart, the packet definition would look like
this:
ASIST Users Guide–Version 9.6 8-41

CHAPTER 8
RECORD SuperDeDuper[10] SUPERCOM=%x9AB,
time_offset=-0.9,
TIME_BETWEEN_ELEMENTS=0.1

UI X
UI Y

END

Because apid %x9AB is processed by ASIST for each element of the array, you can sequential print it, define limits on
values within that APID, or define event-driven pseudo-telemetry based upon that APID (in this example, %x9AB), just
as you would any normal telemetry packet.
8-42 ASIST Users Guide–Version 9.6

Telemetry Processing
Subcommutation

ASIST can also interpret subcommutated data-meaning that the data point(s) have more than one meaning depending
upon some other telemetry point(s) (i.e. mode or major/minor frame number).

To define subcommutated data, add the keyword

SUBCOM= BLOCK

….

SUBCOM_APID=expression

…

ENDBLOCK

to a telemetry definition. This tells ASIST to deliver the contents of this data structure to the apid contained in
SUBCOM_APID

For example:

RECORD AFewBytes SUBCOM= BLOCK
SUBCOM_APID= (P000SCNT MOD 10)+1

END
UI Word1
UI Word2
ULI Double1
ULI Double2

END

causes the record "AFewBytes" to be re-delivered to the APID indicated by the equation (P000SCNT MOD 10) + 1. So,
for:

Another example:

RECORD SUB_RECORD SUBCOM=BLOCK
IF Mode=1 THEN

SUBCOM_APID=64+MinorFrameNumber
ELSEIF Mode=2 THEN

SUBCOM_APID=96+MinorFrameNumber

Value of
P000SCNT

Subcom is
delivered to

APID:

0 1

1 2

2 3

…

9 10

10 1

11 2
ASIST Users Guide–Version 9.6 8-43

CHAPTER 8
ELSE
SUBCOM_APID=128+MinorFrameNumber

ENDIF
ENDBLOCK

UI LotsOfJunk[64]
END

uses the mode and the minor frame number to determine the destination for the subcommed data.

Notes:

• The language between BLOCK & ENDBLOCK is pseudo-telemetry.

• If you don't assign the value of SUBCOM_APID inside the subcom block, then no subcommutation will be per-
formed.

• This equation is called once per array element of the subcommed data structure (i.e. SUB_RECORD in the last exam-
ple). You can use the variable ELEMENT_NUMBER to find which element you are in in your subcom equation. i.e.:

RECORD SUB_ME[8] SUBCOM=BLOCK
SUBCOM_APID=256+ELEMENT_NUMBER

ENDBLOCK

• The packet time assigned to the destination packet (whose apid is SUBCOM_APID) is based upon the received
packet's time and the TIME_OFFSET defined for the subcommed item.

For example:
PACKET P123 APID=%x123
#include "ccsds_header.rdl"
; defines P123STIME as PACKET_TIME

…
RECORD SUB_ME TIME_OFFSET= -0.5,

SUBCOM=BLOCK
IF Mode=1

SUBCOM_APID=321
ELSE

SUBCOM_APID=432
ENDIF

ENDBLOCK
…

END
…

END

In this case, the packet time of packet 321 or 432 would be the packet time of P123 plus the time_offset of SUB_ME.
So, if we receive packet %x123 with the value of mode=1 and P123STIME = 98-131-10:05:20.0, then:

SUBCOM_APID is 321, and
Pkt Time of 321= P123STIME + (- 0.5) = 98-131-10:05:19.500
8-44 ASIST Users Guide–Version 9.6

Telemetry Processing
Using Subcommutation for distributing encapsulated packets

Subcommutation allows you to set the following items within the SUBCOM equation:

The subcomming repeats the pseudo equation (incrementing ELEMENT_NUMBER by NUM_ELEMENTS each loop)
either until

• ELEMENT_NUMBER + NUM_ELEMENT >= size of source array OR

• you indicate DONE (using SUBCOM_DONE_THIS_FIELD) .

So, it is possible to subcom arrays which contain several data "packets"

Why would you want to set these?

You can move backwards/forwards through the source data field, which can allow you to either skip over portions, or to
deliver portions of the data more than once. For example:

 // This examples subcoms packet whose data contains other packets.
PACKET FROM_SC APID=1,VARYING,DESC="I hold 1 or more packets!"

. . .
UI NumBytesInSubcoms DESC="Spacecraft told me how many bytes it sent in the

following array. Wasn't it nice!!!"

UB PLEASE_SUBCOM_ME[6000] SUBCOM=
DO

IF(ELEMENT_NUM > NumBytesInSubcoms) THEN
SUBCOM_DONE_THIS_FIELD

ELSEIF ELEMENT_NUM=1 THEN // This is the first time through
SUBCOM_APID=100 // Deliver to JUST_HEADER
NUM_ELEMENTS=6 // Deliver 6 bytes (header)

ELSEIF JUST_HEADER_APID = x'7ff' THEN // Assumes no fill packets
SUBCOM_APID=100 // Deliver to JUST_HEADER
NUM_ELEMENTS=6 // Deliver 6 bytes (header)

ELSE // Assume JUST_HEADER is filled in and we need
// to deliver a packet to its final dest.

// Use data in header to determine where to deliver
SUBCOM_APID=JUST_HEADER_APID

// Skip back 6 bytes so we can deliver the header
// and the data to the correct packet
ELEMENT_NUMBER=ELEMENT_NUMBER - 6

// Use length in JUST_HEADER to determine how much

TABLE 8-4. Variables used to control subcommutation

Field What it does

ELEMENT_NUMBER what index in the source array to start redelivering from

NUM_ELEMENTS how much data to deliver to the dest apid

SUBCOM_APID what apid to deliver it to

SUBCOM_DONE_THIS_FIELD indicates DONE with this subcom session”
ASIST Users Guide–Version 9.6 8-45

CHAPTER 8
// to deliver (LENGTH + 1 (CCSDS goofyness) + 6 (header)
NUM_ELEMENTS=JUST_HEADER_DATA_LENGTH + 1 + 6
JUST_HEADER_APID=%x7ff

ENDIF
ENDDO

END

PACKET JUST_HEADER APID=100
UNION JUST_HEADER_UNION1

. . .
UI JUST_HEADER_APID MASK=%b0000011111111111
. . .

END
UNION JUST_HEADER_UNION2 DESC="CCSDS Header 2nd 16 bits"

ui The_segf mask=%b1100000000000000,desc="Segment Flags"
ui the_count mask=%b0011111111111111,desc="Source Sequence Count"

END
UI JUST_HEADER_DATA_LENGTH

END
8-46 ASIST Users Guide–Version 9.6

Telemetry Processing
Data Collection in HDF Files

You can collect telemetry points into HDF files from ASIST. To open a file, type:

hdf_open filename [point OR attribute-name=string] [point OR attribute-name=string] ...

where

• filename is the name of the HDF file to be created in the $STOL_DATA directory; AND

• point(s) … are the telemetry points to collect. You can ask for either the counts value (i.e. RAMP or P000SCNT), or the

engineering value1 (i.e. P@BAT1VOLTAGE or P@FLUFFERNUTTER).

• attribute-name=string puts attributes with the given name into the HDF file. The attribute is attached to the value
directly proceeding it in the directive, or at the top level of the file if it follows the file name.
Note: you can assign more than one attribute to a given point, for example:

hdf_open abc.hdf ramp why=”Because” what=”another fun mnemonic”

string can be either a quoted string, or a single (unquoted) word.

For each point collected, the file will contain two one-dimensional arrays. The first contains the point's value while the
other contains the time each of those points was measured, in seconds since 1970 (this arrays name is
A@pt-name(TIME_MEASURED) , i.e. A@VOLTAGE(TIME_MEASURED)).

The array containing the point’s value will be of the following type:

If the telemetry point you ask for is an array, it will be stored as a two dimensional vector, n x the number of samples, in
the data type appropriate for the array.

For example: If xyz is defined as:
DFP pokemons[1..151]

then it could be collected using:

1. If you ask for the engineering value of a discrete point (which would return a string), a warning will appear and the counts value will
be collected.

TABLE 8-5. The HDF data types ASIST can create

Counts/Eng ASIST Data Type HDF Data Type

P@ of analog all DFNT_FLOAT64

Counts UB DFNT_UINT8

Counts SB DFNT_INT8

Counts UI DFNT_UINT16

Counts SI DFNT_INT16

Counts ULI DFNT_UINT32

Counts SLI DFNT_INT32

P@ or Counts Absolute Time DFNT_FLOAT64

P@ or Counts Relative Time DFNT_FLOAT64

P@ or Counts DFP or SFP DFNT_FLOAT64

R@ all DFNT_UINT8
ASIST Users Guide–Version 9.6 8-47

CHAPTER 8
hdf_open gotta_catch_em_all.hdf pokemons

which would create the file gotta_catch_em_all.hdf containing an array pokemons which is 151 x # of sam-
ples. Each element would be of type DFNT_FLOAT64.

You can request a whole packet be collected. It is placed in a 2 dimensional vector of type DFNT_UINT8, where the first
dimension is the number of bytes in the packet, and the second is number of samples.

For example: if P123 was a 40 byte packet, then:
hdf_open himom.hdf p123

creates the file himom.hdf with a two dimensional array that is 40 x # of samples.

The TIME_MEASURED field is stored as a DFNT_FLOAT64.

To close the file, type:

hdf_close filename

or

hdf_close all

If you want to read the file while it is being collected, you can flush the data to disk by typing:

hdf_flush filename

or

hdf_flush all

Finally, to list what is currently being collected to HDF files, type:

 hdf_list -- To get a list of open files and the points being collected into them,

or

hdf_list triggers -- To see a list of points collected ordered by the apid which signals data arrival.
8-48 ASIST Users Guide–Version 9.6

Telemetry Processing
Telemetry from External Ground Support Equipment

Introduction

ASIST can receive telemetry data from any source, not just a spacecraft. You can write software to send telemetry from
external ground support equipment and ASIST will process it and display it as if it were spacecraft telemetry. The follow-
ing sections describe how to send data to ASIST and how to define the data you've sent so that ASIST knows how to pro-
cess it.

Step by Step Instructions

To deliver data from computer-based External Ground Support Equipment to ASIST over Ethernet (using TCP/IP):

1. Ensure that there is a line in the System Configuration File1 on the ASIST machine defining your channel in the form:
 TLMx = machine-name
where x is the letter which will identify the channel within ASIST,
and machine-name is the name of your telemetry server (which must be in ASIST's /etc/host table).

2. Open a passive TCP/IP socket on port 2001 of the EGSE which will await connection from the ASIST workstation(s).
If you will ever have multiple ASIST workstations connecting, a program capable of handling multiple concurrent
connections is highly recommended.

3. ASIST will connect to you, and send an SFID (login) message:
C7333IA0SFID00000002XX where XX is the SFID of the workstation, usually between 00 and 09.

4. Send back an AKNK SFDU (acknowledgment) message:
C7333IA0AKNK00000003ACK for acceptance of the connection

5. Send telemetry SFDU's when desired, either:
a) according to the XTE, TRMM, FUSE, or MAP IGSE/SGSE Interface Control Document (ICD), or
b) by defining your own SFDU type.

6. If the socket connection is closed/lost, repeat steps 2-4 before sending additional telemetry.

Defining Your Own SFDU Types

Each telemetry message must begin with a twenty byte CCSD Z-type header:

CCSD3ZA00001xxxxxxx

where xxxxxxxx is an 8 character field containing an ASCII decimal (base 10) representing the length of the following
data, left padded with zeros (i.e. CCSD3ZA0000100000026).

This should be followed by a twenty byte SFDU header, in the form:

yyyy3IA0zzzzxxxxxxxx

where:

1. The configuration files name is in the environment variable $STOL_CONFIG. . See “System Configuration File” on page 14-4 for
more information on setting upyour configuration files.
ASIST Users Guide–Version 9.6 8-49

CHAPTER 8
xxxxxxxx is an 8 character ASCII decimal containing the length of your telemetry data,

yyyy is the Control Authority ID, which identifies who defined these SFDU's,

zzzz is the Data Description ID. This will henceforth be called the sfdu-name.

Followed by your data. For example:

C7333IA0TEXT00000006orelse

where the length (xxxxxxxx) is 6 bytes, the control authority (yyyy) is C733, the data-description id (sfdu-name or zzzz) is
TEXT, and the data is "orelse".

Whenever ASIST receives an SFDU whose name is not of the form PXXX1 (where XXX is a hex number), it will look for
a packet named sfdu-name or sfdu-name_SFDU in the database. If this exists, it will process the data like any other
packet, placing everything after the SFDU header into the current value table.

For example:

PACKET TEXT_SFDU APID=%x642, Varying,Desc="A bunch of text"
CHAR SOME_TEXT[80]

END

If this packet received the following data:

 <----CCSD Header---><---Your header---><your data....................>
 CCSD3ZA0000100000051C7333IA0TEXT00000031 siglongjmp(reset_point, 1);
 CCSD3ZA0000100000026C7333IA0TEXT00000006 else
 CCSD3ZA0000100000035C7333IA0TEXT00000015 exit (-1)
 ^^^^
 sfdu-name

Then the CVT point SOME_TEXT would contain:

After the arrival of the first SFDU: siglongjmp(reset_point, 1);

After the arrival of the second SFDU: else

After the arrival of the third SFDU: exit (-1)

Some miscellaneous notes:

• the data does not have to be ASCII;

• the received packet is not assigned a virtual channel, and thus can not be filtered using the ENABLE_VC/
DISABLE_VC directives;

• the quality of such an SFDU is assumed to be good, since this field comes from the annotation data in PXXX SFDU's
and this simplified telemetry interface does not include annotation data;

• to archive this form of data, you must use the UNCOMPRESSED option on the ARCHIVE directive;

• do not choose a name of PHDR, or a name like PXXX, where XXX is a hexadecimal number, because ASIST interprets
these SFDU's according to the SGSE/IGSE ICD.

1. This form is defined in the IGSE/SGSE ICD as a packet whose application ID is XXX in hexadecimal and annotation data.
8-50 ASIST Users Guide–Version 9.6

AS
CHAPTER 9 Commanding
Overview

ASIST provides the ability to send commands throughout the ASIST system. A command can be one of the following
types:

Spacecraft Commands. CCSDS-formatted commands instruct the spacecraft to perform some action. ASIST provides
the ability to send spacecraft commands from Primary Test Conductor Workstations (TCWs), Associate TCWs, and
Instrument Ground Support Equipment Systems (IGSEs). All of these commands are routed through the Primary TCW,
where they are filtered based upon validity of the command, permission of the user to send the command, and criticality of
the command to the state of the spacecraft. Commands meeting all three criteria are then passed to the Front End Data
System (FEDS), to be forwarded to the spacecraft.

Directives. Requests to subsystems within ASIST to perform some action; for example, a request to add a page is sent to
the page display subsystem from STOL. The destination subsystem can either be on the same Test Conductor Workstation
(i.e. page requests to the page handler, acquire requests to the telemetry handler, …) or to external subsystems (i.e. direc-
tives to FEDS to control the command or telemetry links).

Both types of commands are built by STOL using the format defined in the command database (see CHAPTER 5: “Com-
mand Database Compiler”).
IST Users Guide–Version 9.6 9-1

CHAPTER 9
Command Sequence

A typical command sequence would be:

Each step of this process is detailed below:

Command conversion

Commands are converted from the form typed at the STOL window to CCSDS format using information from the Com-
mand Database. For example, the ROLLOVER command could have been defined as:

CMDS ROLLOVER APID=1,FCTN=4,DESC="Make the spacecraft roll"
UI ANGLE MIN=1,MAX=180,DESC="How far?"

END

This defines a command with Apid=1, Function Code=4, and with two bytes of data. Upon seeing the line:

/ROLLOVER ANGLE=10

STOL determines that the command exists in the database, that all parameters (Angle is the only one in this case) have val-
ues, and that the value given for each parameter is within the Min/Max range indicated (in this case,1>=Angle>=180).

Note: Comparison of parameters vs. database min/max can be disabled using the directives
cmd_parm_checking_disable and cmd_parm_checking_enable to enable negative testing. It is recommended that you
turn this feature off sparingly.

TABLE 9-1. A typical command sequence

Event Example

Type the command in the STOL window /ROLLOVER ANGLE=10

STOL converts this to CCSDS Format 1801C0000002042D000A

STOL puts it into an SFDU CCSDZ3A…

STOL sends it to the command handler

The command handler verifies the command exists Command is backsolved and found to exist in the database. Veri-
fies OK.

The command handler verifies that the Primary is
allowed to send this command.

Is the Primary allowed to send this command? YES: Screening
OK

The command handler determines if the command is
hazardous

Is this a hazardous command? NO

After all three tests are successful, the command
handler:

• Send local accept to STOL
• Send the command to FEDS

The FEDS then sends the command to the space-
craft. If command was received successfully by the
spacecraft, the FEDS sends an end-to-end Accept to
STOL (via the command handler), else it sends an
end-to-end reject.

Successful?
 ➠ End-to-End Accept
Else
 ➠ End-to-End Reject
From:
 FEDS ➠ command Handler ➠ STOL
9-2 ASIST Users Guide–Version 9.6

Commanding
The command is now converted to CCSDS format:

Thus, if the command were the second one (label=1) sent from the Primary TCW (SFID=0), then the command would be:

1801C0000003042D000A

Creation of an SFDU (Standard Formatted Data Unit)

All communications over the command link is done using SFDUs. These are CCSDS defined communications packets.
All SFDU packets are made up of a header (termed Label within the CCSDS documents) and a data area (termed Value
within the CCSDS documents). Information within the header describes the meaning and length of the data area. There
are two kinds of data packets used within ASIST, Z class packets and I class packets.

A Z class packet is a data packet which contains multiple packets within it. The Z header is of the form:

CCSD3ZA00001XXXXXXXX

where XXXXXXXX is the length of the data field

Inside the data area of Z class packets are one or more I class packets. An I class packet is called an Information Data
Object (in SFDU parlance). These I class packets can contain any form of user defined data. For spacecraft commands,
ASIST uses

C7333IA0CPKTXXXXXXXX

This chapter will only describe the contents of spacecraft command packets. Another (very long and boring) document
exists on the complete ASIST internal commanding protocol, which is available on request.

The data portion of the CPKT is the command packet to be sent to the spacecraft, represented in ASCII-Hex (also known
as half-ascii)

Within ASIST, two additional I packets are included in the commands Z packet. A DEST I packet is put into the SFDU to
indicate to the command handler the destination of the SFDU, and a LABL I packet is put in the SFDU to tell the com-
mand’s receiver who to send responses back to, and to help the response’s receiver to match up responses to the command
that caused them.

Thus, in the example above, the final SFDU created would be:

CCSD3ZA0000100000102
C7333IA0DEST00000009FEDS:FEDS
C7333IA0LABL00000017mymachine:SPR:005
C7333IA0CPKT000000161801C0000003042D000A

Apid Constant Data Length
+1

Func
Code

Chk
Sum

Data

18 01 C0 00 00 03 04 2D 000A
ASIST Users Guide–Version 9.6 9-3

CHAPTER 9
Sending the SFDU to the Command Handler

Once STOL has built the command SFDU, it is sent, via TCP/IP, to the command handler. Upon receipt of a command,
the command handler examines the command according to the following algorithm:

HandleACommand
BEGIN

IF the source of the command (base upon SFID) is not enabled THEN
 reject the command, sending a local reject to its source
done HandleACommand

ENDIF
IF Screening is ON THEN

IF this user doesn't have the privilege to send this command
THEN

reject the command, sending a local reject to its source
done HandleACommand

ENDIF
ENDIF
IF Validation or Hazardous Screening is On THEN

Match the binary command packet received against the command DB using APID/Fn Code, Length,
and static data as criteria
IF Validation is on THEN

IF no commands in the DB matched this binary command packet THEN
reject the command, sending a local reject to its source
done HandleACommand

ENDIF
ENDIF
IF Hazardous Screening is on THEN

IF any command matched in the DB matching this cmd packet is defined as Hazardous
THEN

Send a Hazardous command pending local response
Add command to the pending hazardous/critical command queue
done HandleACommand (Handling cmd is postponed)

ENDIF
ENDIF
IF Critical Screening is on THEN

IF any command matched in the DB matching this cmd packet is defined as Critical THEN
Send a Hazardous command pending local response
Add command to the pending hazardous/critical command queue
done HandleACommand (Handling cmd is postponed)

ENDIF
ENDIF

ENDIF
IF upstream command link is not connected THEN

reject the command, sending a local reject to its source
done HandleACommand

END
Send a local accept to the commands source
Send the command "Upstream" (meaning to the primary if on an associate OR to the FEDS if on primary)

END HandleACommand
9-4 ASIST Users Guide–Version 9.6

Commanding
Command Source Enable/Disable

The primary test conductor workstation has the ability to enable or disable any command source, using the ENABLE and
DISABLE directives. When a source is disabled, all spacecraft commands it issues are immediately rejected by ASIST.
All command sources default to DISABLED. To use these directives, type:

ENABLE sfid or ENABLE machine-name

DISABLE sfid or DISABLE machine-name

Command Validation

When commands are received by the command handler, they are validated against the current command database. This is
done by “backsolving” the command, which means determining what commands in the database match this command
according to the following criteria: Apid/Function Code, Length, static parameters, and limits on dynamic parameters. If
no match is found, then the command is rejected.

This feature can be turned on or off using the STOL directive:

VALIDATION val-flag

where val-flag determines whether command validation, hazardous command screening, and critical command screening
are performed.

When validation is off, all commands are allowed, regardless of their presence in or absence from the command database.

Command Backsolving

Each binary command received by the command Handler is disassembled to determine if it matches any command(s) in
the current command. If none are matched it will be rejected if command validation is on (as described above). The com-
mand(s) matched are then used to determine if the binary command is hazardous or critical.

The criteria used to backsolve binary commands are:

1. APID/Fn Code

TABLE 9-2. Validation directive options

val-flag Validation
Hazardous
Screening

Critical
Screening

ON ✔ ✔ ✔

HAZONLY ✔

CRITONLY ✔

VALONLY ✔

HAZ_CRIT ✔ ✔

VAL_HAZ ✔ ✔

VAL_CRIT ✔ ✔

OFF
ASIST Users Guide–Version 9.6 9-5

CHAPTER 9
2. Length of command data (except for variable commands)

3. Static & Invisible data and limits on dynamic values.

What criteria is used is determined by the value of the CVT variable CMH_VALIDITY_LEVEL:

How much information you receive about why commands are accepted or rejected is controlled by the CVT variable
CMH_VERBOSE:

Options affecting backsolving:

• You can set up certain Apid/Fn code pairs which never get backsolved to any higher granularity, no matter what
CMH_VALIDITY_LEVEL is set to. This is useful when you have an instrument ground system that sends commands
with APID=40 and Function Code=10, but you don't have a definition for the command’s data (parameters). To do
this, define the command as:

CMD DontCheckMe APID=40,FCTN=10,VERIFY_APID_FN_ONLY

• You can define submnemonics in commands which are VARIABLE in length (and thus cause the command to be vari-
able length). This is done by adding the keyword VARIABLE to the submnemonic's definition. This means that the
backsolver will accept commands which are shorter than the full length defined in the database, and assume that fewer
elements were sent than the maximum allows. It is useful for defining Load commands, which often have variable
length data fields. For example:

CMDS AEALOADMEM APID=%60,FCTN=0,DESC="ACE-A Load Memory"
UI CMDWD INVISIBLE,STATIC,DEFAULT=%X0002
UI STRADD DYNAMIC,RANGE=(%X0000,%XFFFF)
UI NOBYTES DYNAMIC,RANGE=(1,50)
UB DATA[50] DYNAMIC,VARIABLE

END

TABLE 9-3. The different levels of command validation

Value Criteria

0 None (no checking is done)

1 APID/Fn code only (all commands with this APID/Fn code match)

2 Length of command must match (as well as APID/Fn code).

3 Static & Invisible data and limits on dynamic values must match (as well as all of the above).

TABLE 9-4. The available feedback levels for command validation

Value How much information is given

0 Quiet, no information is displayed about backsolving

1 Success, displays items that match

2 Success or Reject, displays items that match, or a message saying nothing is matched

3 Failed Data, reports success or failure, plus all commands (from the database) which matched
in APID/Fn Code and Length, but failed due to invalid data, and a brief description of why they
weren't matched.

4 Failed Length, reports all of the above, plus the commands rejected due to length

5 Debug, reports all of the above, plus some internal debugging information.
9-6 ASIST Users Guide–Version 9.6

Commanding
In this case, the command could have up to 50 elements for the parameter DATA., so either of the following lines
would be legal:

/AEALOADMEM STRADD=X’1234’,NOBYTES=4,DATA=[1,2,3,4]

 generates a command whose data is the length:

 sizeof(CMDWD)+sizeof(STRADD)+sizeof(NOBYTES)+ 4*sizeof(UB)=2+2+2+4=10 bytes, while

/AEALOADMEM STRADD=X’5678’,NOBYTES=50,DATA=[1,2,3,4,5,6,7,8,9,0, ;;
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, ;;
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]

generates a command whose data is the length:

 sizeof(CMDWD)+sizeof(STRADD)+sizeof(NOBYTES)+ 50*sizeof(UB)=2+2+2+50=56 bytes.

• Backsolving of Unions within bitfields can be made more accurate if you define a mask on the Union statements.
CMDS Silly

BITFIELD Some_Bits
Union U8 Mask=%X80

UB Bit8On Static,DEFAULT=1,MASK=%X80
UB Bit8Off Static,DEFAULT=0,MASK=%X80

END
Union U7 Mask=%X40

UB Bit7On Static,DEFAULT=1,MASK=%X40
UB Bit7Off Static,DEFAULT=0,MASK=%X40

END
…
END

These MASKS on the union allow the command backsolver to exactly identify what you typed. BUT, you should only
put them on when no other element of the bitfield can change the bits in that mask, since ASIST will only allow com-
mands whose bits EXACTLY match the static patterns within that mask.

User Screening

The command is also compared against the user screening database, to see if its sender is authorized to send a command
of this APID/Function Code. If he/she is not, then it is rejected.

This can be disabled using the SCREENING ON or OFF directive. With screening off, the screening database is not
checked.

The format of the user database file and how to change it are discussed in CHAPTER 14: “System Configuration” .

Hazardous and Critical Command Screening

Hazardous and critical command screening is performed on all commands after backsolving. If the matched command (or
any of the matching commands if there were more than one) is labeled hazardous (or critical) in the command database,
then the command is flagged as hazardous/critical and added to the “hazardous/critical command pending queue.”

• To enable or disable hazardous and critical command screening, use the VALIDATION directive (see “Command
Validation” on page 9-5). When a session of ASIST is started, hazardous and critical command checking are enabled.
ASIST Users Guide–Version 9.6 9-7

CHAPTER 9
Once a command is recognized as hazardous or critical, the TCW or IGSE that sent the command is placed in Hazardous
Pending mode. This means that it can't send another spacecraft command until the previous one has been allowed/can-
celed.

An event message then informs the primary that a command has been added to the hazardous/critical command pending
queue (the number of hazardous/critical commands pending, which can be seen on the command page, is also incre-
mented). This mesage displays the command and its description from the command database. If the automatic hazardous
command popup window is enabled, a popup window will appear, indicating the hazardous command pending, its
description, and offering a button you can press to allow or cancel the command.

• To see what commands are currently pending, type at the STOL window:

/LIST_HAZ

For example, if one hazardous command is pending from machine sgse2, this list would produce

Hazardous commands currently pending:

#1:<WAB1CHGA> from sgse2:SPR
 Description-->BATTERY 1 CHARGE PRI RELAY E/D

If no hazardous command was pending, then the report would say:

No hazardous commands pending

Each hazardous/critical command is assigned an ID (i.e. command #1 above), which will be displayed on the event mes-
sage, and in the report.

• To allow a given command at the primary, type:

/ALLOW command-# (i.e. /ALLOW 3)

• To cancel the command, type:

/CANCEL command-# (i.e. /CANCEL 3)

• Alternatively, you can allow or cancel the last command from a given source by typing:

/ALLOW_SOURCE sfid (warning: sfids are in hex)

/CANCEL_SOURCE sfid

i.e. /ALLOW_SOURCE X'11' allows the last hazardous command from source PCA.

• Also, you can cheat, by typing:

/ALLOW TOP

to allow the top command in the hazardous command pending queue.

OR /CANCEL TOP

to cancel the top command in the hazardous command pending queue.

• If a hazardous command is found within a block, then the whole block is deemed hazardous, and must be allowed or
canceled by the Primary Test Conductor.

If a hazardous block is pending, then the whole block is printed when you use /LIST_HAZ; i.e.

Hazardous commands currently pending:
#1:<C02001801C0000003042D000A> from sgse2:SPR
#2:Cmd 1 of block:<D00BLOCKBEGIN> from sgse1:SPR
#2:Cmd 2 of block:<C00011801C0000003042D000A> from sgse1:SPR
#2:Cmd 3 of block:<C00021801C0000003042D000A> from sgse1:SPR
#2:Cmd 4 of block:<C00031801C0000003042D000A> from sgse1:SPR
#2:Cmd 5 of block:<D00BLOCKEND> from sgse1:SPR
9-8 ASIST Users Guide–Version 9.6

Commanding
When a hazardous command is sent by an Associate, it is put in the ATCW's “hazardous command pending queue,” and
sent to the PTCW's “hazardous command pending queue,”. It can be canceled from either location, but can only be
allowed from the PTCW.

NOTE: The commands may have different command IDs on the Primary and Associate. This is because separate queues
are kept at each workstation. Matching of commands between queues is done within ASIST.

Command Handler Sends the Command to the Front End

After the command passes the command handler’s screening/validation processes, it is sent to the FEDS. If the FEDS
accepts the command, it sends a local accept to the command handler), and then sends the command to the spacecraft. If
the spacecraft receives the command, then the FEDS sends an end-to-end accept message back to STOL (via the com-
mand handler). For more information on how the FEDS processes, sends, and verifies commands, see CHAPTER 10:
“Front End Data System” . If STOL does not see this end-to-end response within a defined period, it will report an end-to-
end time-out, halting any running procedure currently awaiting an end-to-end wait.

Two Step Commanding

Sometimes, you want a chance to review all commands before they are sent to the spacecraft. This is the purpose of two-
step commanding; enabling two-step mode causes all commands sent from your workstation or any associates attached to
your workstation to be buffered. You can then either send the buffered commands (using the TWO_STEP SEND direc-
tive) or discard them (using TWO_STEP CLEAR).

Entering two-step mode, (by typing TWO_STEP ON at STOL), causes commands to be buffered, and command syn-
chronization to be set to manual.

To see what commands are in the command buffer, type TWO_STEP SHOW to print the commands currently in the
buffer to the event log, or TWO_STEP PAGE to open the page CMDQUE, which displays the commands currently in the
buffer (and has push-buttons which allow you to control two step commanding).

To send the current buffer, type TWO_STEP SEND, or, to clear the buffer, type TWO_STEP CLEAR. When either of
these directives is issued, STOL performs a SYNCHRONIZE NOW, causing procedures to halt until responses are received
for all pending commands.

Finally, to exit two-step mode, type TWO_STEP OFF. This not only exits two-step mode, but also does a SYNCHRO-
NIZE NOW and changes command synchronization back to AUTO. This only works when no commands are pending in
the two-step buffer.

Command Pre-verification

A command can be pre-verified when it has a pre-verification expression assigned to it in the database (use the PVER
attribute in the command database) and pre-verification is enabled (use the PVER ON directive). If both of these condi-
tions have been satisfied, then before the command is sent, the pre-verification expression is evaluated. If the expression
evaluates to TRUE, the command is sent. If the expression evaluates to FALSE, an error is reported and the command is
not sent,
ASIST Users Guide–Version 9.6 9-9

CHAPTER 9
Pre-verification expressions look just like telemetry verification expressions - a `?' before a parameter name indicates
whether the parameter appears on the command or not and a '#' before a parameter name accesses the value specified for
the parameter.

For example, if the command database contains this entry:

CMDS TEST_PVER APID=111,FCTN=22,PVER="?TEST_PARM AND #TESTPARM!=0"
UI TEST_PARM

ENDS

and then following is entered in STOL:

PVER ON
/TEST_PVER TEST_PARM=6

will be successfully sent, but

PVER ON
/TEST_PVER TEST_PARM=0

will cause an error.

The options for PVER are:

Telemetry Verification of Commands

ASIST can verify that your commands are executed using automatic telemetry verification (sometimes called end-item
verification). You tell ASIST how the command is to be verified by specifying a STOL expression (as a string) to the
TVER argument on each CMD, CMDS, DIR, or DIRS that you want to be verified. The expression must be a valid argu-
ment to a WAIT UNTIL STOL directive. For example, suppose the command /RELAY_1_ON closes a relay somewhere
on the spacecraft and the telemetry point RELAY_1_STATE contains the current setting of relay 1 (0=open, 1=closed),
then you can define the command in the database like this:

CMD RELAY_1_ON DESC="Close relay 1",TVER="RELAY_1_STATE=1"

When you send this command (and assuming telemetry verification is enabled) then once the end-to-end response for the
command is received, STOL will enter a WAIT UNTIL directive:

WAIT UNTIL RELAY_1_STATE=1

until either the telemetry point reaches the desired state or the WAIT UNTIL times out (which defaults to 30 seconds). If
the desired state is reached then STOL continues execution with the next line in your procedure. If the desired state is not
reached in the time-out period, your procedure will halt with an error.

TABLE 9-5. Options for the PVER directive

Directive What it does

PVER Displays the state of pre-verification

PVER ON Enables pre-verification

PVER OFF Disables pre-verification
9-10 ASIST Users Guide–Version 9.6

Commanding
There is no limit to the complexity of the TVER expression as long as it is a valid WAIT UNTIL argument. It may not,
however, be longer than 80 characters in length.

If you have multiple parameters to a command you can verify whether a particular parameter is present when the com-
mand was sent by preceding the parameter name with a question mark (?). Likewise, you can check for the value of a spe-
cific parameter by preceding it with a pound sign (#). For example, if the command /SET_UNIT_PARMS has one
parameter (VOLT) to set the voltage and another parameter (CURRENT) to set the current and there exists two telemetry
points UNIT_VOLTAGE and UNIT_CURRENT which reflect the current settings, then you can define the command this
way:

CMDS SET_UNIT_PARMS DESC= "Set unit voltage or current",
TVER= "?VOLT AND UNIT_VOLTAGE=#VOLT OR "&

"?CURRENT AND UNIT_CURRENT=#CURRENT"
UNION PARM_SETTINGS

UI VOLT DESCR="Voltage setting"
UI CURRENT DESCR="Current setting"

END
END

If you choose, you do not need to give a TVER expression with every command. In the absence of a TVER expression,
verification automatically succeeds. You may also choose to use TVER as a simple non-executable text field. To do this,
simply place a semicolon (;) as the first character of the TVER string. For example:

CMD SPACECRAFT_NOOP DESC="Does absolutely nothing",
TVER=";Nothing to verify"

Telemetry verification automatically succeeds in this situation also.

Controlling Telemetry Verification

You enable and control telemetry verification by using the TVER STOL foreign directive. You can determine the current
state of telemetry verification by entering:

TVER

To enable telemetry verification, type:

TVER ON

and to disable it, type:

TVER OFF

You can set the number of seconds before telemetry verification returns an error by typing:

TVER TIMEOUT seconds

If telemetry verification is enabled, you've just sent a command, and you're waiting for verification, you can cause your
procedure to terminate the current verification and continue immediately by:

TVER EXIT

If you're waiting for verification and you want to halt with an error use:
ASIST Users Guide–Version 9.6 9-11

CHAPTER 9
TVER ABORT

Telemetry verification is supported in two different modes, synchronous and asynchronous. In synchronous mode, each
command must verify successfully before proceeding to the next. In asynchronous mode, command verifications (up to a
maximum of 100 commands) are stored until you determine that your procedure must wait for all outstanding commands
to be verified. Asynchronous mode is useful if it takes a significant amount of time to send commands and receive telem-
etry.

To enable synchronous mode (which is the default mode), type:

TVER MODE SYNC

To enable asynchronous mode, use:

TVER MODE ASYNC

In asynchronous mode, to cause all outstanding commands to be verified, enter:

TVER VERIFY

Finally, to display the names of all commands which are currently awaiting verification, use:

TVER PENDING

Many of these directives, as well as the state of telemetry verification, are available through the tverstat page accessi-
ble from the TVER button on the command bar. The following table defines the meaning of each state:

TABLE 9-6. Possible telemetry verification states

Status Meaning

Built Command has been assembled and is ready to transmit

HazWait Command is waiting for an /ALLOW

Sent Command has been transmitted

Received Command has been received at the destination and confirmed by an end-to-end response

Timeout No end-to-end response has been received in the timeout period

Rejected Command has been rejected by a destination

Canceled Command has been canceled

Cleared Command was cleared by operator with CLEAR_PENDING

Pending Command has been received at the destination and is ready for telemetry verification

Active Command is actively testing telemetry

Verified Command successfully verified

Exited Command completed telemetry verification by operator with TVER EXIT

Aborted Command completed telemetry verification by operator with TVER ABORT

Error Command encountered an error
9-12 ASIST Users Guide–Version 9.6

Commanding
Blocks of Commands

It is possible in STOL to enter a number of commands which are sent to the Front End as a block by defining a container
SFDU in your command database. This is done by adding the keyword CONTAINER to an SFDU definition. For exam-
ple:

SFDU CLTU_BLOCK CONTAINER,ROUTING_SFDUS="DEST",
PREFIX_SFDU="LABL",SC_COMMAND

END

This defines a container SFDU called CLTU_BLOCK. When you enter this command from STOL, it can take one of the
following parameters:

Entering this from STOL causes you to enter blocking mode, creating a Container (Z-Class) SFDU which will contain I-
Class SFDUs. The contents of the SFDU, when generated, will be the I class SFDUs built between when the container is
begun and when it is completed.

For example, if the definition CLTU_BLOCK from above is defined in your database:

1. Entering at STOL:
/CLTU_BLOCK BEGIN

Enters block mode.

2. Type a few commands:
/SNOOPCMD
/SNOOPCMD
/SNOOPCMD

3. At this point, you can either close or cancel the block:

a) To close the block, type:
/CLTU_BLOCK END

 After the END is received, an SFDU will be generated, which will look like this:
CCSD3ZA0000100000289

C7333IA0DEST00000009FEDS:FEDS
C7333IA0LABL00000013sgsea:SPR:020
C7333ZA0CLTU00000207
C7333IA0LABL00000013sgsea:SPR:017
C7333IA0CPKT000000161801C00000010126

C7333IA0LABL00000013sgsea:SPR:018
C7333IA0CPKT000000161801C00000010126

C7333IA0LABL00000013sgsea:SPR:019
C7333IA0CPKT000000161801C00000010126

TABLE 9-7. Options for use with container SFDUs

Parameter What it does

BEGIN Starts blocking (actually, opens a Z-Class SFDU Block)

END Closes the block and sends the commands

CANCEL Cancel the block currently being built.
ASIST Users Guide–Version 9.6 9-13

CHAPTER 9
b) To cancel the block, enter:
/CLTU_BLOCK CANCEL

 All the commands within the block will be discarded.

Notes:

• Only 1 DEST SFDU appears, since the ROUTING SFDU is only included once per CCSD3ZA000001 SFDU.

• There is one label per command, and one for the Z, since the prefix SFDU is included once per SFDU or command.

• This form of blocking only works with FEDS with the post-ASIST 6.1 software. Support for the previous form of
blocking (/BLOCKBEGIN, /BLOCKEND, /BLOCKCANCEL has been removed).
9-14 ASIST Users Guide–Version 9.6

Commanding
Failover of the Primary and the FEDS command link

ASIST allows you to change which machine is your primary workstation and which machine the primary should connect
to for its upstream command connection (FEDS) directly from STOL, without stopping and restarting ASIST.

Changing the Primary

To switch the primary workstation to another machine, on the STOL command line enter:

new_primary machine-name

where machine-name is the new primary workstation.

If this directive is issued on the current primary, it will inform all associates to change. If issued on a machine which is
currently an associate, it will only inform the machine on which it is typed.

This directive causes the command link to drop and changes the topology of the command network. This will cause a dis-
ruption in the ability to command the spacecraft. If the machine receiving the NEW_PRIMARY is to be an associate, it
will drop its command link and connect to the machine designated as the new primary. If it is the new primary, it will drop
its command link and connect to the FEDS.

Changing the Front-End Machine (for commanding)

To change which machine your primary connects to for its PRIMARY-to-FEDS command link, on the STOL command
line enter:

new_feds machine-name

where machine-name is the new FEDS to switch to.

This directive will return an error message if you attempt to send it from an associate.

Changing the Front-End Machine (for telemetry)

To change which machine to connect to for telemetry, on the STOL command line enter:

new_tlm channel machine-name
 or
reopen_telemetry channel machine-name

where channel is the telemetry channel to close and machine-name is the new FEDS to switch to. This causes ASIST to
close the current telemetry connection for channel. It then reopens another connection to the new FEDS machine,
machine-name.
ASIST Users Guide–Version 9.6 9-15

CHAPTER 9
Overriding Directive Destinations

When defining directives for external GSE, you must define a destination machine and task in the database. Sometimes,
however, it is useful to be able to change one of these fields when you enter the directive at STOL (i.e. you may have mul-
tiple EGSEs, and want to define which EGSE machine to send the directive to when you send it). Thus, ASIST provides
the ability to override this database-defined destination machine and task for a given command SFDU.

To override the destination machine and/or task, enter either:

DEST_MACHINE="machine-name"

 or

DEST_TASK="task-name"

on your command at STOL. For example:

/HDS_COMMAND DATA="Roll over",DEST_MACHINE="ROVER"

or
/UMB_COMMAND DATA="Play dead",DEST_TASK="FIDO"

This is most useful for developers of EGSE.
9-16 ASIST Users Guide–Version 9.6

Commanding
Commanding Constellations

ASIST provides the capability of handling a constellation of spacecrafts. Each ASIST workstation is set up to look at
telemetry from only one spacecraft at a time (controlled via the filter table file on the FEDS). And, by default, each
ASIST workstation will send commands only to its default spacecraft (set using the variable spacecraft_id). It can,
however, send commands to any spacecraft in your constellation by adding a simple parameter (SCID=#) when entering
the command at STOL.

Configuration

To configure ASIST for a constellation mission, you must put the following line within your $STOL_CONFIG file:

MissionType = constellation

This tells ASIST to include a spacecraft ID SFDU with your command packets.

Setting up the current spacecraft to command

To set what spacecraft your ASIST workstation sends commands to, set the CVT variable spacecraft_id

e.g. spacecraft_id=x’B8’

This causes your commands to be routed to the FEDS COP-1 loop for the spacecraft whose ID is 0xB8. It also causes
ASIST to listen to COP-1 feedback only from the COP-1 loop for spacecraft 0xB8.

Overriding the current spacecraft

To override the spacecraft ID for a given command, add the parameter SCID=value to your command. For example:

Spacecraft_ID=x’B8’
/SHAKE_IT_UP BABY

This command goes to spacecraft 0xB8.

/TWIST_AND SHOUT, SCID=x’12’

This command goes to spacecraft 0x12.

/COME_ON_COME_ON BABY

This command will again go to spacecraft 0xB8.

Note: You won’t see COP-1 feedback from the /TWIST_AND_SHOUT command above, since you are sending it to a
spacecraft whose COP-1 loop you are not monitoring.
ASIST Users Guide–Version 9.6 9-17

CHAPTER 9
Receiving STOL Directives from External Clients

External clients can send directives via the ASIST command bus to STOL which will be executed as if typed at the STOL
command line. This behaviour is, by default, disabled. To turn on this capability, you must enter the following directive at
STOL:

ENABLE_REMOTE_DIRECTVES (Turns it on)
DISABLE_REMOTE_DIRECTVES (Turns it off)

To send STOL directives from one ASIST workstation to another, you can type:

/STOL DATA=”DO THE THING I WANT YOU TO”,DEST=”machine-name:SPR”

Note: The sender must also be authorized to send APID=2080, Function Code=32, and be enabled for commanding.
9-18 ASIST Users Guide–Version 9.6

AS
CHAPTER 10 Front End Data System
Overview

The spacecraft commanding protocol has two characteristics which affect ASIST. First, the protocol uses a layered
approach: an experimenter generates a basic command, ASIST adds layers, the spacecraft strips off layers, and the basic
command is delivered to the experiment. Second, the protocol includes feedback to ensure that a command is never
accepted out of sequence. This feedback is used by ASIST to retransmit commands when necessary.

Test Conductors work with spacecraft commands at the most basic level (i.e. packet). The Front End Data System
(FEDS) adds layers, sends the command to the spacecraft, interprets the feedback to this command, and retransmit com-
mands when necessary. The UPLINK directives provide control over the logic within the FEDS Command Processor
(FCP). Appendix A provides usage information for the various Uplink directives. In order to understand the Uplink direc-
tives it is necessary to understand some concepts regarding the spacecraft commanding protocol. This chapter explains the
protocol and provides some tips on controlling the Front End Data System Command Processor logic.

Spacecraft Commanding Protocol

ASIST Spacecraft Commanding is based on the international telecommunications standard developed by the Consulta-
tive Committee for Space Data Systems (CCSDS).

The CCSDS protocol uses a layered approach (see Figure 10-2 on page 10-10). Commands are generated as packets, each
of which includes an Application ID which can be used by the spacecraft to determine which subsystem should receive
the packet. Each transfer frame contains one packet. The transfer frame includes a counter which allows the spacecraft to
determine if a command has been received in sequence. One or more transfer frames are put in each command link trans-
mission unit (CLTU); but, first the transfer frame(s) is broken into code blocks. All code blocks consist of 7 bytes of data
followed by a one byte polynomial code (checksum).

Within the CCSDS protocol there are three "Command Operation Procedures". ASIST uses Command Operation Proce-
dures #1 (COP-1). Command transfer frames are numbered sequentially (0 through 255, then back to 0). The spacecraft
rejects out of sequence frames and provides feedback to ASIST so that commands can be retransmitted when necessary.
For example, if ASIST sends frames numbered 1 through 10 and the spacecraft finds frames 1-5 acceptable but frame 6 is
rejected, then frames 7-10 are thrown away because they are out of sequence and ASIST is told to retransmit starting with
frame 6. If ASIST ignored this feedback and continued sending frames indefinitely the spacecraft would enter a "lockout"
condition. During "lockout", the spacecraft ignores all frames. This prevents the situation where the number wraps back
around to its proper value but 256 frames have been rejected. Feedback to ASIST specifies that a lockout condition exists,
IST Users Guide–Version 9.6 10-1

CHAPTER 10
and that retransmission is necessary beginning with frame number 6. To allow recovery from a lockout condition,
CCSDS provides a special transfer frame referred to as the "unlock" transfer frame. ASIST must send the unlock frame
and then retransmit spacecraft commands starting with frame number 6.

There are some other CCSDS commanding features of note. A bit can be set in the transfer frame to tell the spacecraft to
disregard normal frame sequence checking. This is referred to as commanding in "bypass" mode. Any transfer frame can
be sent in bypass mode. In addition, there are two special transfer frames defined by CCSDS. These, called bypass
frames, directly affect the spacecraft command acceptance logic. The first is the "unlock" frame (mentioned previously);
the other is the "set next expected frame sequence counter to zero".

FEDS Commanding Software

The current version of the FEDS Commanding software:

• is compatible with older FEDS Commanding software, and provides additional functions and interfaces.

• is a generic implementation of the CCSDS Ground Telecommand Services (Segmentation, Transfer, Coding, and
Physical Layers). These services accept command Packets and build Command Link Transmission Units (i.e. the
command data to be sent to the spacecraft). The software can be used with any spacecraft whose commanding system
is CCSDS-compliant.

• provides gateways (interfaces) for various command destinations (e.g. an RS422 line or the Deep Space Network).
The Command Link Transmission Units built by the Services are output via one of these gateways.

Each FEDS contains configuration files which are used to:

• set up each of the layers to match the particular spacecraft being commanded.

• choose which command gateway is to be used.

• set up the gateway as required for the particular spacecraft being commanded.

These configuration files are normally set up at installation.

In addition, each layer/gateway can be configured on the fly by sending directives from ASIST (described in Table 10-4,
"Directives for configuring layers of the FEDS command software," on page 10-7 and Table 10-5, "Directives for config-
uring the command gateways on the FEDS," on page 10-7).

The heart of the ground command software is the FOP-1 logic (which determines which commands have been accepted
by the spacecraft and retransmits commands when necessary). FOP-1 status is displayed on a small page at the top center
of the ASIST display.

There is also a separate display page for the status of each layer/gateway; these are available by pushing the more button
on the FOP-1 display page.

For compatibility with older FEDS Command Software, the UPLINK directive is still supported.

Raw Commanding

Generally, a Test Conductor provides a mnemonic which ASIST converts into a packet, and then ASIST adds the addi-
tional layers required by CCSDS. ASIST provides STOL directives to specify raw data for the packet, transfer frame, or
CLTU layer. Refer to the RAW, FRAME, and CLTU directives in Appendix A for more details.
10-2 ASIST Users Guide–Version 9.6

Front End Data System
When the CLTU directive is used, FCP simply outputs the given data as-is. When the FRAME directive is used, FCP
builds a CLTU from the given frame data. Generally, these directives are intended to allow commands to be sent which are
improper. That is, they allow the Test Conductor to override the normal rules for building CLTUs. Note that FCP may
need help in recovering from problems caused by sending improper commands.

When the RAW directive is used, FCP is given the packet data and builds a CLTU in the normal way. Therefore, there are
no complications.

Starting up a spacecraft

The following sequence avoids potential problems when starting up a spacecraft. Note that ASIST should always be
receiving telemetry before COP-1 is enabled (because it can't verify commands without telemetry).

1. Send the following directives from STOL:
UPLINK COP1 OFF
UPLINK BYPASS ON

2. Turn on telemetry and verify that it is flowing properly.

3. Send the following directives from STOL:
UPLINK BYPASS OFF
UPLINK COP1 ON

4. Send a no-op command and verify that the spacecraft accepts it.

Command Processor Operational Modes

The FEDS Command Processor (FCP) has several different operational modes. The current operational mode is deter-
mined by the settings of flags inside FCP. These flags are:

Flag Description

Bypass Can be on or off. When off, FCP clears the Bypass bit when it builds Transfer Frames. When the Bypass
bit is clear, the spacecraft performs normal COP-1 verification on each command. When on, FCP sets the
Bypass bit when it builds Transfer Frames. This tells the spacecraft not to perform normal COP-1 verifi-
cation on this command. By definition, commands sent in Bypass mode do not require FCP to verify
spacecraft acceptance (this is true even if Cop-1 mode is enabled).

COP1 Note that the COP-1 protocol is always in use on the spacecraft. this flag only affects whether or not FCP
attempts to utilize the COP-1 feedback information from the spacecraft. The flag can be set on or off.
When off, the feedback information is ignored (we refer to this as "blind" commanding). When on, the
feedback information is used to determine command acceptance/rejection by the spacecraft. See the
Retries flag for an explanation of what FCP does when the spacecraft rejects a command.
ASIST Users Guide–Version 9.6 10-3

CHAPTER 10
When FCP is started the flags are assigned default values based on configuration files on the FEDS (see the ASIST/FEDS
Support Team for more details).

Refer to the UPLINK directives in Appendix A to see how these flag settings can be changed while FCP is running (the
UPLINK directives also provide ways to resolve problems with the spacecraft command link).

Interpreting the FOP-1 Status display

 The FOP-1 Status display contains a summary phrase (describing the current FOP-1 state), additional information (if
available), and a countdown timer value

Retries Specifies the maximum number of times that the same command may be retransmitted autonomously by
FCP. Can be set to any number from 0 through 9. If COP-1 is enabled, this flag determines what FCP
does when the CLCW retransmit bit is set - i.e. the spacecraft has rejected a command and is requesting
that the ground retransmit it. Note that this flag has no effect when COP-1 is disabled (because in this
mode the CLCW is ignored). For example, consider what happens when COP-1 is enabled and Retries is
set to 1:

Suppose that FCP sends a command and then sees the CLCW retransmit bit is set. FCP will
autonomously retransmit the command (the Test Conductor is always notified when a command
is retransmitted). FCP sleeps for about 15 seconds before reading another CLCW (this should
ensure that the spacecraft has had enough time to respond to the retransmitted command). If the
CLCW retransmit bit is still set then FCP is stuck (it has used up all its allowed autonomous
retries). Now FCP has to ask for manual help from the Test Conductor (refer to the UPLINK
RETRY directive in Appendix A).

FCP can be prevented from ever autonomously retransmitting a command by setting the Retries flag to
zero.

Timeout Specifies the number of seconds FCP will wait if the spacecraft neither accepts the current frame nor
requests a retransmission. When a timeout occurs, FCP will autonomously retransmit the pending frames
if allowed (see Retries).

TABLE 10-1. FOP-1 Status Display Explanations

Summary Phrase Explanation

Additional Information

Value Meaning

Active FOP-1 Service is initialized, and the current CLCW
shows no problems (i.e. lockout=0, retransmit=0,
wait=0). No manual action required at this time.

Tells how many commands are pending (left
blank if none are pending).

Retransmitting Pending commands have been retransmitted. Explains why commands were retransmitted:

timer expired spacecraft neither accepted
the current frame nor
requested a retransmission.

retr bit set the CLCW retransmit bit is
set.

Wait bit set FOP-1 Service is waiting for the CLCW Wait bit to clear.
Pending commands cannot be retransmitted until that
time. No manual action required at this time.

Flag Description
10-4 ASIST Users Guide–Version 9.6

Front End Data System
The UPLINK Directive

The UPLINK directive allows you to control/configure the command software.

Initializing FOP-1 Service is waiting for the CLCW to indicate a
clean startup condition (lockout=0, wait=0, retrans-
mit=0, and flight_counter=ground_counter). No manual
action required at this time.

Uninitialized FOP-1 Service is not initialized, and blind commanding
is not allowed.

Blind Cmnding FOP-1 Service is not initialized, but blind commanding
is allowed. FOP-1 is sending commands such that the
spacecraft is performing normal COP-1 verification, but
FOP-1 is ignoring the CLCW feedback.

Bypass Transfer Frames are currently being sent in Bypass
mode; i.e. FOP-1 is sending commands such that COP-1
verification is not being performed by the spacecraft.

Suspended FOP-1 Service is suspended. Manual action is needed
(see Recovering from commanding problems).

Tells why service was suspended.

timer expired spacecraft neither accepted
the current frame nor
requested a retransmission.

retr bit set the CLCW retransmit bit is
set.

Terminated FOP-1 Service was terminated due to an error. Manual
action is needed (see Recovering from commanding
problems).

Tells why service was terminated:

CLCW current CLCW contents are
invalid.

Synch Based upon previous CLCW
contents, current CLCW
contents are invalid.

Lockout CLCW lockout bit is set.

Counter current CLCW counter is
invalid (e.g. outside sliding
window)

Limit (retr) all allowed transmissions are
used up, CLCW retransmit
bit is set, and FOP-1 is con-
figured to terminate.

Limit (time) all allowed transmissions are
used up, timer expired
(spacecraft neither accepted
nor rejected the command),
and FOP-1 is configured to
terminate

TABLE 10-1. FOP-1 Status Display Explanations

Summary Phrase Explanation

Additional Information

Value Meaning
ASIST Users Guide–Version 9.6 10-5

CHAPTER 10
Syntax

UPLINK action

where action is:

The following actions do nothing, but are accepted for backward compatibility:

TABLE 10-3. Obsolete Uplink Directive Options

Typical Use

These directives are only needed if default configuration is inappropriate:

UPLINK RETRIES how_many_autonomous_retries_allowed
UPLINK TIMEOUT how_many_seconds

To have the spacecraft accept commands without performing COP-1 verification:

UPLINK BYPASS ON
; send as many commands as you want...
UPLINK BYPASS OFF

To have the spacecraft perform normal COP-1 verification, but have the ground system ignore the CLCW feedback (i.e.
"blind" commanding):

UPLINK BYPASS OFF
UPLINK COP1 OFF
; send as many commands as you want...

TABLE 10-2. Uplink Directive Options

action What it does

BYPASS [ON | OFF] Turn Bypass Mode On or Off

COP1 [ON | OFF] Turn COP-1 command verification on or off.
Note: turning COP-1 on now unlocks and resyncs

RETRIES n Set the number of automatic retries

RETRY

FRAME n sets ground frame counter to n

TIMEOUT n sets FOP-1 timeout to n seconds

action Notes

CONTROL [ON | OFF]

LOG [ON | OFF]

RESET

RESYNC Now done when uplink cop1 on is sent.

TRACE

UNLOCK Now done when uplink cop1 on is sent.
10-6 ASIST Users Guide–Version 9.6

Front End Data System
To have the spacecraft perform normal COP-1 verification, and have the ground system utilize the CLCW feedback:

UPLINK BYPASS OFF
UPLINK COP1 ON
; send as many commands as you want...

If the ground COP-1 logic suspends, choose 1 of these:

UPLINK RETRY

 or
UPLINK COP1 OFF and UPLINK COP1 ON (pending commands are trashed)

If the ground COP-1 logic terminates, do this to reestablish normal COP-1:

UPLINK COP1 ON

Additional FEDS Command Directives

Each CCSDS Telecommand Service layer can be configured via directives from ASIST (see Appendix A for details):

Each Command Gateway can be configured from ASIST (see Appendix A for details):

Recovering from Commanding Problems

The FEDS Command software is designed so that it can overcome most command rejections autonomously. Should all
"programmed" recovery strategies fail, the FOP-1 logic will either suspend or terminate (depending on how it is config-
ured).

TABLE 10-4. Directives for configuring layers of the FEDS command software

Directive Layer

DSEG Segmentation Layer

DXFR Transfer Layer

DCOD Coding Layer

DPHY Physical Layer

TABLE 10-5. Directives for configuring the command gateways on the FEDS

Directive Command Gateway

D422 RS422

DNAS Deep Space Network (Nascom block contents)

DDDD Deep Space Network (DDD-header contents)
ASIST Users Guide–Version 9.6 10-7

CHAPTER 10
If the FOP-1 logic is suspended, you have 2 choices:

If the FOP-1 logic is terminated, you have 1 choice:

If you don't want to enter this directive immediately, but do want the annoying blinking red display item to go away, then
enter UPLINK COP1 OFF.

UPLINK RETRY This resumes service and retransmits the pending commands. The result will be either a success-
ful delivery of the command or another suspension.

UPLINK COP1
OFF
 and
UPLINK COP1 ON

This terminates service (trashing any pending commands) and then reinitialize it.

UPLINK COP1 ON This reinitializes FOP-1 service.
10-8 ASIST Users Guide–Version 9.6

Front End Data System
FIGURE 10-1. FOP-1 Flowchart

Command

Received

SUCCESS

Terminate

Service

Suspend

Service

FOP-1

Service

Initialized?

Allow Blind

commanding

?

Was Frame

Accepted?

Was Lockout

Bit Set?

Was the

CLCW

invalid?

Was the

Retransmit

Bit Set?

Was the

transmission

limit

reached?

Was the

transmission

limit

reached?

Retrans

Type?

Timeout

Type?

Reject the

Command

Send the

Command

Check the

 CLCW

Send the

Command

Has the

Timer

Expired?

No No

No

No

No

No
No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

0

0

1

1

Yes
ASIST Users Guide–Version 9.6 10-9

CHAPTER 10
FIGURE 10-2.
CCSDS
Command

Layers
10-10 ASIST Users Guide–Version 9.6

Front End Data System
Ground Station Interface

The FEDS has the ability to command and receive telemetry either from a direct connection to the spacecraft or to connect
via network to one of a number of ground stations. The FEDS currently supports connections to GN ground stations
(using the EO-1 defined formats) and DSN (using the MAP-IMAGE defined formats). While these are available for your
use, setting them up requires the assistance of knowledgeable FEDS personnel the first time, and is not for the faint of
heart.

The telemetry and command connections are independent; you can be commanding through one station while receiving
telemetry from another. Consequently, there are two separate sets of directives used to control these links.

Setting the Current Ground Station

The two directives for switching the current ground station are:

To determine the current ground stations being used, monitor the telemetry points:

• gnd_station_current–indicates the ground station whose telemetry is currently being processed; and

• active_cmd_gateway-indicates where spacecraft commands are currently being sent (e.g. “AGS”).

Command Side of the FEDS–Ground Station Interface

The following telemetry points provide information about the FEDS to Ground Station interface.

available_cmd_gateways – a list of the ground stations which are currently connected to the FEDS. (e.g. “AGS WGS”)

active_cmd_gateway – where spacecraft commands are currently being sent (e.g. “AGS”)

The commands you send may be echoed from the ground station (if the station supports this feature and it is enabled).
Each time the FEDS receives a command echo, it sends a packet to ASIST (apid %x857) containing the following points:

gnd_station_cmd_echo_station – The station which sent the most recent command echo.

gnd_station_cmd_echo_message – An echo of the most recent command sent

The following functions and directives can be used to control the commanding side of the ground station interface:

is_station_connected_for_cmds station-name – returns 1 if station-name is currently connected for commands; 0 other-
wise. Example STOL code:

answer = is_station_connected_for_cmds ("WGS")

TABLE 10-6. STOL Directives for setting the current ground station

STOL Directive What it does

TLM_HANDOVER station-name changes the source of your telemetry to the ground station indicated by station-
name. This name must match an entry in the FEDS /etc/hosts file.

CMD_HANDOVER station-name changes what station your commands are sent to. station-name must match one of
the stations listed in the telemetry point AVAILABLE_CMD_GATEWAYS.
ASIST Users Guide–Version 9.6 10-11

CHAPTER 10
Another example:

WAIT UNTIL (is_station_connected_for_cmds ("WGS"))
; This will wait until the WGS station is connected for commands.

cmd_handover station-name – Waits for the given station to connect for commands, and then makes that station the
active command-gateway (i.e. commands will go to that station). For example:

cmd_handover ("WGS")
; This directive will not return until the WGS ground station
; connects. Upon return, the command destination will be WGS.

cmd_handover_with_timeout station-name timeout-value-in-seconds– Either performs a successful handover or else
times out. It returns 1 if successful, 0 otherwise. For example:

if (cmd_handover_with_timeout ("AGS", 10) = 0) then
 ; Handover failed; take appropriate action...
endif

FEDS-to-FEDS Command Gateway

It is possible for one FEDS to send commands through another FEDS (which will be called the routing FEDS) and then on
to the spacecraft. This has been used to allow the Mission Ops Center to command the spacecraft during I and T.

If your FEDS is being used as a routing FEDS, you can control the command flow using the DFMH directive:

Note: By default, commanding from a remote FEDS is disabled.

Telemetry Side of the FEDS–Ground Station Interface

Information available in telemetry and pseudo-telemetry

The front end delivers the following information about the ground station interface:

DFMH “clients?” shows a list of attached clients to the routing FEDS

DFMH “remote_commands?” reports whether or not commanding from a remote FEDS is allowed

DFMH
“enable_remote_commands”
DFMH
“disable_remote_commands”

enable/disable commanding from a remote FEDS

DFMH “?” gives you help about what directives can be sent

TABLE 10-7. Telemetry about the Ground Station Interface

Telemetry Point Meaning

Packet %x854 Status info for a given ground station

gnd_station Name of the ground station whose status this packet contains
10-12 ASIST Users Guide–Version 9.6

Front End Data System
The following information is derived from this telemetry:

To define a new station whose status you want to collect, enter the following in your telemetry file:

PACKET MoreStatusInfo APID=%xbad
STATION_STATS(FRED)

END

This defines gnd_station_FRED.status and gnd_station_FRED.frames_received, which would then
be collected when status from station FRED was received.

All the above is defined in the file /s/opr/system/rdl/station.rdl. You can look at this file for examples of
how to create event-driven pseudo-telemetry to monitor this data.

gnd_station_status This stations status:
 D=Disconnected,
 C=Connected,
 F=Connected and has sent gnd_station_count frames since the last
 status packet.

gnd_station_count The number of frames received from this ground station since the last
status packet.

Packet %x855 The current telemetry ground station packet

gnd_station_current The ground station whose telemetry is currently being delivered by the
FEDS to ASIST

Packet %x856 Station broadcast messages

gnd_station_broadast_name The ground station that sent this message

gnd_station_broadcast_msg_id A numerical id for the message

gnd_station_broadcast_msg_type A numerical type which provides some information about this message

gnd_station_broadcast_msg_length The number of bytes in this message

gnd_station_broadcast_msg The message itself

TABLE 10-8. Pseudo-telemetry about the Ground Station Interface

Pseudo-telemetry Point Meaning

gnd_station_cmd_echo_count The number of command echos received (from all sources)

gnd_station_station-namea

a. ASIST comes with the following stations (from EO-1) defined: AGS1, AGS2 - Alaska, MGS1, MGS2–McMurdo,
SGS1, SGS2–Spitsbergen, and WGS1,WGS2–Wallops.

Info for the given station (i.e. gnd_station_wallops)

gnd_station_station-name.status the status of the given station (i.e. gnd_station_wallops.status)

gnd_station_station-name.frames_received The number of frames received from this ground station

gnd_station_current_statusb

b. For these fields to be available, the current station must be defined using the STATION_STATS structure described below.

Status of the current ground station (C,D,F)

gnd_station_current_framesb The number of frames received from this ground station

TABLE 10-7. Telemetry about the Ground Station Interface

Telemetry Point Meaning
ASIST Users Guide–Version 9.6 10-13

CHAPTER 10
Useful things you can do with ground station information

1. To define a new station whose status you want to collect, enter the following in your telemetry file:
PACKET MoreStatusInfo APID=%xbad

STATION_STATS(FRED)
END

This defines gnd_station_FRED.status and gnd_station_FRED.frames_received, which would
then be collected when status from station FRED was received.

2. To print broadcast messages to your event log, define:
INTEGER PleaseShowBroadcast INIT=0,EQUATION=when pkt_rcvd=(%x856) do

IF (PleaseShowBroadcast > 0) THEN
event "Broadcast from " & gnd_station_broadcast_name & ":" &

gnd_station_broadcast_msg
ENDIF

enddo

After this is defined, setting PleaseShowBroadcast to 1 will cause these messages to be displayed.

3. To print command echos to the event log, define:
INTEGER PleaseShowCmdEchos init=0,equation=when pkt_rcvd=(%x857) do

IF (PleaseShowCmdEchos < 0) then
event "Cmd echo from " & gnd_station_cmd_echo_station & ":" &

gnd_station_cmd_echo_message
ENDIF

 enddo

Pages showing information about the FEDS–Ground Station interface

Page name What it shows

station Shows the current station, and the last received packet of station information,
broadcast message, and command echo.

eo1_stations Shows a summary of all the currently defined EO-1 ground stations.
10-14 ASIST Users Guide–Version 9.6

AS
CHAPTER 11 Image and Table
Management
Overview

The Image and Table Manager (CITM) provides memory and table operations for the spacecraft flight data system. Mem-
ory or table files may be loaded from the ground, dumped from the spacecraft, formatted for printing, or compared. All
operations initiated by the CITM are executed by STOL and inform the operator through the event log when they are com-
plete. The format of the files ASIST uses to perform loads and that it creates during a dump is defined in APPENDIX H:
“Load and Dump Files” .
IST Users Guide–Version 9.6 11-1

CHAPTER 11
Description

The following paragraphs briefly describe the directives available with CITM. For further information regarding the syn-
tax of these directives, see Appendix A.

LOAD transmits the contents of a memory or table file to the spacecraft. The operator specifies the name of the file to
load, and optionally, the start load address, end load address, table id, memory type, or processor name. For example:

LOAD memory_image.ftf,,,,RAM

transmits the contents of the memory file memory_image.ftf, using the start and end load addresses in the file, into
RAM memory of the processor named in the file.

NOTES:

• Commas are used as place holders for omitted parameters.

• To terminate a load enter:KP ALL

• Use the CVT variables CITLSTATE and CITLABRT in your procedure to monitor the load status.

DUMP causes the spacecraft to transmit the contents of memory or a table to the ground. The operator specifies the name
of a file, and optionally, the start and end dump addresses , table id, memory type, processor name and number of copies
to dump. For example:

DUMP table_image.ftf,0,100

causes the spacecraft to dump the table specified in the file table_image.ftf, using the start/end addresses, table ID,
and processor named in the file. The number of times to dump the table (i.e. copies) defaults to one.

COMPARE compares the contents of load and/or dump files (load vs. load, load vs. dump and dump vs. dump are
allowed). The operator specifies the name of a file to compare, and optionally, the name of a file to compare it to, the start
and end addresses for each file, the name of the device to place output on , and number of copies to compare. For exam-
ple:

COMPARE table1.ftf,table1.dtf,,,,,SCREEN

causes the file table1.ftf to be compared to the file table1.dtf, using the start and end addresses contained in
each file. The result of the comparison is printed on the screen. The number of copies to compare defaults to one.

The PRINT command formats the contents of a load or dump file for display to the operator. The operator specifies the
name of the file to format , and optionally, the start and end addresses , print device , and number of copies to format. For
example:

PRINT my_memory_image.ftf,x’1000’,x’2000’,PRINTER

this causes the specified address range of the file my_memory_image.ftf to be formatted for printing. The resulting
formatted image is placed on the printer. The number of copies to format defaults to one.
11-2 ASIST Users Guide–Version 9.6

Image and Table Management
Load/Dump Example

This example loads a table from ASIST (to the spacecraft) and then dumps it (to verify that it loaded correctly).

1. Issue a SELECT command for the table operation:

/select-mnemonic parm1=table-id parm2=source parm3=dest

2. Issue the LOAD directive specifying the load image file and any options.

LOAD table02.ftf,,,,,SCPRI

3. The table load commands are constructed and uplinked to the spacecraft. The operator may monitor the load by dis-
playing the load/dump status page, lddpstat.

PAGE lddpstat

4. When the load completes, the operator may initiate a dump. The DUMP directive may specify a load image file name,
the number of copies to dump, and the portion of table to dump.

DUMP table02.ftf,,,,,SCPRI

5. Header information from the load image file (if specified) is copied to the dump image file and any modified or addi-
tional fields are added. The spacecraft is then sent the command to begin the dump. The operator may monitor the
dump by displaying the load/dump status page, lddpstat.

PAGE lddpstat

6. Once the dump completes, the table load file and dump file may be compared and the results output to a file.

COMPARE table02.ftf,table02.dtf

7. Issue a COMMIT command with the number of words.

/commit-mnemonic parm1=number-of-words
ASIST Users Guide–Version 9.6 11-3

CHAPTER 11
CITM System Variables

CITM maintains the following list of system variables, which are accessible from STOL or within telemetry pages:

TABLE 11-1. CITM System Variables

Variable Meaning

CITLFILE A character string containing the load file name.

CITLSTATE A discrete containing the load state of the Image and Table Manager. When accessed as counts, 0 repre-
sents idle and 1 represents active. When accessed processed (P@), IDLE represents idle and LOAD repre-
sents active.

SCH_LDST A discrete containing the status of the load. When accessedin counts, 0 represents idle, 1 load directive
accepted, 2 currently loading, 3 load completed, and 4 load aborted. When accessed processed(P@),
IDLE represents idle, ACC means load directive accepted, LOAD means currently loading, DONE means
load completed, and ABRT means load aborted.

CITLSCMD An integer containing the number of commands to send to the spacecraft.

CITLCMDS An integer containing the number of commands sent to the spacecraft.

CITLABRT A discrete containing the completion status of the latest load. When accessed as an integer, 0 indicates a
successful load, 1 an error occurred during the load, and 3 that the load was aborted. When accessed as a
label, GOOD indicates a successful load, PERR indicates an error occurred during the load, and TCAB
indicates that the load was aborted.

CITABID An integer containing the table ID of the last table loaded.

CITXSUM An integer containing the computed checksum of the last table loaded.

CITNWDS An integer containing the number of words in the last table loaded.

CITDFILE A character string containing the name of the dump file.

CITDSTTE A discrete containing the dump state of the Image and Table Manager. When accessed as an integer, 0 rep-
resents idle and 1 represents active. When accessed as a label, IDLE represents idle and DUMP represents
active.

SCH_DPST A discrete containing the status of the dump. When accessed as an integer, 0 represents idle, 1 represents
dump directive accepted, 2 represents currently dumping, 3 represents dump completed, and 4 represents
dump aborted. When accessed as a label, IDLE represents idle, “ ACC” represents dump directive
accepted, DUMP represents currently dumping, DONE represents dump completed, and ABRT represents
dump aborted.

CITDECOP An integer containing the number of dump copies expected.

CITDCOPR An integer containing the number of dump copies received.

CITDEPKT An integer containing the number of dump packets expected.

CITDPKTR An integer containing the number of dump packets received.

CITDABRT A discrete containing the completion status of the latest dump. When accessed as an integer, 0 indicates a
successful dump, 1 indicates an error occurred during the dump, and 3 indicates that the dump was aborted.
When accessed as a label, GOOD indicates a successful dump, PERR indicates an error occurred during the
dump, and TCAB indicates that the dump was aborted.

CITCSTTE A discrete containing the compare state of the Image and Table Manager. When accessed as an integer, 0
represents idle and 1 represents active. When accessed as a label, IDLE represents idle and COMP repre-
sents active.
11-4 ASIST Users Guide–Version 9.6

Image and Table Management
SCH_CPST A discrete containing the status of the compare. When accessed as an integer, 0 represents idle, 1 represents
compare directive accepted, 2 represents currently comparing, 3 represents compare completed. When
accessed as a label, IDLE represents idle, “ ACC” represents compare directive accepted, COMP represents
currently comparing, DONE represents compare completed.

CITCERRS An integer containing the number of bytes that did not compare.

TABLE 11-1. CITM System Variables (Continued)

Variable Meaning
ASIST Users Guide–Version 9.6 11-5

CHAPTER 11
Table Handling Directives

What the table directives allow you to do:

• Define your tables in the telemetry database;

• Store the contents of a table in the Current Value Table, and view them from STOL or from telemetry pages the same
way you would telemetry values;

• Create Loads (both partial and complete) from the table image in the Current Value Table; and

• Read the contents of a dump or load file into the Current Value Table.

Defining Tables In Your Telemetry RDL:

To use these routines, you must first define your tables in the CVT. A table is defined in the same way as a telemetry
packet. Because of this, you must assign a fake APID to your table, which ASIST will promptly ignore.

PACKET ACS_TABLE_5 APID=%X543,DESC="TABLE(ACSPRI,5)"
UI The_First_Word
DFP A_Real_Value
DFP Another_Real_Value
UI The_Final_Word

END

Notice the description field is of the form "TABLE(processor-name,table-id)". This form allows the table directives to
determine the processor and id of your table without you entering it at the STOL prompt for directives which create load
files. An easy way to automate this is by using a pre-processor macro which fills the information in for you:

#define TABLE(_name,_apid,_processor,_id) \
PACKET _name APID=_apid,DESC="TABLE(_processor,_id)"

TABLE(ACS_TABLE_5,%X543,ACSPRI,5)
UI The_First_Word
DFP A_Real_Value
DFP Another_Real_Value
UI The_Final_Word
END

is the same as the first example.

The directives:

The new directives allow you to create load files (both complete and partial) and to read load or dump files into the Cur-
rent Value Table. These directives are:

CREATE_LOAD

Creates a load file from the current value table

Syntax:
11-6 ASIST Users Guide–Version 9.6

Image and Table Management
CREATE_LOAD filename,variable-name [,processor,[table_id,[spacecraft-id]]]

Arguments:

 filename The name of the load file to create (must have extension .ftf). It must be in quotes

 variable-name The name of the table in the CVT.

 processor What processor the table is in.

 table_id An integer indicating the table's ID.

spacecraft-id An integer indicating the ID of the spacecraft to create this table for.

Description:

This directive reads the values from the Current Value Table item variable-name and creates a table load file named file-
name in the $WORK/image directory. If processor or table_id are not entered on the directive, then ASIST reads the
description of variable-name from the database to determine the processor and table id (they must have been entered in
the form TABLE(processor-name,table-id) [e.g. TABLE(SCPRI,12)]). If this is not found, the directive is aborted.

Example:
CREATE_LOAD "my_table.ftf", ACS_TABLE_5, ACSPRI, 5
CREATE_LOAD "yet_again.ftf",ACS_TABLE_5 ; Use proc & id from description

CREATE_PARTIAL_LOAD

Creates a partial load file from the current value table

Syntax:
CREATE_PARTIAL_LOAD filename,variable-name,[processor],[table_id],[from],[to],[spacecraft-id]

Arguments:

 filename The name of the load file to create (must have extension .ftf). It must be in quotes.

 variable-name The name of the table in the Current Value Table.

 processor What processor the table is in.

 table_id An integer indicating the table's ID.

 from The telemetry item (if a string) or byte offset from the beginning of the table (if an integer) to
start from. From must begin on an even-word boundary (from the beginning of variable-
name). If it doesn't, the load will begin from the even-word boundary before from.

 to The telemetry item (if a string) or byte offset from the beginning of the table (if an integer) to
end after. To must complete an even-word (from the beginning of variable-name). Hence, the
byte offset must be odd. If it is not, the load will end after the word containing to.

spacecraft-id An integer indicating the ID of the spacecraft to create this table for.

Description:

This directive reads the values from the Current Value Table item variable-name and creates a table load file named file-
name in the $WORK/image directory.

This load file will contain a partial load of this table, beginning at the start of the word containing:

• telemetry item from, or

• from bytes past the beginning of table variable-name (if from is an integer).
ASIST Users Guide–Version 9.6 11-7

CHAPTER 11
and ending after the word containing:

• telemetry item to, or

• to bytes past the beginning of table variable-name (if to is an integer). Note: the byte at offset to is included in the load.

Since all loads are performed in words (rather than bytes), from must begin at a word boundary and to must end at a word
boundary. If they do not, CREATE_PARTIAL_LOAD will expand the area loaded to these boundaries.

If processor and table_id are NULL, then ASIST reads the description of variable-name from the database to determine
the processor and table ID (the must have been entered in the form TABLE(processor-name,table-id) [e.g.
TABLE(SCPRI,12)]). If this is not found, the directive is aborted.

Example:
 CREATE_PARTIAL_LOAD "my_table.ftf",ACS_TABLE_5,ACSPRI, ;;
 5,A_REAL_VALUE, A_REAL_VALUE
 ; Creates a load containing only A_REAL_VALUE

 CREATE_PARTIAL_LOAD "yet_again.ftf",ACS_TABLE_5,,0,4 ;;
 ; Use proc & id from description and creates a
 ; load containing the first 4 bytes of the table.

DUMP_TO_CVT

Places the contents of a dump file in the Current Value Table

Syntax:
DUMP_TO_CVT [options] filename,variable-name

Arguments:

filename The name of the dump file to read (must have extension .dtf). It must be in the $(WORK)/
image directory. It should be in quotes.

variable-name The name of the table in the CVT.

options -s Byte swap data before placing it in the CVT.

Description:

This directive reads dump file filename and places its contents in the Current Value Table entry variable-name. This
allows you to dump a table from the spacecraft and then copy its contents into the Current Value Table.

Example:
DUMP DUMPONLY,0,20,5,RAM,ACSPRI,1,my_table.dtf
; Creates the dump file

W Until (p@SCH_DPST="DONE" OR P@SCH_DPST="ABRT")
; Verify CITD processing complete

IF (SCH_DPST="DONE" AND p@CITDABRT="GOOD") THEN
DUMP_TO_CVT "my_table.dtf",ACS_TABLE_5
; write to variable acs_table_5
write "Dump complete and CVT updated."

ELSE
WRITE "Dump was not successful."
11-8 ASIST Users Guide–Version 9.6

Image and Table Management
ENDIF

LOAD_TO_CVT

Places the contents of a load file in the Current Value Table

Syntax:
LOAD_TO_CVT filename,variable-name

Arguments:

filename The name of the load file to read (must have extension .ftf). It must be in the $(WORK)/image
directory. It should be in quotes.

variable-name The name of the table in the CVT.

Description:

This directive reads the load file filename and places its contents in the Current Value Table entry variable-name. This
allows you to initialize the value of a table.

Example:
LOAD_TO_CVT "my_table.ftf",ACS_TABLE_5

An Example:

1. Create file an_acs_table.rdl:
#define TABLE(_name,_apid,_processor,_id) \
 PACKET _name APID=_apid,DESC="TABLE(_processor,_id)"
TABLE(ACS_TABLE_5,%X543,ACSPRI,5)
 UI The_First_Word
 DFP A_Real_Value
 DFP Another_Real_Value
 UI The_Final_Word
END

2. Include this into your user_tlm.rdl file:
#include "an_acs_table.rdl"

3. Compile and load the database.
dbcmptlm
dbloadtlm

4. Start ASIST

5. Set the values from STOL (or a STOL procedure)
The_First_Word=1
A_Real_Value=42.00
Another_Real_Value=2.178
The_Final_Word=99

6. Generate a page displaying these values.

7. Once the table values are correct, create a load file:
CREATE_LOAD "my_table.ftf",ACS_TABLE_5
ASIST Users Guide–Version 9.6 11-9

CHAPTER 11
8. And load it to the spacecraft:
/... (command to select table)
LOAD "my_table.ftf"

9. Now check that the table got to the spacecraft by dumping it from the spacecraft and putting it back in the CVT:
/... (select table/processor)
DUMP DUMPONLY,0,20,5,RAM,ACSPRI,1,"my_table.dtf"
 ; Creates the dump file
W Until (p@SCH_DPST="DONE" OR P@SCH_DPST="ABRT")
 ; Verify CITM processing complete
IF (SCH_DPST="DONE" AND p@CITDABRT="GOOD") THEN
 DUMP_TO_CVT "my_table.dtf",ACS_TABLE_5
 ; write to variable acs_table_5
 WRITE "Dump complete and CVT updated."
ELSE
 WRITE "Dump was not successful."
ENDIF

CVT_TO_FILE

Writes the contents of a CVT variable (or packet) to a file

Syntax:
CVT_TO_FILE filename,variable-name

Arguments:

 filename The name of the file to create (in the $WORK/image directory). It must be in quotes.

 variable-name The name of the table/variable in the CVT. It can be any cvt item, either a scalar (i.e.
P001SCNT, which would write two bytes) or an aggregate structure (i.e. P001 would write the
entire packet 1 to file).

 Description:

This directive reads the values from the Current Value Table item variable-name and writes it to a file named filename in
the $WORK/image directory.

Example:
CVT_TO_FILE "my_packet1.dat", P001
CVT_TO_FILE "just_two_bytes.dat", P001SCNT

FILE_TO_CVT

Reads the contents of a file into a CVT variable (or packet)

Syntax:
FILE_TO_CVT filename,variable-name

Arguments:

 filename The name of the file to read (from the $WORK/image directory). It must be in quotes

 variable-name The name of the table/variable in the CVT.

 Description:
11-10 ASIST Users Guide–Version 9.6

Image and Table Management
This directive reads the raw data from the file $WORK/image/filename. If it is the correct size, then it writes that data to
the Current item variable-name.

Options can be set using the variable gse_file_to_cvt_options. These include:

-z For variable-length packets, if the file size is less than the CVT variable size, zero-fill the CVT variable after the
available data.

-Z # For variable-length packets, if the file size is less than the CVT variable size, fill the CVT variable after the
available data with the value specified in the arg (#).

Example:
FILE_TO_CVT "my_packet1.dat", P001
FILE_TO_CVT "just_two_bytes.dat", P001SCNT
ASIST Users Guide–Version 9.6 11-11

CHAPTER 11
View Dump Utility

 The view dump utility provides a formatted display of a dump (dtf) file. After receiving a dump enter the following com-
mand from the Unix prompt:

view_dump [-b] [-w] file_name

where:

By default, the data is grouped into 32-bit word groups

-b Split data on byte boundary (i.e. 01 02 03 04)

-w Split data on 16-bit word boundaries (i.e. 0102 0304)

file_name The name of the dtf file to view (it must be in your current directory).

TABLE 11-2. An example of the different options for view_dump

 Option Address Data

 default 00000100

00000110

44454647 48494A4B 4C4D4E4F 50515253

54555657 58595A5B 5C5D5E5F 60616263

 -w 00000100

00000110

4445 4647 4849 4A4B 4C4D 4E4F 5051 5253

5455 5657 5859 5A5B 5C5D 5E5F 6061 6263

 -b 00000100

00000110

44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53

54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63
11-12 ASIST Users Guide–Version 9.6

Image and Table Management
Configuring the LOAD and DUMP directives

The LOAD and DUMP directives are written mostly in STOL and can be reconfigured for the processors on your space-
craft. Before you attempt to configure these directives, you should be knowledgeable of the types and basic architecture of
all processors on the spacecraft.

The configuration process requires that you specify information about the onboard processors in STOL global variables
which must be set before you try to load or dump any of the processors. A good place to specify this information is the
STOL user startup file.

To configure the LOAD directive you must know: how each processor is addressed (bytes or words), how the user wants
to address the processor with the LOAD directive (bytes or words), the delay between processor load commands (if any),
the command name, parameter names, and parameter data types for all load commands, and the byte order of load data
expected by each processor. Armed with this information, define each of the following global variables as an array, one
element for each processor and load type:

The syntax for the GSE_LOAD_CMD variable is:

processor,load-type: /command command-parameters

where:

processor is the name of the onboard processor.

load-type is the type of load, either MEMORY, TABLE, SCPATS, or SCPRTS.

command is the processor load command from the command database.

command-parameters is a list of parameters or parameter-value pairs.

You can specify command parameters and values as constants, STOL global variables, or special argument markers. Spe-
cial argument are used by the LOAD directive to automatically compute and fill in command parameters or parameter
values. The following table defines all of the special argument markers that are supported:

TABLE 11-3. LOAD directive configuration variables

Variable Description Default

GSE_USER_LD_ADDR A character string containing a single character that
indicates the units that the LOAD directive start and end
addresses are specified in. Use “B” for 8-bit bytes or
“W” for 16-bit words.

“B”

GSE_LOAD_DLY A number indicating the amount of time (in seconds) to
wait between each load command.

0.0

GSE_LOAD_CMD A character string containing the load command and its
parameters.

none

TABLE 11-4. Load command special argument markers

Marker Description Example

@type The memory type for the load (usually RAM, EEPROM, ...) from
the memory-type argument of the LOAD directive. This marker
can be used either as a standalone parameter or as a parameter
value.

/LOADXX @type ...

/LOADXX MEMORY=@type ...
ASIST Users Guide–Version 9.6 11-13

CHAPTER 11
The special argument markers must be lower case.

For example, to configure memory loads for the SCPRI processor on the MAP mission, define the following array ele-
ments:

GSE_LOAD_DLY[1] = 0
GSE_USER_LD_ADDR[1] = “B”
GSE_LOAD_CMD[1] = “SCPRI,MEMORY: /MSMLOAD @type TOADD=@bdst WORDS=@wsize DATA=@swap”

This defines the SCPRI load command as requiring no delay between commands and that all user-specified addresses to
the LOAD directive for memory loads on the SCPRI are in bytes.

The SCPRI load command requires a single keyword parameter for the memory type, and 3 keyword-value pairs for the
destination address, load size, and data array. The destination will be converted to a byte address, the load size will be con-
verted to a word count, and the load data will be byte-swapped before sending the load command. The length and size of
the load data array is determined by the database attribute of the DATA parameter of the MSMLOAD command.

If this LOAD directive is entered:

LOAD “my_load1.ftf”,0,X’FF’,,EEPROM,SCPRI

@bdst The memory destination address or table offset in bytes of the start
of this load, as required by the spacecraft load command. This
marker must be used as a parameter value.

/LOADXX ADDR=@bdst ...

@wdst The memory destination address or table offset in words of the
start of this load, as required by the spacecraft load command. This
marker must be used as a parameter value.

/LOADXX OFFSET=@wdst ...

@bend The memory destination address or table offset in bytes of the end
of this load, as required by the spacecraft load command. This
marker must be used as a parameter value.

/LOADXX END_ADDR=@bend

@wend The memory destination address or table offset in words of the end
of this load, as required by the spacecraft load command. This
marker must be used as a parameter value.

/LOADXX END_OFFSET=@wend

@bsize The size of the loaded data in bytes as required by the spacecraft
load command. This marker must be used as a parameter value.

/LOADXX LENGTH=@bsize
...

@wsize The size of the loaded data in words as required by the spacecraft
load command. This marker must be used as a parameter value.

/LOADXX COUNT=@wsize ...

@data The data to be loaded (usually an array). This marker must be used
as a parameter value.

The length and size of each element of this array are defined by the
command database attributes of the parameter (GDATA in the
example).

/LOADXX GDATA=@data ...

@swap The same as @data above but byte-swapped. This marker must be
used as a parameter value.

The length and size of each element of this array are defined by the
command database attributes of the parameter (HDATA in the
example).

/LOADXX HDATA=@swap ...

TABLE 11-4. Load command special argument markers

Marker Description Example
11-14 ASIST Users Guide–Version 9.6

Image and Table Management
then this load command is sent to the spacecraft:

/MSMLOAD EEPROM TOADD=0 WORDS=128 DATA=[...]

Note that the start and end addresses specify a total of 256 bytes, but because the @wsize was used as the parameter value
for the WORDS parameter, a size of 128 words was used instead.

To configure memory loads for the PSERSN processor on the MAP mission define the following array elements:

GSE_LOAD_DLY[2] = 0.5
GSE_USER_LD_ADDR[2] = “W”
GSE_LOAD_CMD[2] = “PSERSN,MEMORY: /PLDLOAD @type TOADD=@wsize WORDS=@wsize
DATA=@data”

This defines the PSERSN load command as requiring a 500 millisecond delay between commands and that all user-speci-
fied addresses to the LOAD directive for this processor and load type are in words.

The PSERSN memory load command requires a single keyword parameter for the memory type, and 3 keyword-value
pairs for the destination address, load command size, and data array. The destination address will be converted to a word
address and the load command size will be converted to a word count before sending the load command. The length and
size of the load data array is determined by the database attributes of the DATA parameter of the PLDLOAD command.

If this LOAD directive is entered:

LOAD “my_load2.ftf”,0,X’FF’,,RAM,PSERSN

then this load command is sent to the spacecraft:

/PLDLOAD RAM TOADD=0 WORDS=256 DATA=[...]

You might be wondering why GSE_USER_LD_ADDR was specified as bytes for the SCPRI processor and words for the
PSERSN processor. This is because SCPRI is a Mongoose 5 processor which is byte addressable while the PSERSN is a
UT69R000 processor which is word addressable. For the user, you should choose an addressing method that makes sense
for the underlying onboard computer.

Configuring the DUMP directive is similar to configuring the LOAD directive. However, the DUMP directive requires
you to configure two things: the processor dump command and the dump telemetry packet.

To configure the DUMP directive you must know: how each processor is addressed (bytes or words), how the user wants
to address the processor with the DUMP directive (bytes or words), the command name, parameter names, and parameter
data types for all processor dump commands, the contents of the dump packet, and the byte order of dump data expected
from each processor. Armed with this information, define each of the following global variables as an array, one element
for each processor and dump type:

TABLE 11-5. DUMP directive configuration variables

Variable Description Default

GSE_USER_DMP_ADDR A character string containing a single character that indi-
cates the units that the DUMP directive start and end
addresses are specified in. Use “B” for 8-bit bytes or
“W” for 16-bit words.

“B”

GSE_DUMP_CMD A character string containing the dump command and its
parameters.

none
ASIST Users Guide–Version 9.6 11-15

CHAPTER 11
The syntax for the GSE_DUMP_CMD variable is:

processor,dump-type: /command command-parameters

where:

processor is the name of the onboard processor.

dump-type is the type of dump, either MEMORY, TABLE, SCPATS, or SCPRTS.

command is the processor dump command from the command database.

command-parameters is a list of parameters or parameter-value pairs.

You can specify command parameters and values as constants, STOL global variables, or as special argument markers.
Special argument are used by the DUMP directive to automatically compute and fill in command parameters or parameter
values. The following table defines all of the special argument markers that are supported:

GSE_DATA_MNEM A character string containing the name of the telemetry
point (usually an array) that contains the dumped data.
The length of the dumped data is determined by the data-
base attributes of this telemetry point.

none

GSE_ADDR_MNEM A character string containing the name of the telemetry
point that contains the beginning address of the dumped
data. The number of bytes per address is determined by
the database attributes of the telemetry point named in
GSE_DATA_MNEM.

none

GSE_SIZE_MNEM A character string containing the name of the telemetry
point that contains the actual number of elements in the
dumped data array.

none

GSE_COPY_MNEM A character string containing the name of the telemetry
point that contains the current dump copy number.

none

GSE_IDEN_MNEM A character string containing the name of the telemetry
point that contains the memory source APID or table id.

none

GSE_TSRC_MNEM A character string containing the name of the telemetry
point that contains the table source type.

none

TABLE 11-6. Dump command special argument markers

Marker Description Example

@type The memory type for the dump (usually RAM, EEPROM, ...) from
the memory-type argument of the DUMP directive. This marker
can be used either as a standalone parameter or as a parameter
value.

/DUMPXX @type ...

/DUMPXX MTYPE=@type ...

@bsrc The memory source address or table offset in bytes as required by
the spacecraft dump command. This marker must be used as a
parameter value.

/DUMPXX SADDR=@bdst ...

@wsrc The memory source address or table offset in words as required by
the spacecraft dump command. This marker must be used as a
parameter value.

/DUMPXX WOFFSET=@wdst
...

TABLE 11-5. DUMP directive configuration variables

Variable Description Default
11-16 ASIST Users Guide–Version 9.6

Image and Table Management
The special argument markers must be lower case.

For example, to configure the memory dump command for the PSERSN processor, define these array elements:

GSE_USER_DMP_ADDR[1] = “W”
GSE_DUMP_CMD[1] = “PSERSN,MEMORY: /PLDDUMP @type FROMADD=@wsrc WORDS=@wsize”

This tells the DUMP directive that all user-specified addresses are in words and that the PSERSN memory dump com-
mand requires a single keyword parameter for the memory type and two keyword-value pairs for the source address and
dump size. The source address will be converted to a word address and the dump size will be converted to a word count.

If you enter:

DUMP DUMPONLY,0,X’FF’,EEPROM,PSERSN,,”PSERSN_DUMP.DTF”

then this command will be sent to the spacecraft:

/PLDDUMP EEPROM FROMADD=0 WORDS=256

Now, if the PSERSN dump packet is defined in RDL as:

PACKET P01C APIC=%X01C,DESC=”PSE RSN Memory Dump Packet”
 #include “ccsds_header.rdl”
 UI PLDPRCID DESC=”Processor ID”
 UI PLDCOPYNUM DESC=”Current Dump Copy Number”
 ULI PLDADDRESS DESC=”Memory Address of 1st Word in Packet”
 UI PLDNUMWORDS DESC=”Number of Words Dumped in this Packet”
 UI PLDMEMTYPE DESC=”MEMORY TYPE”,DISCRETE,DRANGE=(1,2,3),
 DLABEL=(“Inst. RAM”, “DATA RAM”, “EEPROM”)
 UI PDUMPDATA[100] DESC=”Dump Data Words”
END

then define the following variables for the DUMP directive:

GSE_DATA_MNEM[1] = “PDUMPDATA”

@bend The memory source address or table offset in bytes of the end of
this dump, as required by the spacecraft dump command. This
marker must be used as a parameter value.

/DUMPXX END_ADDR=@bend

@wend The memory source address or table offset in words of the end of
this dump, as required by the spacecraft dump command. This
marker must be used as a parameter value.

/DUMPXX END_OFFSET=@wend

@bsize The size of the dumped data in bytes as required by the spacecraft
dump command. This marker must be used as a parameter value.

/DUMPXX DLEN=@bsize ...

@wsize The size of the dumped data in words as required by the spacecraft
dump command. This marker must be used as a parameter value.

/DUMPXX WORDS=@wsize ...

@copy The number of copies to dump. This marker must be used as a
parameter value.

/DUMPXX COPIES=@copy ...

@swap A flag indicating whether the dumped data should be byte-
swapped. This marker must be used as a standalone parameter.

/DUMPXX @swap ...

TABLE 11-6. Dump command special argument markers

Marker Description Example
ASIST Users Guide–Version 9.6 11-17

CHAPTER 11
GSE_ADDR_MNEM[1] = “PLDADDRESS”
GSE_SIZE_MNEM[1] = “PLDNUMWORDS”
GSE_COPY_MNEM[1] = “PLDCOPYNUM”
GSE_IDEN_MNEM[1] = “PLDPRCID”
GSE_TSRC_MNEM[1] = “PLDMEMTYPE”

Remember that the database attributes for PDUMPDATA determine the number of bytes per address for the value of
PLDADDRESS and the maximum number of elements in PDUMPDATA. This means that if PLDADDRESS is sent from
the spacecraft in words, then PDUMPDATA must be defined in RDL as a 16-bit word (usually a UI). Also, if the space-
craft can send a maximum of 200 bytes in PDUMPDATA, and PDUMPDATA is defined as a UI, then it must be dimen-
sioned to 100.

Configuring Load/Dump Command Options from STOL

The following table lists the names of STOL global variables which may be used to configure CITM utilities:

TABLE 11-7. STOL global variables affecting load/dump utilities

Global name Affected directive

GSE_DUMP_TO_CVT_OPTIONS DUMP_TO_CVT

GSE_LOAD_TO_CVT_OPTIONS LOAD_TO_CVT

GSE_CREATE_LOAD_OPTIONS CREATE_LOAD,
CREATE_PARTIAL_LOAD

GSE_COMPARE_OPTIONS COMPARE

GSE_SCP_OPTIONS SCP

GSE_FILE_TO_CVT_OPTIONS FILE_TO_CVT
11-18 ASIST Users Guide–Version 9.6

AS
CHAPTER 12 Stored Command Sequence
Processor
Overview

The Stored Command Sequence Processor (SCP) is an ASIST-based utility that takes a Stored Command Sequence input
file and compiles it into a loadable spacecraft image file. A Stored Command Sequence (SCS) file consists of a set of
spacecraft commands which specify when the spacecraft is to execute the commands. After compilation, these commands
are loaded (using the LOAD directive) into the spacecraft stored command buffers for execution at the appropriate time.
IST Users Guide–Version 9.6 12-1

CHAPTER 12
Introduction

A stored command sequence is a collection of spacecraft commands which are bundled together, transmitted to the space-
craft, stored onboard in an area of memory set aside for this purpose (usually called a table or buffer), and executed at a
later time. Stored command sequences are useful if you want to create a group of commands that can be executed as a unit
and then use them to perform a commonly occurring activity on the spacecraft. Also, stored command sequences are
keyed to specific hardware on the spacecraft. Many spacecraft have more than one computer that can process stored com-
mand sequences.

Stored command sequences occur in two different forms: relative time sequences (RTS) and absolute time sequences
(ATS).

An RTS is a sequence of one or more commands separated by delays. Delays are specified as a fixed number of seconds
or as an ASIST-standard relative time. An RTS is often used like a subroutine for frequently executed tasks. A typical RTS
is structured like this:

Execute command A
wait 1 second
Execute command B
Execute command C
wait 00:02:10
Execute command D

An actual RTS looks like this:

/SSMSDPAB
/SSMSSTSL TABLEID=1 ACTIVE ACTV
WAIT 10
/SSMSTBDP OFFSET=0 NWORDS=10 NCOPIES=1
/SSMSTBCM
WAIT 20
/SSMSTBCM
WAIT 10

Most spacecraft have many RTS tables (typically, 200 or more).

Like an RTS, an ATS is a sequence of one or more commands separated by delays. Unlike an RTS, however, the delay can
be specified either as a future date and time (an absolute time) or as a relative time. An ATS is usually used to schedule
events such as a data capture, station keeping maneuver, or ground station pass. A typical ATS is structured like this:

wait until February 23, 2005 at 2:00 AM
Execute command E
Execute command F
wait 10 seconds
Execute command G
wait until February 23, 2005 at 2:05 AM
Execute command H

An actual ATS looks like this:

WAIT UNTIL 2005-054-02:00:00
/SSMSDPAB
12-2 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
/SSMSSTSL TABLEID=1 ACTIVE ACTV
WAIT 10
/SSMSTBDP OFFSET=0 NWORDS=10 NCOPIES=1
/SSMSTBCM
WAIT \00:05:00
/SSMSTBCM

A spacecraft will typically have only one or two ATS buffers.

ASIST’s stored command load processor (SCP) accepts a file containing an ATS or RTS definition and converts it into a
file that can be transmitted to the spacecraft. Additionally, SCP can perform global constraint checking, command con-
straint checking, and event triggering.
ASIST Users Guide–Version 9.6 12-3

CHAPTER 12
Statement Types

The input to SCP is a text file containing statements that control the sequence of activities that the ATS or RTS is defining.
Statements begin and end on a single line, although there are a few statements which cover several lines.

There are six different statement types:

1. table definitions,

2. assignments,

3. command constraints,

4. events, triggers and activities,

5. file inclusion and conditional compilation,

6. commands and delays.

Table Definitions

Table definition statements primarily describe the range and state of ATS and RTS tables. The range of an ATS or RTS
table is the list of valid table numbers (or letters for an ATS), while the state is a flag indicating whether the ATS or RTS
is loaded and enabled for execution. Additionally, table definition statements may be used to define two other table
attributes: the commands used to activate an RTS and the list of commands to be automatically appended to the end of an
RTS or ATS. Some examples of table definition statements are:

SCPRI ATS_TABLE RANGE A-B
SCSBY RTS_TABLE 12 IS ENABLED USING “table12.scs”
SCPRI ATS_TABLE LAST_COMMAND THEN

/SCSSWITCHA
END
CCDH RTS_TABLE START_COMMAND “SCSTARTRTS” PARAMETER “TAB”

Assignments

Assignment statements are used to perform three different functions: create and load user-defined variables, set the value
of certain global constraints, and set the value of the command sequence counter.

User-defined variables can be used to hold values computed at runtime from other user-defined variables, event parame-
ters, or SCP command line arguments. User-defined variables may be accessed anywhere an expression is allowed.

Global constraints (such as the maximum number of bytes in an RTS or ATS) allow SCP to verify whether the stored com-
mand load is within acceptable limits. If a global constraint is set and consequently exceeded, SCP outputs an error mes-
sage. If a global constraint is not set, SCP does not monitor the constraint.

The command sequence counter provides a capability to reorder or patch commands in a pre-existing ATS or RTS load by
assigning a different sequence number.

Some examples of assignment statements are:

rads_per_deg = pi/180.0 ;Defines user variable rads_per_deg
MAX_ATS_BYTES = 1024 ;Sets global constraint MAX_ATS_BYTES
CMDN = 4 ;Sets command sequence number to 4
12-4 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Command constraints

Command constraints define when a command may validly appear in the input file. There are three types of command
contraints:

1. command sequence constraints,

2. command time delay constraints,

3. command time dependency constraints.

A command sequence constraint restricts when a command can occur with respect to other commands. For example, the
following is a typical command sequence constraint:

IF /ENERGIZE THEN /FIRE CANNOT OCCUR BEFORE /ARM

which means that:

/ENERGIZE
/...other commands...
/ARM
/...other commands...
/FIRE

is valid, but the following is not:

/ENERGIZE
/...other commands...
/FIRE
/...other commands...
/ARM

A command time delay constraint restricts how soon a command can occur after other commands. For example, the fol-
lowing is a command time delay constraint:

IF /HEATER_ON THEN /HEATER_OFF CANNOT OCCUR BEFORE 10

which means that:

/HEATER_ON
/WAIT 5
/...other commands...
/WAIT 5
/HEATER_OFF

is valid, but the following is not:

/HEATER_ON
WAIT 5
/HEATER_OFF

A command time dependency constraint is similar to a command time delay constraint, but it additionally restricts the
maximum amount of time that can elapse before a command must occur. For example:

IF /ENERGIZE THEN /ARM CANNOT OCCUR BEFORE 5 BUT MUST OCCUR BEFORE 10
ASIST Users Guide–Version 9.6 12-5

CHAPTER 12
which means that:

/ENERGIZE
WAIT 5
/...other commands...
WAIT 2
/ARM

is valid, but the following is not valid:

 /ENERGIZE
 /WAIT 5
 /...other commands...
 /WAIT 5
 /ARM

Note that command constraints are checked only within the current load. Commands which occur at the end of the previ-
ous load are not constraint checked.

Events, triggers and activities

Event statements and trigger statements may be used to initiate automatic inclusion of additional commands into an ATS.
Activities allow sequences of commands which are used frequently, to be included directly in an ATS or RTS wherever
necessary.

Event statements define an event in a generic way. An event is composed of a class name, a start time, and a duration. You
may optionally add additional keyword/value pairs as event-specific parameters. Parameter values are restricted to inte-
ger, floating point, string, and time data types. Three parameters are always defined for an event: START_TIME,
STOP_TIME, and DURATION.

Trigger statements reference classes of events which may occur in an SCP input file. If there is an existing event which
corresponds to a defined trigger, commands specified by that trigger are included in the load.

Some examples of event statements are:

EVENT PASS 04-231-17:57 \+00:14:33
EVENT PERIGEE 05-123-02:44:17 \+00:00:05 ALTITUDE=237

An example of a trigger statement is:

DURING PASS AT START_TIME-30 THEN
/XENABLE ON
WAIT 15
/XXMIT 15

END

Activities are paremeterized macros. You define an activity by identifying a commonly occuring sequence of commands
and wait statements and then cause the sequence to be expanded when the activity is referenced in your stored command
source.

An example of an activity definition is:
12-6 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
ACTIVITY RECORDER_DUMP IS
/RECORDER_SELECT NUMBER=RECORDER
WAIT 10
/RECORDER_PLAYBACK
WAIT 1

END

An example of an activity reference is:

ACTIVITY RECORDER_DUMP RECORDER=1

File inclusion and conditional compilation

 To assist in structuring an input file, SCP allows use of features provided by the C preprocessor. In particular, the
include file facility can help to partition the input into logically separate parts (eg collecting all events into a single file).
Other facilities of the C preprocessor, conditional compilation, constant definition, and macro definition, may also be
used (See Appendix G for further information). Some examples of C preprocessor statements are:

#include "constraints.scs"
#ifdef ALTERNATE_SWITCH
#define switch_buffer(b) /SSCSWITCH BUFFER=(b)
#endif

Commands and delays

The heart of any ATS or RTS are the commands and delays it is comprised of. Command statements are spacecraft com-
mands and are specified as a command identifier (sometimes called a mnemonic) followed by an optional list of keyword/
value pairs which are the parameters for the command. The command and its list of parameters must be defined in the
ASIST command database. Delay statements are used to indicate either the exact date and time the following commands
should execute or the number of seconds to delay before executing the following commands. Some examples of command
statements and delays are:

WAIT UNTIL 05-188-16:42:02
/SCIUPLINK UPLA
WAIT 5
/AHSSETMW CNTS=12

The following is a more complete example of an ATS file destined for the CDH cpu:

#define START 05-004-16:17:18

CDH ATS_TABLE RANGE A-B

WAIT UNTIL START
/TEST_NO_LABEL
WAIT 10
/TEST_INT TEST_ULI=X'1234'
WAIT \+00:00:10
/TEST_FLT TEST_DFP=6.02E23
WAIT UNTIL START+30
/TEST_UTIME TEST_UTC=02-231-12:00
ASIST Users Guide–Version 9.6 12-7

CHAPTER 12
/TEST_STR TEST_CHAR="ABCD"
WAIT UNTIL START+\00:00:40
/TEST_MTIME TEST_MET=\-00:00:01
WAIT \+00:00:05+5
/TEST_ARRAY TEST_ELEMENT=[0,1,2,3,4,5,6,7,8,9]
WAIT \00:00:05+\00:00:05
/RAW 1234567890123456789012345678901234567890
12-8 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Source File Structure

Generally, the input to SCP is a simple text file. Statements are placed one per line and can be continued across multiple
lines. Continuation is indicated by doubled semicolons (;;), like this:

/A_VERY_LONG_COMMAND PARAMETER1=12 ;;Comments can be added
 PARAMETER2=77 ;; here and also
 PARAMETER3=3.1 ;; here

Comments may be placed following a statement, on lines by themselves or, as in the previous example, following doubled
semicolons. Comments begin with a semicolon (;) and end at the end of a line, like this:

/SNOOPCMD ;This is a no-op command

or comments can be standalone, like this:

;The following commands cause the spacecraft to slew 15
;degrees and then reorient to the sun.

Blank lines may be interspersed throughout the input and are ignored.

In order to properly validate command line arguments and input file statements, SCP must process its input in a fixed
order. This requires that the source file contain statements in the following order:

1. global constraints,

2. command constraints,

3. table definitions,

4. events,

5. triggers,

6. commands and delays.

All other statements may be placed anywhere. A suggested way of enforcing this order is to use the file inclusion capabil-
ity of SCP, like this:

#include "constraints.scp" ;Global & command constraints
#include "tables.scp" ;Table definitions
#include "current_events.scp" ;Todays events
#include "triggers.scp" ;Trigger definitions

WAIT UNTIL 04-302-06:38:08 ;Start of commands
/SCINOOP

This is particularly useful for two reasons. Most of the included files are static for a given mission (global constraints,
command constraints, table definitions, and trigger definitions), while the remaining file (events) can be automatically
generated for the desired time period (daily, weekly,...). Note that if one or more input statements are out of order, SCP
will display a warning message.
ASIST Users Guide–Version 9.6 12-9

CHAPTER 12
Output

The SCP generates two outputs, a file containing the encoded ATS or RTS information to be transmitted to the spacecraft
(called a load file) and a report displaying any errors encountered as well as a listing of all commands and their execution
times as determined by SCP.

Load file

The load file generated by SCP is an ASIST standard load file (see Appendix H) that is placed in the $WORK/image
directory. This file may then be sent directly to the spacecraft using the ASIST LOAD directive (see Chapter 11). Note
that this file will only be produced if no errors are found when processing the input. The following is an example of a load
file:

M5 memory load file
E01 ,2000-000-00:00:00,003,CONV_S3R ,loads3r
SCPRI ,00000004,LOAD,MEMORY, , , ,80C175A0,RAM , 1, 1
80C175A0,0004,01010403

Reports

SCP creates two different report files: a traditional text report and a more extensive XML report. The text report file
begins with a list of the errors and warnings encountered in the input. If no errors are found, this is followed by the names
of the input and output files, the header records (abstract record, identification record, data description record) created for
the load file, and finally, a listing of the execution times and commands in order by execution time. The exact output may
differ based on whether an ATS or RTS is defined and the command line arguments given. The following is an example of
a report:

SCP Generator Report

Input SCS File: basic_rts.scs
Output FTF File: basic_rts.ftf

Abstract Record: Stored Command Processor Generator V3.04

Identification Record:

Mission: XTE
Date Created: 2002-231-12:00:00
Source: ASIST
Comment: OSCP Ver 3.04

Data Description Record:

 # bytes File Image Table ID Select Commit
Processor (HEX) Type Type (DEC) Source Destination
--------- --------- ----- ------ ------- ------ -----------
XYZ 000000A4 LOAD SCPRTS 0001 NULL RAM
12-10 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
SCS Listing

Time Relative
Tag Exec Time Haz Mnemonic Cmd Packet Value
---- --------- --- -------------- -------------------------------
0001 00001 TEST_NO_LABEL 18E7C00000014D8C
0002 00002 TEST_INT 18E7C000000502BC007B0000
0003 00003 TEST_FLT 18E7C0000009031AD36110A8DE9F44DF
0004 00004 TEST_UTIME 18E7C000000901D3121D544000000000
0005 00005 TEST_STR 18E7C000000504C541424344
0006 00006 TEST_MTIME 18E7C000000901C8FFFFFFFF00000000
0007 00007 TEST_ARRAY 18E7C000001505D10000000100020003
 000400050006000700080009
0008 00008 RAW 12345678901234567890123456789012
 34567890123456789012345678901234
 5678901234567890

The XML report contains more information than the text report and can be rearranged and displayed in any manner you
desire. The report references an XSLT file named scp_report.xsl which is supplied. If you prefer a different type of
formatting you may supply your own. The following is an example of an XML report:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="scp_report.xsl"?>
<storedCommandReport date="2002-231-12:00:00" fileVersion="1.0" >
 <inputFile name="expr.scs" />
 <outputFile sequenceType="ATS" id="B" name="expr.ftf" processor="XYZ"
length="218" />
 <timeline processor="XYZ" firstCommandTime="02-231-12:04:00.000" lastCom-
mandTime="04-131-15:10:13.000" >
 <event className="ASCENDING_NODE" startTime="02-231-12:04:00.000"
duration="0" stopTime="02-231-12:04:00.000" />
 <command sequence="1" time="04-131-15:10:00.000" name="TEST_NO_LABEL"
criticality="none" triggered="false" >
 </command>
 <command sequence="2" time="04-131-15:10:00.000" name="TEST_INT" criti-
cality="none" triggered="false" >
 <argument name="TEST_ULI" dataType="integer" value="5" />
 </command>
 <command sequence="3" time="04-131-15:10:04.000" name="TEST_FLT" criti-
cality="none" triggered="false" >
 <argument name="TEST_DFP" dataType="real" value="6.28318" />
 </command>
 <command sequence="4" time="04-131-15:10:04.000" name="TEST_STR" criti-
cality="none" triggered="false" >
 </timeline>
</storedCommandReport>
ASIST Users Guide–Version 9.6 12-11

CHAPTER 12
Statement reference

The following sections will detail each of the available SCP statements. Each statement type will be defined, any restric-
tions or special notes that apply will be documented, the syntax for each will be shown, and finally a few examples will be
listed.

Absolute delay

Definition: Delays an ATS until the specified date and time.

Restrictions: May only appear in an ATS. Must appear before any mnemonic or raw command.

Notes: None.

Syntax:

WAIT UNTIL date-time-expression

Where date-time-expression is an expression that evaluates to an absolute date and time.

Examples:

WAIT UNTIL 05-016-08:00
WAIT UNTIL START+5

Activity definition

Definition: creates and defines a new activity

Restrictions: None.

Notes: None.

Syntax:

ACTIVITY name IS
 command-delay-or-activity-reference
 command-delay-or-activity-reference
 .
 .
 .
END

Where name is a unique name that identifies the activity, and command-delay-or-activity-reference is one or more com-
mands, absolute wait statements, relative wait statements, or activity references:

Examples:

ACTIVITY TRANSPONDER_ON IS
 /TRANS_HEATER ON
12-12 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
 WAIT 60
 /TRANS_POWER ON
 WAIT 20
 /TRANS_RADIATE ON POWER=DBMS
END

Activity reference

Definition: References an activity and causes it to be expanded

Restrictions: None.

Notes: None.

Syntax:

ACTIVITY name [id=value ...]

Where name is a previously defined activity, id is an identifier that becomes a local variable inside the activity, and value
is an expression that becomes the value of id. Note that if expressions within an activity reference a variable, that variable
is resolved by a local variable or if no local variable exists, then either a local variable in an enclosing scope or by a global
variable.

Examples:

ACTIVITY TRANSPONDER_ON DBMS=600
ACTIVITY RESET_PSE

Command sequence assignment

Definition: Assigns the sequence number of the next mnemonic or raw command.

Restrictions: May only appear in an ATS.

Notes: None.

Syntax:

CMDN = integer-expression

Where integer-expression evaluates to an integer.

Examples:

CMDN = 12
CMDN = patch_start + 2

Command sequence constraint

Definition: Restricts where a mnemonic command may appear within a sequence of commands.
ASIST Users Guide–Version 9.6 12-13

CHAPTER 12
Restrictions: None.

Notes: None.

Syntax:

[label:] IF clist THEN clist CANNOT OCCUR BEFORE clist [ELSE WARNING]

Where label is an identifier used to uniquely identify this constraint, clist is a comma-separated list of command
mnemonics. When the optional ELSE clause is not used and SCP detects a constraint violation, an error (instead of a
warning) occurs.

Examples:

IF /ENERGIZE THEN /FIRE CANNOT OCCUR BEFORE /ARM
ZZZ: IF /A,/B THEN /D CANNOT OCCUR BEFORE E/,/F ELSE WARNING

Command time delay constraint

Definition: Restricts when a mnemonic command may appear within a sequence of commands.

Restrictions: None.

Notes: None.

Syntax:

[label:] IF clist THEN clist CANNOT OCCUR BEFORE delay [ELSE WARNING]

Where label is an identifier used to uniquely identify this constraint, clist is a comma-separated list of command
mnemonics and delay is an expression which evaluates to an integer. When the optional ELSE clause is not used and
SCP detects this constraint violation, an error (instead of a warning) occurs.

Examples:

HEATER1: IF /HEATER_ON THEN /HEATER_OFF CANNOT OCCUR BEFORE 5

Command time dependency constraint

Definition: Restricts when a mnemonic command may appear and when it must appear within a sequence of commands.

Restrictions: None.

Notes: None.

Syntax:

[label:] IF clist THEN clist CANNOT OCCUR BEFORE delay BUT MUST OCCUR BEFORE
delay [ELSE WARNING]
12-14 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Where label is an identifier used to uniquely identify this constraint, clist is a comma-separated list of command
mnemonics and delay is an expression which evaluates to an integer. When the optional ELSE clause is not used and
SCP detects this constraint violation, an error (instead of a warning) occurs.

Examples:

IF /ENERGIZE THEN /ARM CANNOT OCCUR BEFORE 5 BUT MUST OCCUR BEFORE 10

Event

Definition: Defines a new event.

Restrictions: Must be used before any triggers which reference this event.

Notes: Parameters START_TIME, STOP_TIME, and DURATION are automatically created.

Syntax:

EVENT class-name start-time [duration|stop-time] [parameter-list]

Where class-name is a name that identifies the class of this event (not required to be unique), where start-time is
an absolute time or, if enclosed in parenthesis, an expression defining the start time of the event, duration is an integer,
relative time or, if enclosed in parenthesis, an expression defining the duration of the event, stop-time is an absolute
time or, if enclosed in parenthesis, an expression defining the stop time of the event, and parameter-list is a list of
keyword/value pairs giving parametric information for the event. When the optional duration or stop-time is not
used, the event has a duration of zero seconds.

Examples:

EVENT PASS 05-102-02:02 \+14:40 STATION=”MAD”
EVENT PERIGEE 04-054-04:14 ALTITUDE=123.77
EVENT ECLIPSE (start+10) (end-5)

Export

Definition: Identifies a global symbol to be copied to the XML-formatted report.

Restrictions: None

Notes: None

Syntax:

EXPORT name = expression

Where name is the name of the global symbol and expression is its value. You may redefine the value of the exported sym-
bol with a user assignment. The resulting name and value are placed in an exportedData element of the XML report.

Examples:

EXPORT PERIGEE = 101.2
ASIST Users Guide–Version 9.6 12-15

CHAPTER 12
Expression

Definition: Determines the value of a sequence of operators, constants, and variables.

Restrictions: None.

Notes: None.

Syntax:

expression operator expression
operator expression
function(expression[,expression...])
(expression)

Where expression can be a constant, variable, or an expression, operator is a binary or unary operator from the fol-
lowing operator table, and function is the name of a function from the following function table. See the following con-
stant table for a definition of available types.

Examples:

1.0 + (1.0/2) + (1.0/3) + (1.0/4)
first_name & “ “ & last_name
select(value=0, “zero”, “non-zero”)

TABLE 12-1. Operator Table

Name Symbol Result

Equal-to comparison = 1 if values are equal, 0 otherwise

Greater-than comparison > 1 if first value is greater than second value, 0 otherwise

Less-than comparison < 1 if first value is less than second value, 0 otherwise

Not-equal-to comparison != or <> 1 if values are not equal, 0 otherwise

Greater-or-equal comparison >= 1 if first value is greater or equal to second value, 0 otherwise

Less-or-equal comparison <= 1 if first value is less or equal to second value, 0 otherwise

Logical and AND 1 if both values are 1, 0 otherwise

Logical or OR 1 if either value is 1, 0 otherwise

Multiplication * product of both values

Division / quotient of both values

Modulus MOD remainder after division of first value by second value

Concatenation & result string after appending first value to second value

Addition + sum of both values

Subtraction - difference of both values

Logical not NOT 1 if value is 0, 0 otherwise

Negation - result of subtracting value from 0
12-16 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Global constraint assignment

Definition: Sets the value of a predefined SCP constraint.

Restrictions: None.

Notes: If a global constraint is not set, no checking will be performed.

Syntax:

constraint-identifier = integer-expression

Where constraint-identifier is a name from the following table and integer-expression is an expression
that evaluates to an integer.

Examples:

MAX_ATS_BYTES = 32768

TABLE 12-2. Function Table

Name Result

UTC Returns the time of the current command

INT(argument) Converts argument to an integer

FLOAT(argument) Converts argument to a float

TIME(argument) Converts argument to an absolute time

ABS(argument) Returns the absolute value of argument

SELECT(test,then,else) if test is equal to 1, then return then, else return else

YEAR(argument) returns the year of argument

DAY_OF_YEAR(argument) returns the day of the year of argument

HOUR(argument) returns the hour of the day of argument

MINUTE(argument) returns the minute of the hour of argument

SECOND(argument) returns the second of the minute of argument

ENV(argument) returns the value of environment variable argument

TABLE 12-3. Constant Table

Type Examples

Integer 432, -99

Float 3.141592, -12.0

String “a test”, “an ““example”””

Absolute time 2004-205-15:40:00, 05-23-08:00

Relative time \+12:12:00, \-11:11
ASIST Users Guide–Version 9.6 12-17

CHAPTER 12
MIN_RTS_CMD_DELAY = min_delay

Mnemonic command

Definition: Specifies a spacecraft command to be executed.

Restrictions: None.

Notes: None.

Syntax:

/command [parameter[=expression]...]

Where command is an identifier that selects a spacecraft command from the command database, parameter is an iden-
tifier for a parameter that is valid for the command, and expression is an expression that evaluates to a valid value for
the parameter.

Examples:

/SCINOOP
/SSMSSTSL TABLEID=1 ACTIVE ACTV

Raw command

Definition: Specifies (as a hexadecimal string) a spacecraft command to be executed.

Restrictions: None.

Notes: No further processing is performed on the hexadecimal string (if a checksum is required, you must compute it).

Syntax:

/RAW hexadecimal-digits

Where hexadecimal-digits is a sequence of hexadecimal digits.

TABLE 12-4. Global Constraints

Identifier Description

MAX_ATS_BYTES Specifies the maximum number of bytes in an ATS

MAX_RTS_BYTES Specifies the maximum number of bytes in an RTS

MAX_ATS_CMDS Specifies the maximum number of commands in an ATS

MAX_RTS_CMDS Specifies the maximum number of commands in an RTS

MIN_RTS_CMD_DELAY Specifies the minimum number of seconds between commands in an RTS

MAX_RTS_CMD_DELAY Specifies the maximum number of seconds between commands in an RTS

MAX_SIMULTANEOUS_ATS_CMDS Specifies the maximum number of commands that can be initiated simulta-
neously in an ATS
12-18 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Examples:

/RAW 1810C00000010432

Relative delay

Definition: Delays an ATS or RTS the specified amount of time.

Restrictions: None.

Notes: If the delay is given as a simple integer, the delay is in seconds.

Syntax:

WAIT relative-time-expression

Where relative-time-expression is an expression that evaluates to a relative time or an integer.

Examples:

WAIT 5 ;Wait 5 seconds
WAIT \+00:10:15 ;Wait 10 minutes 15 seconds

Table range definition (ATS)

Definition: Defines the range of valid tables for an ATS processor on the given CPU.

Restrictions: None.

Notes: None.

Syntax:

cpu ATS_TABLE low - high [AT base]

Where cpu is the name of the CPU the ATS processor is running on, low is a single letter used to name the first valid
table, high is a single letter used to name the last valid table, and base is an integer which gives the processor table
number of the first ATS. If the AT clause is not used, the table number starts at one.

Examples:

SCPRI ATS_TABLE RANGE A-B
CCHD ATS_TABLE RANGE A-D AT 257

Table range definition (RTS)

Definition: Defines the range of valid tables for an RTS processor on the given CPU.

Restrictions: None.
ASIST Users Guide–Version 9.6 12-19

CHAPTER 12
Notes: None.

Syntax:

cpu RTS_TABLE low - high [AT base]

Where cpu is the name of the CPU the RTS processor is running on, low is an integer used to name the first valid table,
high is an integer used to name the last valid table, and base is an integer which gives the processor table number of the
first RTS. If the AT clause is not used, the table number starts at one.

Examples:

SCPRI RTS_TABLE RANGE 1-128
CCDH RTS_TABLE RANGE 1-256 AT 0

Table state definition

Definition: Defines the state and load file name of an RTS table executed on the given CPU.

Restrictions: None.

Notes: None.

Syntax:

cpu RTS_TABLE table IS state USING load-file-name

Where cpu is the name of the CPU the RTS processor is running on, table is an integer identifying the table, load-
file-name is a string containing the name of the load file, and state is one of the identifiers from the table below.

Examples:

CCDH RTS_TABLE 1 IS LOADED USING “rts1.ftf”
ACSPRI RTS_TABLE 13 IS DISABLED USING “acs_rts13.ftf”

Table start definition

Definition: Defines the command mnemonic and parameter name used to initiate an RTS on a given CPU.

Restrictions: None.

Notes: None.

TABLE 12-5. RTS State Table

State Description

DEFINED The RTS has been compiled

LOADED The RTS has been compiled and loaded onboard

DISABLED The RTS has been compiled and loaded but not enabled

ENABLED The RTS has been compiled, loaded and enabled for execution
12-20 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Syntax:

cpu RTS_TABLE START_COMMAND cmd PARAMETER parm

Where cpu is the name of the CPU the RTS processor is running on, cmd is a string containing the name of the command
needed to initiate an RTS, and parm is a string containing the name of the command parameter that specifies the RTS to
start.

Examples:

ACSPRI RTS_TABLE START_COMMAND “ACSSTARTR” PARAMETER “RTS”

Table tail sequence definition (ATS)

Definition: Defines a sequence of commands and delays to be automatically appended to an ATS executed on a CPU.

Restrictions: None.

Notes: User-defined variables can be referenced within the command sequence.

Syntax:

cpu ATS_TABLE LAST_COMMAND THEN
 command-and-delay-sequence
END

Where cpu is the name of the CPU the ATS processor is running on and command-and-delay-sequence is a
sequence (one per line) of mnemonic commands, raw commands, or relative waits.

Examples:

SCPRI ATS_TABLE LAST_COMMAND THEN
 WAIT 1
 SSCSWITCHA
END

Table tail sequence definition (RTS)

Definition: Defines a sequence of commands and delays to be automatically appended to an RTS executed on a CPU.

Restrictions: None.

Notes: User-defined variables can be referenced within the command sequence.

Syntax:

cpu RTS_TABLE LAST_COMMAND THEN
 command-and-delay-sequence
END
ASIST Users Guide–Version 9.6 12-21

CHAPTER 12
Where cpu is the name of the CPU the RTS processor is running on and command-and-delay-sequence is a
sequence (one per line) of mnemonic commands, raw commands, or relative waits.

Examples:

ACSPRI RTS_TABLE LAST_COMMAND THEN
 WAIT 1
 /ABRESET
 WAIT 1
 /AARESET
END

User assignment

Definition: Creates or updates a user-defined variable.

Restrictions: None.

Notes: None.

Syntax:

user-variable = expression

Where user-variable is a user-defined variable name and expression is a value to assign. User variables may be
used in any statement where an expression is allowed.

Examples:

pi = 3.141592
completion_time = UTC + 1

Trigger

Definition: Defines a sequence of commands and delays to be inserted into an ATS if the specified event exists and any
associated conditions are met.

Restrictions: All events which could activate this trigger must be defined first.

Notes: User-defined variables and event parameters can be used in any of the expressions or within the command
sequence.

Syntax:

DURING event-class AT time-expression [IF condition-expression] THEN
 command-and-delay-sequence
END

Where event-class is a name that identifies the class of an event, time-expression is an expression that evalu-
ates to an absolute time, condition-expression is a logical expression that evaluates to true or false, and com-
12-22 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
mand-and-delay-sequence is a sequence (one per line) of mnemonic commands, raw commands, or relative wait
statements.

Examples:

DURING PASS AT START_TIME-30 IF STATION=”MAD” THEN
 /XPNDR RESET
 WAIT 5
 /XPNDR ON
END
ASIST Users Guide–Version 9.6 12-23

CHAPTER 12
Usage

SCP can be run from either STOL or a command shell. If run from STOL, the resulting report is placed in a popup win-
dow. If run from a command shell, the report is placed inline within the command shell window.

Running the compiler

The syntax for executing SCP is:

SCP qualifiers input-source-file output-load-file

where qualifiers is one or more options from the following table, input-source-file is the name of the input
file, and output-load-file is the name of the output file. SCP assumes that the input file is located in the current
directory. However, the output file is written to the $WORK/image directory.

For example:

SCP -processor=scpri -rts=1 rts1.scs rts1.ftf

TABLE 12-6. Options to the Stored Command Sequence Processor

Option Action

-ABSTRACT=quoted-string Specifies the contents of the abstract record of the FTF file. (60 chars) The default is:
"Stored Command Processor generator V1.0".

-ATS=buffer Specifies that the SCS is an absolute time sequence. buffer may be either A (ATS buffer A)
or B (ATS buffer B). This qualifier is required to indicate that the input file is an ATS.

-BYTE Sets that each address points to one byte, and that size are to be reported in bytes.

-CMDN=initial-sequence-number This qualifier specifies the default sequence number of the first command in this stored
command load. If not present, it defaults to 0.

-COMMENT=quoted-string This qualifier specifies the comments field that is used in the identification record of the
FTF file. The default value is "OSCP Ver 1.0". (80 char)

-COMMITDES=destination This qualifier specifies the select destination for the SCS. destination must be one of:
RAM, EEPROM, NOLOAD. If not specified, RAM is the default.

-Dnamed-time=yy-ddd-hh:mm:ss This qualifier is used to define named times used in an ATS input file. This is useful when
an existing ATS input file is to be used and the exact start time is not known until it is com-
piled. named-time may be any legal STOL identifier.

-EXPAND This qualifier displays all commands from any referenced RTS’s.

-FILETYPE=file-type This qualifier specifies the file type field that is used in the data descriptor record of the FTF
file. file-type must be one of: LOAD (load entire file), PART (append this file to the speci-
fied ATS buffer, only legal for an ATS). If not specified, LOAD is the default.

-Ipath This qualifier specifies an additional path to search for include files that may be referenced
in the stored command source file.

-INCLUDE=file This qualifier causes file to be included in the stored command source file.

-INTEGRATED This qualifier produces an integrated report that shows any events that occur during the
sequence, any commands generated as a result of those events, and any commands from ref-
erenced RTS’s.
12-24 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
-LOAD_DATABASE This qualifier forces the command database to be loaded. This switch is required if you are
running SCP without starting ASIST.

-MNEMONIC This qualifier displays the mnemonic form of the command instead of the hexadecimal
command packet.

-MISSION=quoted-string This qualifier specifies the mission name that is used in the identification record of the FTF
file. The default is the contents of the MISSION environment variable of the machine that
generates the FTF file.

-NOTRIGGERS This qualifier disables trigger processing.

-OFFSET=integer This qualifier specifies the starting offset of the command sequence. If not specified, the
offset defaults to 0.

-PROCESSOR=processor This qualifier specifies the processor field that is used in the data descriptor record of the
FTF file. processor may be any string, but since there is no default value this qualifier must
be specified.

-RTS=integer This qualifier specifies that the SCS is a relative time sequence. integer is the number of the
RTS buffer to load. This qualifier is required to indicate that the input file is an RTS.

-SELSOURCE=source This qualifier specifies the select source for the SCS. source must be one of: NULL,
EEPROM, RAM. If not specified, NULL is the default.

-SOURCE=quoted-string This qualifier specifies the source field that is used in the identification record of the FTF
file. The default value is "ASIST". (10 char)

-SPACECRAFT_ID=scid This qualifier specifies the spacecraft ID that the load is to be created for. The default value
is 0.

-SWAP= [S | N] Turns on (S) or off (N) byte swapping of the output image.

-TABLEID=table-id-string Specifies the table identifier (normally done with the -ATS or -RTS options.

-VERSION=version-number This qualifier specifies the version number that is used in the identification record of the
FTF file. The default value is 1. (3 char dec)

-XML_REPORT=file This qualifier produces an XML-formatted report of the successfully compiled sequence
and places it into file file.

TABLE 12-6. Options to the Stored Command Sequence Processor

Option Action
ASIST Users Guide–Version 9.6 12-25

CHAPTER 12
Configuration

So that SCP may be used to build stored command processor loads for a variety of spacecraft, a facility is available to
allow it to be configured.

Stored command packets

A stored command load is a sequence of stored command packets. Each stored command packet contains, at minimum,
the execution time and the CCSDS command packet for each command in a load. Additionally, a stored command packet
may contain the sequence number of the command, and the length of the command packet. It may also contain other fixed
fields.

In ASIST, a stored command packet is defined by a Standard Formatted Data Unit (SFDU) located in the command data-
base. In the command database, there are two SFDU definitions, one for an ATS stored command packet and one for an
RTS stored command packet. The default ATS stored command packet looks like this:

SFDU CATS DESC="ATS Stored Command",ASCII_HEX
 INTEGER SEQ SIZE=2
 SUTC WHEN SIZE=4 /** 4 byte, second since epoch **/
 UB CMD_DATA[MAX_COMMAND_STRING_LENGTH] VARIABLE
END

and the default RTS stored command packet looks like this:

SFDU CRTS DESC="RTS Stored Command",ASCII_HEX
 CUC_TIME WHEN SIZE=2,ORDER=(1,2),RELATIVE,SUB_SIZE=0
 UB CMD_DATA[MAX_COMMAND_STRING_LENGTH] VARIABLE
END

As can be seen, the ATS SFDU contains three fields, the sequence number (SEQ), the execution time (WHEN), and the
command packet (CMD_DATA). Likewise, The RTS SFDU contains two fields, the execution time (WHEN) and the com-
mand packet (CMD_DATA).

To create a new stored command packet for a different spacecraft, just define one or two new SFDUs with the fields
appropriate for the onboard stored command processor. Place these new SFDU definitions in the local command database
and recompile.

Once the command database has been recompiled and reloaded, you must tell SCP the name (or names) of the new
SFDUs. This is done in a fashion similar to setting a global constraint, for a new ATS SFDU use:

 ATS_SFDU_NAME=new-ats-sfdu-name-string

Where new-ats-sfdu-name-string is a string containing the name of the SFDU you've created in the command
database. The default name is (as you can see from above) "CATS".

For a new RTS SFDU use:

RTS_SFDU_NAME=new-rts-sfdu-name-string

Where new-rts-sfdu-name-string is the name of the new RTS SFDU you've created. The default name is (also
from above) "CRTS".
12-26 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
Supported fields

In addition to the SFDU name, the fields within the stored command packet must also be defined. These fields are the data
items that the stored command processor requires. The following table lists the fields that are available in SCP:

Note that if a field is defined as the empty string ("") it will not be used in the creation of the stored command packet.

For example, to define all the fields in the ATS SFDU shown above, use:

ATS_SEQ_FIELD_NAME = "SEQ"
ATS_LEN_FIELD_NAME = ""
ATS_TIME_FIELD_NAME = "WHEN"
ATS_DATA_FIELD_NAME = "CMD_DATA"
ATS_SFDU_NAME = "CATS"

To define all the fields in the RTS SFDU shown above, use:

RTS_SEQ_FIELD_NAME = ""
RTS_LEN_FIELD_NAME = ""
RTS_TIME_FIELD_NAME = "WHEN"
RTS_DATA_FIELD_NAME = "CMD_DATA"
RTS_SFDU_NAME = "CRTS"

TABLE 12-7. Stored Command Packet SFDU Fields

Field name Description Default value

ATS_SEQ_FIELD_NAME ATS command sequence number “SEQ”

ATS_LEN_FIELD_NAME ATS command packet length ““

ATS_TIME_FIELD_NAME ATS command execution time “WHEN”

ATS_DATA_FIELD_NAME ATS command packet “CMD_DATA”

RTS_SEQ_FIELD_NAME RTS command sequence number ““

RTS_LEN_FIELD_NAME RTS command packet length ““

RTS_TIME_FIELD_NAME RTS command execution time “WHEN”

RTS_DATA_FIELD_NAME RTS command packet “CMD_DATA”
ASIST Users Guide–Version 9.6 12-27

CHAPTER 12
Utilities

SCP to Activity Definition Utility

This utility, available from the Unix command prompt, converts an SCP source file into a CMS activity ingest file. The
syntax for the utility is:

scs-to-activity switches input-file

where switches may be:

The switches -act and -proc must appear and either -ats or -rts must appear to identify the input file type. For example, to
convert RTS file rts21.scs to a CMS activity named SA_DEPLOY that will be executed on the processor named
SCPRI, enter at the Unix command line:

➔ scs-to-activity -rts -act=SA_DEPLOY -proc=SCPRI rts21.scs

The output file is written by default to the CMS directory used for activity ingest (usually $WORK/cms/acttrans-
fer/import). This can be overridden by setting the environment variable named ACTIVITY_IMPORT_DIR to the
directory you wish to use.

Once a file has been converted and placed in the appropriate CMS directory, you must start CMS and initiate the activity
import from within CMS. See your CMS documentation for further information.

The input files can be any ATS or RTS file that SCP can compile. However, the following restrictions must be observed:

• WAIT UNTIL

• CMDN

• /RAW

If any of these directive or commands appear in the input file the utility will terminate with an error and no activity defini-
tion file will be written.

CMS parameter definitions may appear as arguments to command parameters by preceding the CMS parameter name
with ’&’. For example:

/ACSTORWX VEL=&wheelx_speed

TABLE 12-8. Options to the SCP to Activity Definition Utility

switch Action

-ats Specifies that the input file (SCS) is an absolute time sequence.

-rts Specifies that the input file (SCS) is an relative time sequence.

-act=name Tells the utility to use name for the activity name.

-proc=name Tells the utility to use name for the processor for this activity.
12-28 ASIST Users Guide–Version 9.6

Stored Command Sequence Processor
UDAP to SCP Conversion Utility

This utility, available from the Unix command prompt, converts an AMPS/MOPPS UDAP file into an SCP source file.
The syntax for the utility is:

udap-to-scs [switches] input-udap-file output-scp-file

where input-udap-file is the name of the UDAP you wish to convert, output-scp-file is the name of the output SCP file,
and switches may be:

For example:

udap-to-scs -c1 -itables.scp udap191.txt scs191.scs

causes the input UDAP file, udap191.txt to be converted into SCP source file, scs191.scs. The first command
sequence number will be set to one and tables.scp will be placed within a #include statement in the output file.

TABLE 12-9. Options to the UDAP to SCP Conversion Utility

switch Action

-c sequence-number Specifies the command number (CMDN) of the first command in the input file.

-i file Causes #include file to be inserted into the output file.

-s decimal-spacecraft-id Processes input lines prefixed with the specified spacecraft ID only.

-k key Processes input lines prefixed with the specified key only.
ASIST Users Guide–Version 9.6 12-29

CHAPTER 12
12-30 ASIST Users Guide–Version 9.6

AS
CHAPTER 13 Environment
ASIST allows multiple accounts to be set up on one workstation. This scheme provides:

• Ability to maintain more than one database.

• Ability to distribute "configured" RDLs.

• Ability to allow test conductors to test new RDLs, procs, and pages without impacting the entire lab's testing.

Login Account(s)

Each account has a user name and password associated with it. Each of these accounts also has a directory associated with
it which is the work area (the $WORK environment variable under UNIX) for that account. Two accounts are common to
all machines, the asist account and the dbcm account. These accounts have assigned to them the work areas global and
configured, respectively. Additionally, local accounts can be created at the user's request. The work areas for these
accounts have the same name as the account. For example, a local account called update will have a work area named
update. Logging into this account starts the ASIST ground system with a local database compiled from RDL in the update
work area.

Directory Structure

There are two parent directories:

1. System Directory- This area will contain all ASIST executables, rdls, procs, and pages required by the system to run
(but no databases).

2. Accounts Directory- Under this directory are "areas" for different "users" of the system. Each of theses areas will con-
tain user rdls, pages, procs, and databases. There are three kinds of users:

• Configured - This area will contain configured rdl, pages, and procs approved for release by the project, and a runnable
database. It is the active area for the dbcm account.

• Global - This area contains laboratory approved rdls, pages, procs, databases, and configuration files. It is the active
area for the asist account.

• Local - This area(s) contain(s) rdls, pages, procs, databases and configuration files local to individual local accounts.
IST Users Guide–Version 9.6 13-1

CHAPTER 13
Inheritance

When running from a local account, it is still possible to use procedures, rdls, pages, and databases from the global or con-
figured areas. ASIST searches for these files according to the following rules:

IF it is in the system area THEN
Use file from the system area

ELSE IF it is in the local area THEN
Use file from the local area

ELSE IF it is in the global area THEN
Use file from the global area

ELSE IF it is in the configured area THEN
Use file from the configured area

ELSE
The file is not found
13-2 ASIST Users Guide–Version 9.6

Environment
When you log into an account, ASIST searches for all configuration files and databases using these inheritance rules.
Thus, it is possible to use a local telemetry database with a global command database.

Promote and Redline

The directives PROMOTE and REDLINE copy rdls, procs, and formats between accounts. Promote is used to get a ver-
sion of one of these files from a local account to either the global or configured areas in order to put it under configuration
management, and thus make it usable by the entire lab (or by the entire project in the case of promotion to the configured
area). Redline is used to receive a local copy of a file currently in the configured or global areas. This allows the user to
modify these files without affecting the configured or global accounts version.

Each of these commands works by copying a file from a given area to another. Configuration management, via SCCS,
will be added to these directives in a future build.

PROMOTE: This directive is used to move an rdl, fmt, or prc file from a local work area to the global area OR from the
global area to the configured area. Promotion is only allowed from the account which is to receive the new file (either
asist or dbcm), so the first step is to ensure that you are logged into this account. Then, execute the promote directive
from the UNIX prompt. Syntax for the directive is:

PROMOTE file-name source-area rdl | fmt | prc
where:

file-name is the file to be promoted and
source-area is the source area (either global or a local account name).

For example:

• To promote file abc.prc from the global account (asist) to the configured account (dbcm):

1. Log into dbcm

2.Type:

promote abc.prc global prc

• To promote file def.rdl from the local account xtetest to the global account (asist):

1. Log into asist

2.Type:

promote def.rdl xtetest rdl

This directive may only be run from the "asist" login account or the "dbcm" login account.

REDLINE: This directive is used to get a copy of a file from the configured or global area. It copies the file to the local
area, allowing the user to make changes. Syntax for the directive is:

REDLINE file-name rdl | fmt | prc
where file-name is the file to be redlined

For example:

• To get file abc.prc from the configured account (dbcm):

1. Log into asist

2.Type:

redline abc.prc prc
ASIST Users Guide–Version 9.6 13-3

CHAPTER 13
• To get file def.rdl from the global account (asist) into the xtetest account:

1. Log into xtetest

2.Type:

redline def.rdl rdl

This directive may only be run from a local account or from the "asist" account. If it is run from a local account, then the
specified file will be copied from the global area. If it is run from "asist" (global area), then it will be copied from the con-
figured area.

Obtaining Local Directories

ASIST is delivered with a configured and a global area. These correspond to the login accounts dbcm and asist respec-
tively. No local accounts are installed with the initial delivery. Request for local accounts should be made in writing and
brought to the weekly ASIST User's Group Meeting/CCB.

• When starting the "asist" login account, which is associated with the global area, the local and global areas are the
same. Thus, the inheritance rules work exactly the same as with a local account.

• When starting the "dbcm" login account, which is associated with the configured area, the local, configured and glo-
bal areas are set to the configured area. The inheritance rules work exactly the same as with a local account.

Example of RDL Inheritance

You are logged into the local account test and you want to compile a telemetry database.

The rdl directories contain the following files:

When you compile, ASIST will first search for the file user_tlm.rdl.

Is it in the local directory? No
THEN is it in the global directory? Yes
THEN compile the file from the global directory.

The contents of user_tlm.rdl (in the global area) is:

!This file is user_tlm.rdl as written by Joe RDLMaster
13-4 ASIST Users Guide–Version 9.6

Environment
#include "tlmpkt01.rdl"
#include "tlmpkt02.rdl"
#include "tlm_for_acs.rdl"
! End of user_tlm.rdl

When the compiler gets to line '#include "tlmpkt01.rdl"', it will search for tlmpkt01.rdl:

Is it in the local directory? YES
THEN compile the file from the local directory.

For the next line, '#include "tlmpkt02.rdl"'

Is it in the local directory? No
THEN is it in the global directory? Yes
THEN compile the file from the global directory.

And the next line, '#include "tlm_for_acs.rdl"'

Is it in the local directory? No
THEN is it in the global directory? No
THEN is it in the configured directory? Yes
THEN compile the file from the configured directory.

Finally, the compilation is complete. If successful, then the database is put into the local area.

Configuration Files

Configuration files are searched for along a path similar to that for RDL files, procedures, and page formats. All configu-
ration files are kept in the db directory under each account (and under the system area). Thus, it is possible to create a
local configuration file in an account's db directory which overrides the one in the system area. This is necessary if you
have changes from the standard system configuration files, since all files in the system area, including configuration
files, are overwritten each time a new build of the software is delivered.

For information about the individual configuration files See “System Configuration” on page 14–1.

User-Configurable UNIX and X-Window Environment

You can modify the X-window and UNIX environment by editing the following files in your private directory:

File Purpose

ASIST_user_Xdefaultsa

a. This file must be executable. To make it executable, go to the UNIX prompt and type:
 chmod 775 file-name

Allows you to change X-Window settings, such as fonts, colors, key-mappings, …

ASIST_user_kshrca Allows you to define aliases and k-shell functions necessary in each window.

ASIST_user_profilea Allows you to define environment variables (i.e. to change how either ASIST runs).
ASIST Users Guide–Version 9.6 13-5

CHAPTER 13
Example: In /home/asist/private/ASIST_user_Xdefaults the lines below set the event and STOL (SPUD)
windows to use smaller fonts than the default ones:

ASIST_user_Xdefaults
eventwin.font: 8x13bold
stolwindow*FontList: variable

Example: In /home/asist/private/ASIST_user_profile the lines below tell event handler that you have an
events printer:

ASIST_user_profile
You must use this to enable event printing:
export GEVH_I_HAVE_A_PRINTER=1
13-6 ASIST Users Guide–Version 9.6

AS
CHAPTER 14 System Configuration
The ground system has a number of key elements which must be set up according to your system configuration before the
system will operate properly. These are set up using ASIST's System Configuration Files. You may modify these files to
customize your ASIST environment, although these changes will not take affect until ASIST is restarted.

When ASIST is delivered, it contains default configuration files stored in the system area. When you modify one of these
files, you should first copy it to your local area, and then edit that local copy (how to do this is described later in this chap-
ter). The files in the system area should not be modified, since any modifications will be overwritten each time a new ver-
sion of ASIST is delivered.
IST Users Guide–Version 9.6 14-1

CHAPTER 14
The Location of Configuration Files

ASIST searches for configuration files along the same path it searches for databases. Thus, to find a configuration file, it
goes through the following algorithm:

IF it is in the local area db directory THEN
Use file from the local area db directory

ELSE IF it is in the global area db directory THEN
Use file from the global area db directory

ELSE IF it is in the configured area db directory THEN
Use file from the configured area db directory

ELSE IF it is in the system area db directory THEN
Use file from the system area db directory

ELSE
The file is not found

The configuration files ASIST uses are:

TABLE 14-1. Configuration files used by ASIST

UNIX Environment Variable File Name Description

$STOL_CONFIG sgse.config Information necessary to setup ASIST, i.e. machine
configurations, sfids, …

$MISSION_CONFIG mission_name.config Mission specific configuration data.

$STOL_SDB user.db User screening information
14-2 ASIST Users Guide–Version 9.6

System Configuration
Preparing to Modify a Configuration File

Make sure configuration files you modify are in your LOCAL area. If you modify the one's in the system area, your
changes will be overwritten the next time a new build of ASIST is delivered.

To modify a configuration file:

1. Copy the current configuration file you desire to change to your LOCAL database directory:
cp $STOL_CONFIG $WORK/db

or
cp $MISSION_CONFIG $WORK/db

or
cp $STOL_SDB $WORK/db

2. Execute your profile (which searches for the configuration file) by:

a) Typing
. ~/.profile

in a UNIX window.

or

b) Logging out and then logging back in.

This step resets the environment variable to the local copy of the file.

(Note: If you chose option a, remember that the environment variables is changed only in your current UNIX window,
and thus editing or starting from another window may use the old file, not the new one. Thus, option b is HIGHLY
RECOMMENDED.)

3. Edit the new configuration file by typing:
emacs $STOL_CONFIG or $MISSION_CONFIG or $STOL_SDB

(whichever file is appropriate) at the UNIX prompt.
ASIST Users Guide–Version 9.6 14-3

CHAPTER 14
System Configuration File

This file tells the ground system software where to connect for command and telemetry streams. Each line within this file
should be of the form:

Keyword = Value

To modify this file:

1. Following the instructions in Preparing to Modify a Configuration File for $STOL_CONFIG.

2. Edit the file as follows:

a) Put in a comment field indicating something about the change you are making. Comments begin with the '!' sym-
bol.
!!
! This is the system configuration file. !
! Modified by: Bill Test conductor 6-4-93 Changed primary !
! Modified by: Sue Flightguru 5-18-93 Front end now decwks !
! Created by: Gary Groundbeef 2-13-92 !
!!

b) Establish the name of the mission. This is used by STOL to determine the name of the startup file.

MISSION = xte

c) Set up the front end system (FEDSMachine variable) to which the primary test conductor workstation should
attach for commands.

FEDSMachine = decwks

This can also include an optional port number after the hostname.

FEDSMachine = fred,2505

would connect for commanding to machine fred, port # 2505

d) Set up the node name of the machine which is the primary test conductor workstation.

PRIMARY = trmm1u

This can also include an optional port number after the hostname.

Set up the node names of each associate test conductor workstation. The number appended to the keyword
ASSOCIATE indicates the SFID of that workstation. Valid SFIDs are from 1-F and 10-1F (where the SFID is
hexadecimal, i.e. Associate1-Associate-F, Associate10-Associate1F). For example, in the following entry,
trmm3u is SFID 2.
Associate1 = trmm2u
Associate2 = trmm3u
Associate3 = trmm4u
Associate4 = rs733
AssociateE = joemachine
Associate13= nice_workstation

e) Set up all of the IGSE's for this mission. Again, the number following the keyword IGSE indicates the SFID. For
example, in the following entry, HEXTE is SFID 10, PCA is 11, and ASM/EDS is 12.
IGSE0 = EVE
IGSE1 = PCA
IGSE2 = ASM/EDS

You can also specify instrument SFIDs which are two-character strings rather than just hexadecimal values.
ASIST then converts these to one of the IGSEs (as defined above). This is done using the form:
14-4 ASIST Users Guide–Version 9.6

System Configuration
INSTR#=string-sfid, numeric-sfid, name-of instrument

For example, to allow the EVE instrument to use the letters EV for its SFID, enter:
INSTR0=EV,10,EVE

f) Set up all telemetry streams for the current configuration. This tells ASIST what machines it must connect to
receive telemetry. It also tells ASIST what telemetry channels are used. This can also include an optional port
number after the hostname. For example, in the following entry, the FEDS machine is brahma_1, and transmits
telemetry on the F, I and Q channels.
TLMF = brahma_1
TLMI = brahma_1,2001
TLMQ = brahma_1

g) Set up the apids for FEDS events. This tells ASIST what telemetry packets to interpret as events from the Front
End Data System. The apids are entered in decimal. These lines must be:
FEDS_ROUTINE_EVENTS = 2058
FEDS_CRITICAL_EVENTS = 2059
ASIST Users Guide–Version 9.6 14-5

CHAPTER 14
Mission Configuration File

This file tells the ground system software about mission-specific data (e.g. what application IDs the flight software uses to
send flight events). Each line within this file should be of the form:

Keyword = Value

To modify this file:

1. Following the instructions in Preparing to Modify a Configuration File for $MISSION_CONFIG

2. Edit the file as follows:

a) Put in a comment field indicating something about the change you are making. Comments begin with the '!' sym-
bol.

!!

! This is the mission configuration file. !

! Modified by: Manny Missionexpert 5-31-93 Had the wrong apid!

! Created by: Gary Groundbeef 2-13-92 !

!!

b) Enter the name of the MET-to-UTC Correlation Factor (UTCF) mnemonic from the telemetry database:

UTCF = Mnemonic

For example:

UTCF = STCUTCFTM

c) Enter the name of the Leap Second Counter (another correction factor available for absolute times) mnemonic
from the telemetry database:

LEAP = Mnemonic

For example:

LEAP = LEAPING_LIZARDS
14-6 ASIST Users Guide–Version 9.6

System Configuration
User Screening Database

This file contains a list of valid users and the commands they are authorized to send. The entries are of the form:

user-list
apid(s),function-code(s)
apid(s),function-code(s)
apid(s),function-code(s)
 . . .

next-user-list
apid(s),function-code(s)

where:

• user-list is a comma-separated list of users who may send the commands which follow. The user names can be either:

Also, you can use a dash to indicate "runs" of associates or igses, such as ASSOCIATE1-4 or IGSE0-3 …

So, valid user-lists would be:
PRIMARY
ASSOCIATE1-9
PRIMARY,ASSOCATE3,IGSE0-2

• apid[s] can be either:

a) one apid (i.e. 14 or 25),

b) a run of apids (i.e. 1-5 or 16-512 or

c) a wildcard for all apids (*)

• fctn[s], similarly, can be one function code, a run of function codes or a wildcard (*).

The apids and function codes can specified either in decimal (base 10) or in c-notation hexadecimal (i.e. 0x1A).

So, a sample user.db file could be:

1. The default delivered with the system (aka: very loose security)
PRIMARY
 ,
ASSOCIATE1-B
 ,
IGSE0-4
 ,

2. A more restrictive file:
PRIMARY
 ,
ASSOCIATE1-B

TABLE 14-2. Valid user names in the User Screening Database

User Name Who it means

PRIMARY The primary workstation

ASSOCIATE1, ASSOCIATE2, … Associate with sfid

IGSE0, IGSE1, IGSE2… IGSE with SFID 10, 11, 12 respectively

machine-name The name of the machine sending the command
ASIST Users Guide–Version 9.6 14-7

CHAPTER 14
 10,*
 11,*
 12,*
 0x10-0x1e,*
IGSE0-4
 25,*
 29,10-14
 50-65,1-20
lasagna,ASSOCIATE4
 0x40-0x5f,*

Give the Primary permission to send all commands, Associates 1-b to send apids 10-12 and 16-30 (all function codes),
IGSEs 0-4 to send all apid 25 commands, and selected commands in apids 29 and 50-65, and the machine lasagna (what-
ever its SFID) and associate 4 the ability to send all commands with apids between 64 and 95 (inclusive).

Notes:

• A user may appear in more than one group.

• Your old user screening file, which was based upon account name, will not work. So, you must create a new one to
work with this build.

The easiest way to start is to:
cd $WORK/db
cp user.db old_user.db
cp $sgse_root/db/user.db.proto user.db
<start or restart ASIST>

This will give you the unrestricted user screening file.

• This file is only read on startup.

This file can be modified by following the instructions in “Preparing to Modify a Configuration File” on page 14-3 for
$STOL_SDB.
14-8 ASIST Users Guide–Version 9.6

AS
CHAPTER 15 General Purpose Interface
Bus (GPIB)
Overview

This section describes how to use the ASIST General Purpose Interface Bus subsystem (GPIB) to control and/or monitor
any IEEE-488 compliant device on a GPIB bus.

The General Purpose Interface Bus (GPIB) is a standard bus that is typically used to connect multiple pieces of lab equip-
ment (power supplies, multimeters, etc). One of the devices must be a controller; the controller is in charge of all the other
devices. The GPIB standard specifies a set of capabilities; some are required, others are optional. The manufacturer of a
GPIB device can choose which members of the set to implement.

Most GPIB devices will accept commands and respond to queries. For example, a power supply will accept a command
to set it's output voltage, and, if sent a query asking "what is the current output voltage?" will respond with the answer.

An ASIST workstation can assume the role of GPIB bus controller. Commands and queries can be sent via ASIST, and
device status (i.e. responses to queries) can be received and stored in ASIST. Device status is treated like spacecraft
telemetry; therefore, it can be displayed on pages, limit-checked, etc. In situations where multiple ASIST workstations
are connected (e.g. spacecraft integration), all the workstations have access to the GPIB device status (just like any other
telemetry).

ASIST supports one of two versions of National Instruments’s GPIB network box: GPIB-ENET/100 and GPIB-ENET.
Like other network devices, the GPIB box has an IP address and a hostname. The GPIB controller (ASIST) needs no
internal GPIB card and talks to the box via the network. Non-controller GPIB devices attach to the box in daisy-chain
fashion, up to sixteen devices per box.
IST Users Guide–Version 9.6 15-1

CHAPTER 15
GPIB Setup

Hardware Setup

In order to command a GPIB device from ASIST:

• the ASIST workstation and the GPIB-ENET box must be connected to the network.

• the GPIB device must be connected to the ENET box via a GPIB cable.

System Level Setup

Setting up ASIST at the system level for GPIB control requires root privileges and the following procedure:

• Login as the asist user to establish login symbols correctly.

• $ su

• $ cd /s/p/nienet

• $ ibconf

• Answer Y to the question “Create /etc/gpibrc ?”

• In the field which says gpib0/gpib0 press Ctrl-R (rename) to change the bottom gpib0 to the hostname of your GPIB-
ENET box.

• Now, exit with saving.

User Setup/Login Symbols

Add these lines to your ASIST_user_profile (which is executed when you login) in the $PRIVATE directory:

• export GPIB_BOARD_EXISTS=1

• export GPIB_ENET=hostname ; where hostname is that of your GPIB box

• Save the file, logout, and log back in as asist.

User Setup/Telemetry Database

This section explains how to setup the telemetry database (RDL files) to use GPIB effectively. See chapter 4 for a com-
prehensive look at the telemetry database.

The GPIB standard does not specify what commands and queries each device will accept, nor does it specify their syntax.
Furthermore, any response to command or query also depends on the device. Therefore, you must read the device’s man-
ual to decide which commands and queries you will need, determine their syntax, and the device’s responses. Once you
have identified the set of responses (outputs) for any device, you will define a telemetry packet in RDL to accepted each
response in ASIST (this is similar to defining spacecraft telemetry).

Each GPIB device has a primary and secondary address which it sends to identify itself. The primary address refers to a
physical connection to the GPIB bus. Since there may be up to 16 devices connected to a GPIB bus, the primary address
is a number between 1 and 16. The secondary address refers to a logical connection. For example, a device may contain
15-2 ASIST Users Guide–Version 9.6

General Purpose Interface Bus (GPIB)
3 plug-in modules (each of which is a logical GPIB device) but have only one physical connection to the GPIB bus. In
this case, each module has a unique secondary address; they would all have the same primary address. The secondary
address is also a number between 1 and 16. In the simpler case where a GPIB device has it's own physical connection, the
secondary address is zero.

Each telemetry message from a GPIB device is delivered in an SFDU that contains two other SFDUs, in the order speci-
fied:

Here are some examples of GPIB telemetry RDL.

<test_gpib.rdl> -- Definition of GPIB telemetry:
TYPES // Defines a structure to contain data from the GPIB sfdu

RECORD GPIB_MEAS_INFO
UB PAD // Primary address
UB SAD // Secondary address
CHAR DEV_DESC[12]
UI SEQ_COUNT CHAR COMMAND[80] // Command that caused this teleme-

try
END

END_TYPES

// I have created 6 apids to receive GPIB queries
PACKET T245 APID=581,VARYING

CHAR GPIB_MEAS_ONE[132]
END

PACKET T246 APID=582,VARYING,DESC="Use this to receive gpibdata"
CHAR GPIB_MEAS_TWO[132]

END

PACKET T247 APID=583,VARYING
CHAR GPIB_MEAS_THREE[132]

END

PACKET T248 APID=584,VARYING
CHAR GPIB_MEAS_FOUR[132]

END

TABLE 15-1. GPIB SFDUs

SFDU ID Description

CCSDZ0001... This is the wrapper around the two SFDUs

C733..GPIB This contains primary and secondary addresses (PAD and SAD), a 12-character device descrip-
tion, sequence counter, APID that this value was delivered to, and last, the command that gener-
ated the data.

See /s/opr/system/rdl/gpib_tlm.rdl in the PACKET named GPIB_SFDU.

C733..TXXX This is the data generated (for apid XXX) by the GPIB device.

For example:

The request "MEAS:VOLTS?" may generate TXXX --> "0.1235"
ASIST Users Guide–Version 9.6 15-3

CHAPTER 15
PACKET T249 APID=585,VARYING
CHAR GPIB_MEAS_FIVE[132]

END

PACKET T24A APID=586,VARYING
CHAR GPIB_MEAS_SIX[256]

END

// Now, I will get very fancy. This macro creates one record using the
// type GPIB_MEAS_INFO, defined above. It then fills in the data for:
// GPIB_INFO_<name>.PAD, .SAD, .DEV_DESC, .SEQ_COUNT, and .COMMAND
// from the GPIB_SFDU each time it is received.
#define GPIB_INFO_SETUP(_name,_apid) \
 GPIB_MEAS_INFO GPIB_INFO_##_name EQUATION=WHEN pkt_rcvd =
(_apid) DO \
 GPIB_INFO_## _name ##.PAD=GPIB_PAD \

GPIB_INFO_## _name ##.SAD=GPIB_SAD \
GPIB_INFO_## _name ##.DEV_DESC=GPIB_DEVDESC \
GPIB_INFO_## _name ##.SEQ_COUNT=GPIB_SEQ_COUNT \
GPIB_INFO_## _name ##.COMMAND=GPIB_CMD \

ENDDO

// Here's where I set up GPIB_INFO_ONE thru GPIB_INFO_SIX, which will
 // keep the information about the queries which fill in apid's 581-586,
// which are defined above.
PACKET GPIB_CHECKERS APID=589

GPIB_INFO_SETUP(ONE,581)
GPIB_INFO_SETUP(TWO,582)
GPIB_INFO_SETUP(THREE,583)
GPIB_INFO_SETUP(FOUR,584)
GPIB_INFO_SETUP(FIVE,585)
GPIB_INFO_SETUP(SIX,586)

END
// <end of test_gpib.rdl>

User Setup/Example STOL Procedures

Here is an example STOL procedure that uses the telemetry points defined above with built-in ASIST GPIB directives to
get a quick status of a power supply device. This procedure monitors four telemetry values from POWER_SUPPLY,
which get delivered to GPIB_MEAS_ONE thru GPIB_MEAS_FOUR. The values received by GPIB are in strings, so you
may need to define another event-driven pseudo telemetry equation to handle conversions to integers. For example:

FLOAT POWER_SUPPLY_MEAS_VOLT EQUATION=WHEN pkt_rcvd(583) DO
POWER_SUPPLY_MEAS_VOLT=%float(GPIB_MEAS_THREE)

ENDDO

Here’s the procedure; the directives it uses are discussed near the end of this chapter.

PROC mon_ps
acq g on
gpib_define power_supply 6
15-4 ASIST Users Guide–Version 9.6

General Purpose Interface Bus (GPIB)
gpib_monitor power_supply "*idn?" gpib_meas_one
gpib_monitor power_supply "disp:text?" gpib_meas_two
gpib_monitor power_supply "meas:volt?" gpib_meas_three
gpib_monitor power_supply "meas:curr?" gpib_meas_four

ENDPROC

Finally, the following procedure sends a series of commands to the power supply, just to show how it is done.

PROC change_gpib_disp
// These next two lines make this more quiet, especially when run from pstol

%liv(log_substitutions)=0
%liv(silent_wait)=1
//Set up power_supply
gpib_define power_supply 6
// Switch the power_supply display to text mode
gpib_cmd power_supply "disp:mode text"
wait 1

START_ANEW:
// Change the text on the display to I AM STRONG
gpib_cmd power_supply "disp:text ""I AM STRONG"""
wait 10
// Change the text on the display to IM INVINCIBLE
gpib_cmd power_supply "disp:text ""IM INVINCIBLE"""
wait 10
goto START_ANEW

ENDPROC
ASIST Users Guide–Version 9.6 15-5

CHAPTER 15
Generic GPIB Directives

There are 2 sets of GPIB directives. The older set contains low-level directives; the newer set provides generic directives
(intended to be easier to use). The generic directives, presented first should be sufficient for almost all situations.

These directives are also described in APPENDIX A: “Directives” on page A-40 through page A-44.

The core directives:

.

TABLE 15-2. GPIB Core directives

Directive What it does

gpib_define device_name primary_address
[secondary_address]

enter once to define a device's address(es). If omitted, the secondary address
defaults to zero. This must be done before entering any other gpib directives
using this device

gpib_cmd device_name command_string Sends command_string to the specified device.

gpib_query device_name query_string
telemetry_item

Sends query_string to the specified device, reads the device's response, and
stores the result in the Current Value Table (writes over the current value of
telemetry_item).

TABLE 15-3. Other GPIB directives

Directive What it does

gpib_monitor device_name query_string
telemetry_item

Similar to gpib_query, except that the query is repeated every 3 seconds indef-
initely.

gpib_show_monitor device_name to show any/all automatic queries (monitors) for this device.

gpib_end_monitor device_name to end all automatic queries (monitors) for this device.

gpib_panel device_name enable or
gpib_panel device_name disable

to enable/disable the device's front panel buttons.

gpib_set_crlf device_name setting to override the default termination characters used by ASIST when writing to
this device. Possible settings:

gpib_set_delay device_name delay_time to override the default delay built into the query command. i.e. how long to
wait after writing before issuing a read request. delay-time is in microseconds
in the range 0-32000

gpib_set_timeout device_name time-out to adjust how long ASIST will wait for the device to respond to a query. time-
out is in milliseconds, and must be one of these: 0, 1, 3, 10, 30, 100, 300, 1000,
or 3000.

gpib_unlock device_name to unlock the device if it gets locked out. Lockout occurs if ASIST repeatedly
fails to communicate with a device.

NOCRLF neither carriage return nor line feed.

CR carriage return only.

LF line feed only.

CRLF both carriage return and line feed.
15-6 ASIST Users Guide–Version 9.6

General Purpose Interface Bus (GPIB)
To get help on any generic GPIB directive simply enter the directive with no arguments. For example, to see the required
syntax (and a simple example) for the gpib_define directive, enter "gpib_define" (or "gpib_define help").

Simple example:

Assume:

a) you have a Function Generator connected to Asist via GPIB.

b) the Model Number of this device (Function Generator) is DS345.

c) the device is assigned GPIB address 6.

d) you want to control/monitor the device's output frequency.

e) DS345 telemetry has been defined via an RDL file (i.e. the format of data to be received from the DS345 is
defined–doing this is similar to defining the format of Spacecraft telemetry).

f) GPIB telemetry is acquired (use the directive “ACQUIRE G ON”).

What to do:

1. Define a name for the device; e.g.
GPIB_DEFINE ds345 6 ; (enter this directive at Stol command line)

This directive tells ASIST that communication with device DS345 is via GPIB address 6. See assumptions B & C
above. Note that you can choose any name you want for the device.

2. Send a directive to set the DS345's frequency: First, read the manual for the DS345 to determine what character string
to send to the DS345 in order to set the frequency (in this case, assume the string is "freq value").

GPIB_CMD ds345 "freq 1000"

This sends the string "freq 1000" to the DS345, setting the DS345's output frequency to 1000 hertz.

3. Verify that the DS345 set it's frequency as requested. This is done by asking the DS345 what it's output frequency is.
GPIB_QUERY ds345 "freq?" ds345_freq

The DS345 will be sent the string "freq?". This will cause it to send a string back to ASIST, which is then stored in the
Current Value Table location defined as ds345_freq (see assumption E above). This telemetry item
(ds345_freq) can then be used like any other telemetry item. For example, it can be displayed on a Sammi page,
used in a pseudo-telemetry calculation, or simply looked at manually (enter "write ds345_freq" to look at it manually).

NOTES:

• the GPIB_QUERY directive queries the device only once–the GPIB_MONITOR directive is similar but queries the
device periodically (see the next example).

• the GPIB_SET_TIMEOUT directive may be needed for this example to work. By default, ASIST allows a device
only 300 microseconds to respond to a query (otherwise, the query fails). GPIB_SET_TIMEOUT allows you to give
the device more time to respond.

• before you did all this, you should have built an RDL file like this:
! Telemetry definitions for the DS345 Function Generator.
! Notes:
! 1) each query must have a packet dedicated for it's response.
! This example assumes there will be queries issued for
! frequency and amplitude.
! 2) Device responses are always character strings. It may be
! useful to define a pseudo-telemetry point which is the
! conversion of the character string to a floating point
ASIST Users Guide–Version 9.6 15-7

CHAPTER 15
! value. If this is done, then ASIST can perform limit
! checking.

PACKET ds345_freq_pkt APID=%x40, VARYING, DESC="DS345 output frequency"
#include "gpib_tlm_header.rdl"
 CHAR ds345_freq[16] DESC="DS345 output frequency"
END

PACKET ds345_ampl_pkt APID=%x41, VARYING, DESC="DS345 output amplitude""
#include "gpib_tlm_header.rdl"
 CHAR ds345_ampl[16] DESC="DS345 output amplitude""
END

PACKET ds345_pseudo2 APID=%x50, DESC
 SFP ds345_frequency DESC="DS345 output frequency",
 EQUATION=%float(ds345_freq)
 SFP ds345_amplitude DESC="DS345 output amplitude",
 EQUATION=%float(ds345_ampl)
END

Another example:

Assume:

a) all the assumptions from the previous example (and assume the GPIB_DEFINE directive has already been
entered once).

b) you want to continuously monitor the DS345's frequency and amplitude (and that you have defined a second
telemetry item - ds345_ampl).

What to do:

1. Enter these Stol directives:
GPIB_MONITOR ds345 "freq?" ds345_freq
GPIB_MONITOR ds345 "ampl?" ds345_ampl

This will cause ASIST to query the DS345 every 3 seconds for each of the desired telemetry items. The syntax for the
GPIB_MONITOR directive is the same as for the GPIB_QUERY directive.

2. You could enter this directive to see what DS345 monitoring is in effect:
GPIB_SHOW_MONITOR ds345

This directive should list 2 items (ds345_freq and ds345_ampl).

3. When you no longer want to monitor the DS345, enter this directive:
GPIB_END_MONITOR ds345

This will end all monitoring of the DS345.

NOTES:

• if the generic GPIB directives can't do something you want, you may be able to do it by using the low-level GPIB
directives described in the following section. Their names all start with “/GPIB”.
15-8 ASIST Users Guide–Version 9.6

General Purpose Interface Bus (GPIB)
Low-Level GPIB Directives

Directives:

These directives are described more completely in Appendix A.

Device Status

The SAMMI page gpib_device_stat shows the statistics of all the devices currently controlled by the GPIB sub-
system.

When a device is first referenced, a gpib_device_stat table entry is assigned to that device. If all twenty entries are
used and a new device is referenced, the least used entry is reused by the new device.

TABLE 15-4. GPIB low-level directives

/GPIB_WRITE Send a command to device

/GPIB_READ Read data from device and send it to the CVT through channel G

/GPIB_POLL Schedule a repetitive command

/GPIB_LIST_POLL_EVENTS List all repetitive commands

/GPIB_CANCEL_POLL Cancel repetitive command(s)

/GPIB_SET_DEVICE_MODE Set device operating mode

/GPIB_SET_CRLF Control sending of End-Of-Line indicator

/GPIB_SET_DELAY Set polling delay between write and read

/GPIB_SET_TIMEOUT Set timeout for a specific device

/GPIB_UNLOCK Reactivate a locked GPIB device

/GPIB_SET_DEVICE_MODE Set device operating mode

TABLE 15-5. GPIB device statistics on page gpib_device_stat

Column Description

Dev# entry number

Device Descrip reserved for the user to put in any device description information. The system variables
devid_1 ... devid_20 are 15 character strings reserved for this purpose.

PAD and SAD device's primary and secondary address.

CMDCNT number of commands that have been sent to this device.

CMDSTS return status of last command. OK indicates that the device has received the command.

PKTCNT number of packets ASIST has received from device.

ERRCNT error count. It resets to 0 after a successful read/write.

Command last command sent to this device.
ASIST Users Guide–Version 9.6 15-9

CHAPTER 15
15-10 ASIST Users Guide–Version 9.6

AS
CHAPTER 16 Decommutated Sequential
Telemetry Streams (TSDS)
Overview

The Decommutated Sequential Telemetry Stream Server (TSDS) provides decommutated telemetry data to client pro-
gram(s) via TCP sockets. This allows you to write client programs which may receive telemetry data from ASIST even if
they are running on other machines (i.e. a PC with an ethernet card). Several TSDS client programs are provided with
ASIST.
IST Users Guide–Version 9.6 16-1

CHAPTER 16
Description

Several keywords may be used to describe TSDS. They are:

Decommutated - This server sends telemetry data that has been processed by ASIST. Thus, the client program can request
either Raw Data, Counts, or Engineering units (i.e. R@ or P@), and will receive the data in an ASCII format.

Sequential - Data is sent whenever ASIST receives one of the packets indicated in the trigger list. The trigger list may be

specified by the user, or generated automatically based upon the telemetry points requested1. Since data is sent on receipt
of each packet, the client receives all the data ASIST does. This allows the client to use this data for time-based analysis
not possible with just the current value table (which only gives you the present value of a telemetry point, but not arrival
information).

Streams - The data is sent over TCP sockets. To receive data, a client must make a socket connection to ASIST's TSDS
Server, request the desired data (using the protocol defined in the Sequential Stream ICD in Appendix C), and then ask
TSDS to begin serving. A session with TSDS is called a stream. ASIST's TSDS server can handle up to 32 concurrent
streams, and can send over 2000 telemetry points at any given time.

1. A telemetry point's trigger apid is:

• for event-driven pseudo-telemetry points, the first item in the WHEN list for the equation (in the telemetry RDL);

• for periodic pseudo-telemetry points, the "PERIODIC PULSE" apid, 0xfff, delivered each time the periodic pseudo-
telemetry processor completes one cycle;

• for anything else, the apid containing the point.
16-2 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
How do I use it?

There are several ways to use TSDS:

• Write a client program. This requires knowledge of sockets and programming. A skeleton client program is available
upon request from the ASIST development team.

• Use one of ASIST's built-in TSDS client programs. These are accessed using the foreign directive SEQ described
below.
ASIST Users Guide–Version 9.6 16-3

CHAPTER 16
TSDS Clients Provided with ASIST

A number of programs are provided with ASIST which connect to TSDS and provide the received data in different for-
mats. Each of these programs can be run concurrently, up to the TSDS performance limits defined above.

These programs are accessed using the STOL foreign directive SEQ followed by one of the following keywords:

Most of these directives allow the following arguments:

Additionally, two options of the SEQ directive allow you to monitor and control any sequential stream client, even those
which are not created using the SEQ directives:

SEQ PRINT

Usage

SEQ PRINT ON mnem1 [USING fmt1] [...mnem n] [WHEN apid1 [... apid n]] [TO filename]
or

SEQ PRINT OFF [filename]
or

SEQ PRINT HELP

Description

This directive starts a TSDS client process which prints the requested values (mnem1…mnem n) whenever:

• any of the packets specified in the WHEN clause are received in telemetry (apid1...apid n) OR

• any of the packets containing the requested data are received in telemetry (if no WHEN clause is given).

PRINT Prints user specified data to a file

TIMED Prints user specified data to a file at given times

GNU Prints user specified data to a file in the format used by GNUPLOT.

PACKET Displays a raw dump of the given packet in a window.

INTERACTIVE Opens an interactive session with the sequential stream server.

LIST Lists sequential client programs (either print, timed, gnu, or interactive) currently running.

ON Starts an instance of the client program (i.e. SEQ PRINT ON …).

OFF Stops one or more currently running client programs of the specified type (i.e. SEQ PRINT OFF
…).

OFF ALL Stops all currently running client programs of the specified type (i.e. SEQ PRINT OFF ALL turns
off all jobs begin with SEQ PRINT ON …).

HELP Gives help about the client program (i.e. SEQ PRINT HELP).

SEQ LIST_STREAMS Lists any currently open sequential streams, including those opened using
SEQ directives and those opened by external client programs.

SEQ KILL_STREAM stream-name Closes the TSDS server side of the indicated stream
16-4 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
mnem1…mnem n indicate what telemetry points to print. Each must be in the current telemetry database, or the directive
will be terminated (and no sequential print performed). The data generated for each telemetry point is the swapped value
(also called Counts). To see this data in a different form, precede the name with the modifier P@ to receive processed data
(data with any polynomial or discrete conversion performed) or R@ to see the raw data (data in the order it was received
in the telemetry stream).

Each telemetry point may be assigned an optional format with the USING format option, where parameter is a C-style
printf format (i.e. %d, %f, %s, …). If the USING option is not specified, your value will be printed in the following for-
mat:

Output goes to the $WORK/data directory, and is placed in the file specified in the TO clause, or to seqprint.dat if
none is specified.

To stop a sequential print, enter SEQ PRINT OFF [filename]. If no filename is specified, then sequential print to the
default file, seqprint.dat, is terminated. If ALL is entered in place of filename, all current sequential print jobs are
terminated.

Note: This also works using the directive SEQPRINT (with no space between seq and print) followed by the same
options shown above.

Format of generated data

So, seq print on P000SCNT USING %d P@P000STIME P@FLOAT1 generates:

TABLE 16-1. Default output formats for sequential print programs

Type Format Example

Unsigned integer %X 021F

Signed integers %d 145

Floating points,
P@ analogs

%G 47.355

Strings

P@ discrete

%s I am a string

Time (in seconds
since 1970)

%f 9353534.234

Packet-Time Packet-Received Item1 Item2 …

(In seconds since Epoch) PXXX

Packet-Time Packet-Received P000SCNT P@P000STIME P@FLOAT1

0.000 P000: 0 00-000-00:00:00.000 10.7978

1.000 P000: 1 00-000-00:00:01.000 14.4098

2.000 P000: 2 00-000-00:00:02.000 6.53614

3.000 P000: 3 00-000-00:00:03.000 12.3604

4.000 P000: 4 00-000-00:00:04.000 14.1988

5.000 P000: 5 00-000-00:00:05.000 15.8282
ASIST Users Guide–Version 9.6 16-5

CHAPTER 16
(see p1.dat in the example below)

Warning

If any of the telemetry points you specify are not in the telemetry database, seq print will not start. A message will
print in the event log indicating this failure. i.e.

➔ SEQ PRINT ON GOOFY

TSDS-E:STS Couldn't perform ITEM GOOFY because Telemetry item not found in CVT.
TSDS-E:STS Client Process Terminated
TSDS-I:STS Server Process Terminated

Example

To print three items from packet 0 to file $WORK/data/p1.dat:

➔ SEQ PRINT ON P000SCNT USING %d P@P000STIME P@FLOAT1 TO p1.dat

To print the contents of packet 0 to file $WORK/data/allp000.dat:

➔ SEQ PRINT ON P000 TO allp000.dat

To print the following three items when packet 0 is received to file $WORK/data/seqprint.dat:

➔ SEQ PRINT ON P000SCNT GMT P000STIME WHEN 0

To see what jobs are running, type:

➔ SEQ LIST

To stop these jobs, type:

➔ SEQ PRINT OFF p1.dat
➔ SEQ PRINT OFF allp001.dat
➔ SEQ PRINT OFF

OR type

➔ SEQ PRINT OFF ALL

In the following session, each of these operations are performed.

• User input typed in at the STOL window is indicated by ➔.

• Event window output is inside boxes with single lines.

• Excerpts of the files generated are inside boxes with double lines.
16-6 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
➔ seq print on P000SCNT USING %d P@P000STIME P@FLOAT1 to p1.dat

➔ seq print on P000 TO allp000.dat

➔ seq print on p000scnt gmt p000stime when 0

➔ seq list ;;; See what sequential print jobs are running

➔ seq print off p1.dat

 SPR-I:OPRI --> seq print on P000SCNT USING %d P@P000STIME P@FLOAT1 to p1.dat
TSDS-I:STS Socket Connection established, port # <4202>, Child PID <21061>

SPR-I:OPRI --> seq print on P000 TO allp000.dat
TSDS-I:STS Socket Connection established, port # <4202>, Child PID <19292>

 SPR-I:OPRI --> seq print on p000scnt gmt p000stime when 0
TSDS-I:STS Socket Connection established, port # <4202>, Child PID <21617>

 SPR-I:OPRI --> seq list ;;; See what sequential print jobs are running
 SPR-I:FILE ** GEVH Inserting ASCII File "list.of.seq.jobs".
List of running seq clients.

seq_print allp000.dat
seq_print p1.dat
seq_print seqprint.dat

 SPR-I:FILE ** GEVH ** End of ASCII File Insert. File was deleted.

SPR-I:OPRI --> seq print off p1.dat
TSDS-E:STS Sequential print to p1.dat stopped (10).
TSDS-E:STS Client Process Terminated
TSDS-I:STS Server Process Terminated
 SPR-I:STS 1 jobs killed.
ASIST Users Guide–Version 9.6 16-7

CHAPTER 16
➔ seq list

➔ seq print off all

➔ seq list

Excerpts of the files generated :

p1.dat

SPR-I:OPRI --> seq list
 SPR-I:FILE ** GEVH Inserting ASCII File "list.of.seq.jobs".
List of running seq clients.

seq_print allp000.dat
seq_print seqprint.dat

 SPR-I:FILE ** GEVH ** End of ASCII File Insert. File was deleted.

 SPR-I:OPRI --> seq print off all
TSDS-E:STS Sequential print to allp000.dat stopped (10).
TSDS-E:STS Client Process Terminated
TSDS-I:STS Server Process Terminated
TSDS-E:STS Sequential print to seqprint.dat stopped (10).
TSDS-E:STS Client Process Terminated
TSDS-I:STS Server Process Terminated
 SPR-I:STS 2 jobs killed.

 SPR-I:FILE ** GEVH Inserting ASCII File "list.of.seq.jobs".
List of running seq clients.

 SPR-I:FILE ** GEVH ** End of ASCII File Insert. File was deleted.

0.000 P000: 0 00-000-00:00:00.000 10.7978
1.000 P000: 1 00-000-00:00:01.000 14.4098
2.000 P000: 2 00-000-00:00:02.000 6.53614
3.000 P000: 3 00-000-00:00:03.000 12.3604
4.000 P000: 4 00-000-00:00:04.000 14.1988
5.000 P000: 5 00-000-00:00:05.000 15.8282
16-8 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
allp000.dat

seqprint.dat

SEQ TIMED

Usage

SEQ TIMED ON mnem1 [USING fmt1] [...mnem n] [EVERY #sec] [WHEN apid1 [... apid n]] [TO filename]
or

SEQ TIMED OFF [filename]
or

SEQ TIMED HELP

Description

This directive performs the same action as SEQ PRINT, but adds the additional optional keyword EVERY. When
EVERY is used, the data is printed to the file only when the difference in packet time between the received packet and the
previously printed packet is greater than or equal to #sec from the EVERY clause. When EVERY is not specified, this
directive operates like SEQ PRINT.

Example

To print three items from packet 1 to file $WORK/data/p1.dat once every 10 seconds:

➔ SEQ TIMED ON P001SCNT USING %d P@P001STIME P@SHSPMODE EVERY 10 TO p1.dat

To print the contents of packet 1 to file $WORK/data/allp001.dat once every 20 seconds:

0.000 P000: 0800C000003F00000000000000000000000F0001000000000000000000FF0000007F00…
…00C3AF412C000000005A681E822CB1406C000000000000BFF074657374317465737431
1.000 P000: 0800C001003F00000001000000000001000E0102010101010001000100FD0000007E00…
…008E764166000042C888596A52F85A406F47AE7AE1AE14BFEF74657374317465737431
2.000 P000: 0800C002003F00000002000000000002000D0003020202020002000200FB0000007D00…
…00281840D10000434862C62E853541406D8F5CF5C25C28BFEF74657374317465737431
3.000 P000: 0800C003003F00000003000000000003000C0104030303030003000300F90000007C00…
…00C4644145000043962CA14A6E3CED4071D70A70A30A3DBFEF74657374317465737431
4.000 P000: 0800C004003F00000004000000000004000B0005020404040004000400F70000007B00…
…002E5A4163000043C82F9B2F604F2540701EB8EB85B851BFEE74657374317465737431
5.000 P000: 0800C005003F00000005000000000005000A0106010505050005000500F50000007A00…
…004032417D000043FA81AD9C4386E3406F666666666666BFEE74657374317465737431

0.000 P000: 0000 781385733.000 0.000
1.000 P000: 0001 781385735.000 1.000
2.000 P000: 0002 781385735.000 2.000
3.000 P000: 0003 781385737.000 3.000
4.000 P000: 0004 781385737.000 4.000
5.000 P000: 0005 781385739.000 5.000
ASIST Users Guide–Version 9.6 16-9

CHAPTER 16
➔ SEQ TIMED ON P001 EVERY 20 TO allp001.dat

To print the following three items only when packet 1 is received and the last time it printed was greater than 30 seconds
ago to file $WORK/data/seqprint.dat:

➔ SEQ TIMED ON P001SCNT GMT P001STIME EVERY 30 WHEN 1

SEQ GNU

Usage

SEQ GNU ON mnem1 [USING fmt1] [...mnem n] [EVERY #sec] [WHEN apid1 [... apid n]] TO filename]
or

SEQ GNU OFF [filename]
or

SEQ GNU HELP

Description

This directive performs the same action as SEQ TIMED, but the output is printed in a format readable by gnuplot, a plot-
ting package distributed with ASIST. This makes generating graphs with gnuplot much easier. For more information on
gnuplot, see the GNUPLOT manual, or the INFO page.

Format of generated data

The sequence counter indicates the number of packets received over this stream.

So, SEQ GNU ON P000SCNT USING %d P@FLOAT1 generates:

Example

To print three items from packet 1 to file $WORK/data/p1.dat in gnuplot format:

Sequence
Counter Packet-Time Item1 Item2 … Item n # Packet Received

of data lines
sent on stream

(seconds since epoch,
from packet PXXX)

PXXX

Sequence Counter Packet-Time P000SCNT P@FLOAT1 # Packet Received

1 0.000 0 10.7978 # P000

2 1.000 1 14.4098 # P000

3 2.000 2 6.53614 # P000

4 3.000 3 12.3604 # P000

5 4.000 4 14.1988 # P000
16-10 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
➔ SEQ GNU ON P000SCNT USING %d P@FLOAT1 TO p1.dat

To stop this job, type:

➔ SEQ GNU OFF p1.dat

In the following session, each of these operations are performed.

➔ seq gnu on P000SCNT USING %d P@FLOAT1 to p0gnu.dat

➔ seq gnu off p0gnu.dat

Excerpts of the files generated :
p0gnu.dat

This was then plotted by:

1. Opening a UNIX window.

2. Entering the following commands in the UNIX window (user entry is indicated by bold type).

/u/asist/private$ cd $WORK/data
/s/opr/accounts/global/data$ gnuplot

 G N U P L O T
 unix version 3.5
 patchlevel 3.50.1.17, 27 Aug 93
 last modified Fri Aug 27 05:21:33 GMT 1993

 Copyright(C) 1986 - 1993 Colin Kelley, Thomas Williams

 Send comments and requests for help to info-gnuplot@dartmouth.edu
 Send bugs, suggestions and mods to bug-gnuplot@dartmouth.edu

 SPR-I:OPRI --> seq gnu on P000SCNT USING %d P@FLOAT1 to p1.dat
TSDS-I:STS Socket Connection established, port # <4202>, Child PID <21061>

 SPR-I:OPRI --> seq gnu off p0gnu.dat
TSDS-E:STS Sequential print to p0gnu.dat stopped (10).
TSDS-E:STS Client Process Terminated
TSDS-I:STS Server Process Terminated
 SPR-I:STS 1 jobs killed.

1 0.000 0 10.7978 # P000:
2 1.000 1 14.4098 # P000:
3 2.000 2 6.53614 # P000:
4 3.000 3 12.3604 # P000:
5 4.000 4 14.1988 # P000:
ASIST Users Guide–Version 9.6 16-11

CHAPTER 16
Terminal type set to 'x11'

gnuplot> plot "p0gnu.dat" using 2:3 title "P000SCNT" with lines,"p0gnu.dat" using 2:4 title "P@float1" with lines
gnuplot> set xlabel "Time in seconds"
gnuplot> set ylabel "Units of y"
gnuplot> set title "Graph from <seq gnu on p000scnt...to p0gnu.dat>"
gnuplot> replot
gnuplot>

This generated the following plot:

SEQ PACKET

Usage

SEQ PACKET ON [packet-apid] [offset]
16-12 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
or
SEQ PACKET HELP

Description

The directive SEQ PACKET ON opens a window which displays a dump of the packet specified by packet-apid. The dis-
played data begins offset bytes into the data portion of the packet, or at 14 bytes before the data portion (at the beginning
of the CCSDS header) if no offset is specified. If neither packet-apid nor offset is specified, the user is prompted for them
in the packet display window.

To end a packet display, hit Ctrl-C while in the packet display window.

Example

To view apid 0, type:

➔ SEQ PACKET ON 0;;; See all of packet 0

To view only the data portion of apid 1, type:

➔ SEQ PACKET ON 1 0;;; This skips the CCSDS Header

To enter the packet number and offset interactively (in the Packet Display Window), type:

➔ SEQ PACKET ON;;; Enter packet # and offset interactively

Packet Display for Apid 0 (Hit Ctrl-C to exit)

 PACKET DISPLAY

 MET 93-001-00:00:04.000 Packet Length 64
 Application ID 0 Source Sequence Count 4

 -14 08 00 C0 04 00 3F 00 00 00 04 00 00 00 00 00 04 1
 2 00 0B 00 05 02 04 04 04 00 04 00 04 00 F7 00 00 17
 18 00 7B 00 00 2E 5A 41 63 00 00 43 C8 2F 9B 2F 60 33
 34 4F 25 40 70 1E B8 EB 85 B8 51 BF EE 74 65 73 74 49
 50 31 74 65 73 74 31

 Packet Display for Apid 0 (Hit Ctrl-C to exit)

 PACKET DISPLAY

 MET 93-001-00:00:05.000 Packet Length 64
 Application ID 0 Source Sequence Count 5

 0 00 05 00 0A 01 06 01 05 05 05 00 05 00 05 00 F5 15
 16 00 00 00 7A 00 00 40 32 41 7D 00 00 43 FA 81 AD 31
 32 9C 43 86 E3 40 6F 66 66 66 66 66 66 BF EE 74 65 47
 48 73 74 31 74 65 73 74 31
ASIST Users Guide–Version 9.6 16-13

CHAPTER 16
In the window that pops up, type:

The packet display window then displays the requested data.

SEQ INTERACTIVE

Usage

SEQ INTERACTIVE ON
or

SEQ INTERACTIVE HELP

Description

This directive opens a window containing an interactive session with the Sequential Stream Server. It allows you to type
in the commands specified in the Sequential Decommutated Telemetry Stream Interface Control Document (see the
Appendix). This is useful for developers of client programs to gain experience with the protocol.

In addition to the commands listed in the ICD, this program accepts:

QUIT–Exits the interactive session.

Ctrl-C Accepted after the START command to stop receipt of data.

 Packet Display (Hit Ctrl-C to exit)

Client: Socket Connection established, port # = 4202
Enter Stream Name (up to 32 char)
PACKET0
Enter APID in DEC for packet to be displayed
0
Enter starting byte offset for display
20

Packet Display (Hit Ctrl-C to exit)

 PACKET DISPLAY

 MET 93-001-00:00:04.000 Packet Length 64
 Application ID 0 Source Sequence Count 4

 20 00 00 2E 5A 41 63 00 00 43 C8 2F 9B 2F 60 4F 25 35
 36 40 70 1E B8 EB 85 B8 51 BF EE 74 65 73 74 31 74 51
 52 65 73 74 31
16-14 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
Format of generated data

Example

Notes about examples:

Bold indicates user input.

--> is the prompt in the Interactive Sequential Stream Window

All of these sessions were begun by typing:

SEQ INTERACTIVE ON

A simple session:

Sequence
Counter

Packet Receipt
Time Packet-Time Block Name Packet Received Item1 Item2 …

of data lines
sent on stream

Seconds since Unix
epoch, 1/1/70

Seconds since epoch,
from packet PXXX

Name from
Blockbegin

PXXX

Interactive Sequential Stream

--> CONNECT THIS_STREAM
Response: ACCEPT 001
--> BLOCKBEGIN THISBLOCK
Response: ACCEPT 001
--> ITEM P000SCNT %d
Response: ACCEPT 001
--> ITEM FLOAT1 %4.1f
Response: ACCEPT 001
--> BLOCKEND THISBLOCK 2
Response: ACCEPT 001
--> START THIS_STREAM
Response: ACCEPT 001
1 780605435.443 0.000 THISBLOCK P000: 0 10.8
2 780605436.325 1.000 THISBLOCK P000: 1 14.4
3 780605437.326 2.000 THISBLOCK P000: 2 6.5
4 780605438.327 3.000 THISBLOCK P000: 3 12.4
5 780605439.328 4.000 THISBLOCK P000: 4 14.2
6 780605440.329 5.000 THISBLOCK P000: 5 15.8
7 780605441.331 6.000 THISBLOCK P000: 6 13.1
8 780605442.357 7.000 THISBLOCK P000: 7 14.9
9 780605443.358 8.000 THISBLOCK P000: 8 4.0
10 780605444.359 9.000 THISBLOCK P000: 9 -2.2
11 780605445.359 10.000 THISBLOCK P000: 10 14.6
12 780605446.360 11.000 THISBLOCK P000: 11 2.7
13 780605447.362 12.000 THISBLOCK P000: 12 9.9
14 780605448.363 13.000 THISBLOCK P000: 13 12.8
^CStop sent.
--> STOP THIS_STREAM
Response: ACCEPT 001
--> DISCONNECT THIS_STREAM
Response: ACCEPT 001
--> QUIT
ASIST Users Guide–Version 9.6 16-15

CHAPTER 16
A session using the time string format and a separator:

Interactive Sequential Stream

--> CONNECT FANCY_STREAM -T -S*
Response: ACCEPT 001
--> BLOCK BEGIN FANCY_BLOCK
Response: ACCEPT 001
--> ITEM P000SCNT The count is %d
Response: ACCEPT 001
--> ITEM FLOAT1 And the value is %4.1f
Response: ACCEPT 001
--> ITEM R@FLOAT1
Response: ACCEPT 001
--> BLOCKEND FANCY_BLOCK
Response: REJECT 001 -22
--> BLOCKEND FANCY_BLOCK 3
Response: ACCEPT 001
--> START FANCY_STREAM
Response: ACCEPT 001
1 94-265-19:55:56.282 93-001-00:00:00.000 FANCY_BLOCK P000: * The count is 0* and the value is 10.8*C3AF412C*
2 94-265-19:55:57.279 93-001-00:00:01.000 FANCY_BLOCK P000: * The count is 1* And the value is 14.4*8E764166*
3 94-265-19:55:58.279 93-001-00:00:02.000 FANCY_BLOCK P000: * The count is 2* And the value is 6.5*281840D1*
4 94-265-19:55:59.280 93-001-00:00:03.000 FANCY_BLOCK P000: * The count is 3* And the value is 12.4*C4644145*
5 94-265-19:56:00.280 93-001-00:00:04.000 FANCY_BLOCK P000: * The count is 4* And the value is 14.2*2E5A4163*
6 94-265-19:56:01.281 93-001-00:00:05.000 FANCY_BLOCK P000: * The count is 5* And the value is 15.8*4032417D*
7 94-265-19:56:02.282 93-001-00:00:06.000 FANCY_BLOCK P000: * The count is 6* And the value is 13.1*14A74152*
8 94-265-19:56:03.283 93-001-00:00:07.000 FANCY_BLOCK P000: * The count is 7* And the value is 14.9*E4AB416D*
9 94-265-19:56:04.284 93-001-00:00:08.000 FANCY_BLOCK P000: * The count is 8* And the value is 4.0*68BD4080*
10 94-265-19:56:05.284 93-001-00:00:09.000 FANCY_BLOCK P000: * The count is 9* And the value is -2.2*9880C00A*
11 94-265-19:56:06.285 93-001-00:00:10.000 FANCY_BLOCK P000: * The count is 10* And the value is 14.6*20704169*

^CStop sent.
--> STOP FANCY_STREAM
Response: ACCEPT 001
--> DISCONNECT FANCY_STREAM
Response: ACCEPT 001
16-16 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
A session with multiple blocks:

Interactive Sequential Stream
--> CONNECT THIS_STREAM
Response: ACCEPT 001
--> BLOCKBEGIN B1
Response: ACCEPT 001
--> ITEM P000SCNT Float(%d)=
Response: ACCEPT 001
--> ITEM P@FLOAT1 %5.2f
Response: ACCEPT 001
--> BLOCKEND B1 2
Response: ACCEPT 001
--> BLOCKBEGIN B2
Response: ACCEPT 001
--> ITEM P000CCSDS_HEADER
Response: ACCEPT 001
--> BLOCKEND B2 1
Response: ACCEPT 001
--> START THIS_STREAM
Response: ACCEPT 001
1 782165882.523 0.000 B2 P000: 0800C000003F0000000000000000
2 782165882.524 0.000 B1 P000: Float(0)= 10.80
3 782165883.521 1.000 B2 P000: 0800C001003F0000000100000000
4 782165883.521 1.000 B1 P000: Float(1)= 14.41
5 782165884.521 2.000 B2 P000: 0800C002003F0000000200000000
6 782165884.522 2.000 B1 P000: Float(2)= 6.54
7 782165885.522 3.000 B2 P000: 0800C003003F0000000300000000
8 782165885.522 3.000 B1 P000: Float(3)= 12.36
9 782165886.522 4.000 B2 P000: 0800C004003F0000000400000000
10 782165886.523 4.000 B1 P000: Float(4)= 14.20
11 782165887.523 5.000 B2 P000: 0800C005003F0000000500000000
12 782165887.523 5.000 B1 P000: Float(5)= 15.83
13 782165888.523 6.000 B2 P000: 0800C006003F0000000600000000
14 782165888.524 6.000 B1 P000: Float(6)= 13.13
15 782165889.524 7.000 B2 P000: 0800C007003F0000000700000000
16 782165889.525 7.000 B1 P000: Float(7)= 14.87
17 782165890.524 8.000 B2 P000: 0800C008003F0000000800000000
18 782165890.525 8.000 B1 P000: Float(8)= 4.01
19 782165891.525 9.000 B2 P000: 0800C009003F0000000900000000
20 782165891.526 9.000 B1 P000: Float(9)= -2.17
21 782165892.531 10.000 B2 P000: 0800C00A003F0000000A00000000
22 782165892.532 10.000 B1 P000: Float(10)= 14.57
^CStop sent. Response: ACCEPT 001
--> BLOCKBEGIN B3
Response: ACCEPT 001
--> ITEM P000SCNT Packet 0 counter is %d,
Response: ACCEPT 001
--> ITEM GSE_IPKTS Total packets received over I is %d
Response: ACCEPT 001
--> TRIGGER 0
Response: ACCEPT 001
--> BLOCKEND B3 2
Response: ACCEPT 001
--> START THIS_STREAM
Response: ACCEPT 001
ASIST Users Guide–Version 9.6 16-17

CHAPTER 16
SEQ LIST

Usage

SEQ LIST
or

SEQ LIST HELP

Description

This directive lists all sequential print, gnu, timed, and interactive jobs currently executing on this workstation. The list is
printed to the event log.

Example

A listing done with several jobs opened showed:

➔ SEQ LIST

23 782167736.724 0.000 B3 P000: Packet 0 counter is 0, Total packets received over I is 184
24 782167736.725 0.000 B2 P000: 0800C000003F0000000000000000
25 782167736.731 0.000 B1 P000: Float(0)= 10.80
26 782167737.717 1.000 B3 P000: Packet 0 counter is 1, Total packets received over I is 185
27 782167737.717 1.000 B2 P000: 0800C001003F0000000100000000
28 782167737.718 1.000 B1 P000: Float(1)= 14.41
29 782167738.717 2.000 B3 P000: Packet 0 counter is 2, Total packets received over I is 186
30 782167738.718 2.000 B2 P000: 0800C002003F0000000200000000
31 782167738.718 2.000 B1 P000: Float(2)= 6.54
32 782167739.718 3.000 B3 P000: Packet 0 counter is 3, Total packets received over I is 187
33 782167739.718 3.000 B2 P000: 0800C003003F0000000300000000
34 782167739.719 3.000 B1 P000: Float(3)= 12.36
35 782167740.718 4.000 B3 P000: Packet 0 counter is 4, Total packets received over I is 188
36 782167740.719 4.000 B2 P000: 0800C004003F0000000400000000
37 782167740.719 4.000 B1 P000: Float(4)= 14.20
38 782167741.719 5.000 B3 P000: Packet 0 counter is 5, Total packets received over I is 189
39 782167741.719 5.000 B2 P000: 0800C005003F0000000500000000
40 782167741.721 5.000 B1 P000: Float(5)= 15.83
41 782167742.719 6.000 B3 P000: Packet 0 counter is 6, Total packets received over I is 190
42 782167742.720 6.000 B2 P000: 0800C006003F0000000600000000
43 782167742.721 6.000 B1 P000: Float(6)= 13.13
44 782167743.720 7.000 B3 P000: Packet 0 counter is 7, Total packets received over I is 191
45 782167743.720 7.000 B2 P000: 0800C007003F0000000700000000
46 782167743.721 7.000 B1 P000: Float(7)= 14.87
^CStop sent. Response: ACCEPT 001
--> DISCONNECT THIS_STREAM
Response: ACCEPT 001
--> QUIT

SPR-I:OPRI --> seq list
SPR-I:FILE ** GEVH Inserting ASCII File "/s/opr/accounts/global/data/
list.of.seq.jobs".
List of running seq clients.

seq_gnu myplot.dat
seq_print seqprint.dat
seq_print cpt1.dat
seq_timed slow.dat 5
seq_interactive
seq_timed fast.dat 2

SPR-I:FILE ** GEVH ** End of ASCII File Insert. File was deleted.

Interactive Sequential Stream
16-18 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
Standalone Sequential Print Generator

The seq_plbk program can be run outside ASIST (when ASIST is not running) to generate sequential print data files from
local archives, raw packet (level zero) files, or from a FEDS telemetry link.

Usage

seq_plbk -s seq-print-file [-p playback-file] [-l level-zero-file] [-f] [-i init-proc] [-r [rate]]

where:

Note: You can specify multiple sequential print definition files, archives to play back, level-zero files to play back, and
initialization procedures by specifying another -s, -p, -l, or -i.

Description

This program generates sequential print files from archives, packet files, or FEDS telemetry sockets. It is a standalone
program which will only run while ASIST is not running.

You select the source of input telemetry for seq_plbk when running the command. It can be either from local archive (-p
playback-file), level-zero packet files (-l level-zero-file) or FEDS telemetry socket (-f). You can specify more than one of
any of these on the command line (i.e. seq_plbk -s seq_file -p archive1 -p archive2), but you must
specify at least one for the program to run. If you select archive playback or level-zero file playback, the program will
playback the specified file and stop when complete. If you specify the FEDS telemetry connection, the program runs until
you stop it by pressing ctrl-c.

Before telemetry playback is initiated, seq_plbk will run any initialization procedure(s) you have specified on the com-
mand line. These are standard STOL procedures, which can be used to turn on limit checking, change limits and/or poly-
nomials, ... You can specify multiple procedures if needed by putting additional -i init-proc entries on the command line
(i.e. seq_plbk -i proc1 -i proc2 -s seq_file -p archive1). In this case, proc1 runs. When it is
completed, proc2 runs. Only after that has completed will playback of seq_file be started.

You specify the data to be collected using the -s seq-print-file. The contents of seq-print-file tell seq_plbk what to sequen-
tial print, and where to put it. The format of this file is similar to the arguments to the sequential print directive.

[OPTION "options"] mnem [USING fmt] [... mnem] [WHEN apid-1 [... apid-n]] [TO filename]

-s seq-print-file the sequential print definition file,

-p playback-file an ASIST local archive to play back

-l level-zero-file a level zero file to play back (note: this is the lowercase letter L)

-f open a telemetry connection to the Front End (this session must be closed by pressing
Ctrl-C).

-i init-proc an initialization procedure to be run before playback

-r[rate] to run the periodic pseudo-telemetry processor in parallel with the playback. The optional
rate says how much to delay between cycles. If not specified, the default is 1 second
between cycles. Warning: setting this too low will slow up your playback, and everything
else on the system.
ASIST Users Guide–Version 9.6 16-19

CHAPTER 16
where:

options is a string whose contents is a combination of the following:

mnem defines the point to be collected. It can be in one of the following forms:

fmt is a valid C printf format (i.e. %d %s %7.3f %02x ...)

apid-1 to apid-n is optional. If APIDs are specified on the command line, then a seq print line is output each time a
packet with one of these APIDs are received.

filename tells ASIST what file to create. It will always be in the $STOL_DATA directory.

Example

Example seq print description file p000.txt.

-h n By default, seq_plbk puts on more headers on each data line than seq print does. Use -h to turn
off heading element n, where the header elements are:

1 Stream sequence number
2 Packet receipt time
3 Ground receipt time
4 Block name
5 Packet received (of form PXXX)
6 Colon separator between header & data
99 Turn ‘em all off

-d Default to decimal (rather than hexadecimal) values for unsigned integers.

-t Print times in header in the form yyyy-ddd-HH:MM:SS.

-ssep Make the separator between data elements sep, rather than the default (a space). You
can also put \t (tabs) or \n (carriage returns).

tlm-pt Specifies the counts value of the telemetry point.

P@tlm-pt Specifies the engineering (converted) value of the telemetry point.

R@tlm-pt Specifies the raw (unswapped, hexadecimal) value of the telemetry point.

A@tlm-pt(attribute-name) Specifies the attribute attribute-name of telemetry point tlm-pt. See APPEN-
DIX F: “Access to Database Attributes” for a list of valid attributes.

 OPTION "-h 99 -d"

 P000SCNT P000STIME P000MTIME SYNCH

 BITTEST BIT1 BIT2 BIT34 BIT56 BIT78

 NIBBLE1 NIBBLE2 WORD2 DOUBLE1 DOUBLE2

 SUB_BYTE
16-20 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
To use it, type the following at the Unix prompt:

seq_plbk -s p000.txt -l l0_file_2001_092.l0 -l l0_file_2001_093.l0

It creates output looking like this:

Example seq print description file seqfile.txt:

and the resulting file (from $STOL_DATA/someplace.dat) is:

Note: I took the headers off both of these files (using the -h 99 option).

Notes:

• All event messages are output to the console where you run seq_plbk. This can be useful if you want to collect these
event messages as a result of the playback. For instance, if you turn on limit checking for a group of points in one of
your initialization procedures, you will see the limit failure event messages printed. By piping these to a file, you can
get a quick list of limit failures over the range of time played back. For example:

seq_plbk -i turn_on_lims -s seqfile.txt -p nice_data_arc > limmsgs.txt

would generate a file containing all of the event messages from this playback, including all the limit failure messages
(as well as any messages you generate from pseudo-telemetry).

• To exit seq_plbk when you select the -f option, press ctrl-c.

 FLOAT1 FLOAT2

 DFLOAT1 DFLOAT2 STR to whereever.dat

 0 725846400.000 0.000 0 15 1 1 3 0 0 0 0 0 255
127 0, 0, 0, 0, 0, 255, 0, 0, 0, 127, 0, 0 10.7978 0 225.397
-1 test1test1

 1 725846401.000 1.000 1 14 0 1 3 0 0 0 0 1 253
126 0, 1, 0, 1, 0, 253, 0, 0, 0, 126, 0, 0 14.4098 100 255.761
-0.99 test1test1

 2 725846402.000 2.000 2 13 1 0 3 0 0 0 0 2 251
125 0, 2, 0, 2, 0, 251, 0, 0, 0, 125, 0, 0 6.53614 200 233.664
-0.98 test1test1

. . .

OPTIONS "-h 99 -d" P000SCNT using %d A@FLOAT1(TIME_MEASURED) USING %s

FLOAT1 WORD1 A@FLOAT1(DESCRIPTION) TO someplace.dat

0 93-001-00:00:00.000 10.7978 0 Float 1

1 93-001-00:00:01.000 14.4098 1 Float 1

2 93-001-00:00:02.000 6.53614 2 Float 1

3 93-001-00:00:03.000 12.3604 3 Float 1

4 93-001-00:00:04.000 14.1988 4 Float 1
ASIST Users Guide–Version 9.6 16-21

CHAPTER 16
• Make sure that your STOL initialization procedure doesn’t include any waits, since it is being run in “batch mode,”
meaning that no input is allowed. Also, make sure that you have compiled your procedures.

• Files are searched for/placed in the following directories:

Files Where they are searched for/placed

Sequential Print Data File $STOL_DATA

Sequential Print Definition File Your current directory.

Local Archives $STOL_ARCHIVE

Packet (level zero) files Your current directory

Initialization Procedures Follow the search path defined in $STOL_SEARCH_PATH
16-22 ASIST Users Guide–Version 9.6

Decommutated Sequential Telemetry Streams (TSDS)
Error Handling in TSDS Client Programs

When an error occurs in a sequential print (or another TSDS client program invoked from STOL using the seq directive),
STOL will enter an error state. This will halt the procedure (if any) which invoked the seq directive, allowing you to cor-
rect the problem and then go on.

These errors can occur if:

• An attempt is made to sequential print to a file which is actively being sequential printed.

• An undefined telemetry point name is requested.

• An array index is out of range.

• An unrecognized or illegal format was requested.

• A communication error occurs.

• ASIST does not have enough resources to satisfy the request.
ASIST Users Guide–Version 9.6 16-23

CHAPTER 16
16-24 ASIST Users Guide–Version 9.6

AS
CHAPTER 17 Database Query Tool
Overview

The database query tool (TDQ) allows you to extract and format information from the ASIST telemetry or command data-
base. It uses a subset of structured query language (SQL) to select the information you want and provides additional com-
mands to allow you to format the resulting data.

For information on starting and running TDQ see "How to use TDQ" on page 17-15.
IST Users Guide–Version 9.6 17-1

CHAPTER 17
Database information

ASIST's telemetry database is structured as a series of packets, with each packet containing one or more telemetry points.

ASIST's command database is structured as a series of commands (mnemonics). Associated with each command is a list
of parameters (submnemonics). The parameter list is empty if the command has no parameters.

Each packet, point, command, or parameter has attributes. Generally, anything entered in the RDL definitions of the data-
base is available as an attribute. In addition, some attributes provide run-time information (e.g. when was this point's value
last measured?).

Using TDQ you may access any available attribute of packets, points, commands, or parameters. To see the available
attributes, refer to APPENDIX F: "Access to Database Attributes" .

Each of the attributes that TDQ retrieves will be one of four basic data types: integer, real, string or time. The integer data
type can range from one byte to four bytes in length. The real data type is a floating point number that is either four or
eight bytes in length. The string data type is alpha-numeric data. The time data type is an absolute time that can range
from one byte up to eight bytes in length.
17-2 ASIST Users Guide–Version 9.6

Database Query Tool
Queries

A query is a request for information that you want from the database. When you use TDQ, you state your query in a subset
of the standardized Structured Query Language (SQL). SQL is very simple, and this section will help you learn how to
formulate your queries in SQL.

Simple Queries

All SQL queries start with the SELECT keyword followed by one or more options and are terminated with a semicolon.
A general SQL query looks like this:

SELECT select-options;

The simplest queries you can make are of the form:

SELECT attributes FROM table;

where:

So, for example, if you want to list the names of all packets in the database, use:

SELECT NAME FROM PACKETS;

or, if you would like the name and APID of all points in the database, enter:

SELECT NAME,APID FROM POINTS;

Complex Queries

The two preceding queries, choose all items in the specified table. If you want to be more selective, you can use queries
like:

SELECT attributes FROM table WHERE expression;

where expression is a general expression that includes relational operators, logical operators, arithmetic operators and spe-
cial operators. The supported relational operators are:

attributes is a comma-separated list of attributes (all attributes are listed in APPENDIX F: “Access to
Database Attributes”). Each attribute can be either a single identifier from the tables in
Appendix F, or an expression (see “Additional Features” on page 17-20).

table is the table to select these attributes from: either POINTS, PACKETS, COMMANDS,
PARAMETERS, LIMITS, or DISCRETES or their abbreviations PTS, PKTS, CMDS,
PARS, LIMS, or DISCS.

TABLE 17-1. TDQ's relational operators

Operation Symbol

 Less-than <

 Greater-than >
ASIST Users Guide–Version 9.6 17-3

CHAPTER 17
Using these operators, you can, for example, determine the names and descriptions of all telemetry points in the packet
with APID 6:

SELECT NAME,DESCRIPTION FROM POINTS WHERE APID_NUM = 6;

or, you can get the receipt time of all packets whose stale time is greater than 30 seconds:

SELECT RECEIPT_TIME FROM PACKETS WHERE STALE_TIME > 30;

The supported logical operators are:

With these operators, you can build up more complex queries. For example, to find all pseudo-telemetry points that are
enabled:

SELECT NAME FROM POINTS WHERE PSEUDO?=1 AND PSEUDO_ENABLED?=1;

or, to display all points that are one byte long or four bytes long:

SELECT NAME FROM POINTS WHERE LENGTH=1 OR LENGTH=4;

The supported arithmetic operators are:

With this set of operators, you can find all points with red high limits at least 10 units higher than the yellow high limit:

SELECT NAME FROM POINTS WHERE RH >= YH+10;

 Less-than-or-equal <=

 Greater-than-or-equal >=

 Equal =

 Not-equal <>

TABLE 17-2. TDQ's logical operators

Operator Symbol

 Logical AND AND

 Logical OR OR

 Logical NOT NOT

TABLE 17-3. TDQ's arithmetic operators

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Unary Minus -

Concatenation ||

TABLE 17-1. TDQ's relational operators

Operation Symbol
17-4 ASIST Users Guide–Version 9.6

Database Query Tool
or, you can select all points whose first degree polynomial coefficient is less than five times the second degree coefficient:

SELECT NAME FROM POINTS WHERE COEFF1 < COEFF2*5;

Four special operators are also supported: LIKE, IS NULL, BETWEEN, and IN. The LIKE operator provides character
string pattern matching. The syntax for LIKE is:

expression LIKE pattern-string

where expression is a general expression as described previously and pattern-string is a string which contains characters
and pattern matching operators. The pattern matching character "*" matches zero, one, or more characters. The pattern
matching character "?" matches exactly one character. So, to match all strings that start with "P001", use a pattern string of
"P001*". To match all strings that contain a "P" followed by any single character, and then followed by "00", use a pattern
string of "P?00".

Using the LIKE operator, you can select all telemetry points that start with "P002", by:

SELECT NAME FROM POINTS WHERE NAME LIKE "P002*";

or you can find all packets that contain the string "GSE" in the packet name:

SELECT NAME FROM PACKETS WHERE NAME LIKE "*GSE*";

The IS NULL operator gives you a way to determine whether an attribute or an expression has a valid value for a given
instance of its operands. This is necessary, because not all attributes in a table are valid for every point. The syntax for the
IS NULL operator is:

expression IS NULL

where expression is a general expression. For example, the attribute EPOCH is only valid for telemetry points which are
defined to be absolute times. To select points which are absolute times but do not have a defined EPOCH, use:

SELECT NAME FROM POINTS WHERE EPOCH IS NULL;

The BETWEEN operator is a shorthand way of selecting an attribute within a range. The syntax for the BETWEEN
operator is:

expr1 BETWEEN expr2 AND expr3

where expr1, expr2, and expr3 are general expressions. Using a BETWEEN operator is exactly the same as entering:

expr1 >= expr2 AND expr1 <= expr3

So, for example, to locate all points with first degree coefficients between 5 and 10, use:

SELECT NAME FROM POINTS WHERE COEFF1 BETWEEN 5 AND 10;

The IN operator is another a shorthand form. You use it to select an attribute from a set of discrete values. The syntax for
IN is:

expr1 IN (expr2 [,expr3 [, ...]])

where expr1, expr2, expr3, ... are all general expressions. This operator is the same as entering:

expr1 = expr2 OR expr1 = expr3 OR ...
ASIST Users Guide–Version 9.6 17-5

CHAPTER 17
You can use the IN operator to select all points that have a length of one, four, or eight:

SELECT NAME FROM POINTS WHERE LENGTH IN (1,4,8);

or, you can locate all packets that have one, two, or three red exceptions with:

SELECT NAME FROM PACKETS WHERE RED_EXCEPTIONS IN (1,2,3);

The meaning of all of the preceding special operators may be negated by placing NOT before LIKE, IS NULL,
BETWEEN, or IN. You can use this feature to select all points that are outside of a range, for example:

SELECT NAME FROM POINTS WHERE COEFF2 NOT BETWEEN 10 AND 100;

Functions in complex queries

TDQ also allows you to use built-in functions in your queries. Functions may appear anywhere that you would normally
use an attribute or a constant. For example, you can use the ABS function to select telemetry points whose coefficients are
larger in magnitude than 10.0:

SELECT NAME,COEFF1 FROM POINTS WHERE ABS(COEFF1)>10.0;

The supported functions are:

TABLE 17-4. TDQ’s functions

Function Description

ABS(expr) Absolute value of expr

DECODE(expr,if1,then1,...,else) Compare expr to if1, if2, ...ifn. If a matching if is found,
then the corresponding then is returned. If no matching if
is found, else is returned.

FLOAT(expr) Returns expr converted to a floating point number

HEXTORAW(expr) Convert hexadecimal string expr to integer

INT(expr) Returns expr converted to an integer

LOWER(expr) Convert expr to lower case

LPAD(expr1,expr2[,expr3]) Expr1 padded on the left with character expr3 up to a
maximum of expr2 characters. If expr3 is not specified, a
space is used.

LTRIM(string[,trim-set-string]) String with any trim-set-string characters removed from
the left side. If trim-set-string is not given, " " (a blank)
is used.

MOD(expr1, expr2) Remainder after dividing expr1 by expr2

NVL(value, substitute) If value is NULL, returns substitute, else returns value.

RAWTOHEX(expr) Convert integer expr to a hexadecimal string

RPAD(expr1,expr2[,expr3]) Expr1 padded on the right with character expr3 upto a
maximum of expr2 characters. If expr3 is not specified, a
space is used.

RTRIM(string[,trim-set-string]) String with any trim-set-string characters removed from
the right side. If trim-set-string is not given, " " (a blank)
is used.
17-6 ASIST Users Guide–Version 9.6

Database Query Tool
Ordering the results of a query

Once you have chosen the set of items you're interested in, you may want to display these items in sorted order. You can
do this by entering queries like:

SELECT attributes FROM table ... ORDER BY sort-attrs;

where sort-attrs is comma-separated list of no more than eight attributes to sort by; each of the sort attributes must appear
in attributes. The first sort attribute is the primary sort key, all following sort attributes are secondary sort keys.

So, to select all telemetry points in a packet with an APID of 1 and to sort the points by name, use:

SELECT NAME FROM POINTS WHERE APID_NUM=1 ORDER BY NAME;

or, to list all points in the database sorted by name and source file, use:

SELECT NAME,SOURCE_FILE FROM POINTS ORDER BY NAME, SOURCE_FILE;

STRLEN(expr) Number of characters in expr

SUBSTR(expr1,expr2[,expr3]) Substring of expr1 beginning at position expr2 for expr3
characters. Expr3 defaults to the remaining length of the
string if not specified.

TO_CHAR(value, format) Returns value converted to a character string and format-
ted using the specification in format.

TYPE(expr) Returns the data type of expr. The return value is a string
and can be one of: INTEGER, REAL, STRING,
TIME, NULL, or UNKNOWN.

UPPER(expr) Convert expr to upper case

XMLATTRIBUTES(expr,...) Returns one or more XML attributes with value expr.
This function is valid inside an XMLELEMENT func-
tion only.

XMLCONCAT(xml-expr...) Returns the concatenation of all xml-expr

XMLELEMENT(nm[,attr][,expr]) Returns an XML element named nm with attributes attr
and containing expression expr

XMLFOREST(expr,...) Returns multiple XML elements as defined by expr

TABLE 17-4. TDQ’s functions

Function Description
ASIST Users Guide–Version 9.6 17-7

CHAPTER 17
Generating Reports

Default output

After you have entered your SELECT statement, TDQ automatically formats your data and displays it. If, for example,
you enter this query:

SELECT NAME,TYPE_NAME,LENGTH FROM POINTS WHERE APID=0;

TDQ will format the results and output something similar to this:

97-197-16:08:22.701 page 1

NAME TYPE_NAME LENGTH
------------------------ ------------------------ ----------
P000PVNO UI 2
P000PCKT UI 2
P000SHDF UI 2
P000ID UI 2
P000SEGF UI 2
P000SCNT UI 2
P000PLEN UI 2
P000STIME UTC 8
P000MTIME MET 8

Notice that TDQ automatically places the Julian date and page number on the top line, skips a few lines, outputs the
attribute names as column headers, underlines each column header, and then outputs a page of data. This is the default
behavior and requires no input from you.

If you wish, you can control exactly how TDQ formats your output so that you can create your own custom designed
reports. The following sections, show you step-by-step how this can be done.

Adding a report header

Adding a header line is easy. You use the TTITLE command. Its syntax is:

TTITLE title-string

where title-string is a string containing the title you wish to print. Suppose you want to add a header line to the report that
was shown previously. You can do this by entering:

TTITLE "Packet 0 Report"

and then enter the previous SELECT command. The output looks like this:

97-197-16:08:22.701 page 1

 Packet 0 Report
NAME TYPE_NAME LENGTH
------------------------ ------------------------ ----------
17-8 ASIST Users Guide–Version 9.6

Database Query Tool
P000PVNO UI 2
P000PCKT UI 2
P000SHDF UI 2
P000ID UI 2
P000SEGF UI 2
P000SCNT UI 2
P000PLEN UI 2
P000STIME UTC 8
P000MTIME MET 8

Notice that the header is automatically centered.

You can create multi-line headers by placing a "headsep" character wherever you want the next line to begin. By default,
the "headsep" character is "|", but you can change it if you wish. So, to modify the title to place "Packet 0" on one line and
"Report" on the next, use:

TTITLE "Packet 0|Report"

Adding a report footer

Adding a page footer is just as easy. The BTITLE command has the same syntax as the TTITLE command:

BTITLE title-string

If you enter this:

BTITLE "Packet 0 Report"

followed by the SELECT command from before, the output looks like:

97-197-16:08:22.701 page 1

 Packet 0 Report
NAME TYPE_NAME LENGTH
------------------------ ------------------------ ----------
P000PVNO UI 2
P000PCKT UI 2
P000SHDF UI 2
P000ID UI 2
P000SEGF UI 2
P000SCNT UI 2
P000PLEN UI 2
P000STIME UTC 8
P000MTIME MET 8

 Packet 0 Report

Just like the TTITLE command, you can create multi-line footers by placing the "headsep" character wherever you want
the next line to start.
ASIST Users Guide–Version 9.6 17-9

CHAPTER 17
Modifying the size of the page

In addition to adding page headers and footers, you can precisely control the width and length of the output page. By
default, each line of output is limited to 80 characters and the number of lines from the top title to the end of the page is 14
lines. You can change the width of the output line with:

SET LINESIZE number

where number is an integer that is smaller than 1000 characters. When TDQ is formatting the output data, it determines
the size of the current column and adds its size to the current line length, if the current column exceeds the length of the
line it will not be displayed. If LINESIZE is set to zero, TDQ does not monitor the length of the line and thus lines may
be any length.

You can change the number of lines from the top title to the end with:

SET PAGESIZE number

where number is an integer larger than zero. The number of lines between the top of the page and the top title can be
changed with:

SET NEWPAGE number

where number is an integer greater than or equal to zero. The NEWPAGE parameter is used to pad pages with blank lines
so that your report starts correctly on a printed page. If your printer supports the form feed character, you can set NEW-
PAGE to zero and TDQ will output a form feed instead of blank lines. By default NEWPAGE is set to one.

Remember, the actual number of lines per page is the sum of PAGESIZE and NEWPAGE.

Changing column formatting

You can precisely control the contents of any column with the COLUMN command. Its format is:

COLUMN attribute -or-column-alias [HEADING heading-string [heading-justification]]
[FORMAT format] [TRUNCATED|WRAPPED|WORD_WRAPPED]
[NEWLINE][PRINT|NOPRINT] [NULL null-string] [NEWLINE_AFTER]
[NOPRINT ON column] [VARIABLE | FIXED]

where attribute -or-column-alias is the name of the attribute or column, heading-string is the desired column heading, for-
mat is a C language format specification for the data (see APPENDIX E: "Printf"), null-string is the string you want
printed when the column value is invalid, and column is the name of the column used to control whether this column is
printed.

Using the HEADING option lets you set the title of the column to anything you want. For example, entering these three
column commands:

COLUMN NAME HEADING "Point Name"
COLUMN TYPE_NAME HEADING "Type Name" FORMAT %-9s
COLUMN LENGTH HEADING "Bytes"

followed by this SELECT statement:

SELECT NAME,TYPE_NAME,LENGTH FROM POINTS WHERE APID_NUM=0;
17-10 ASIST Users Guide–Version 9.6

Database Query Tool
yields this:

97-197-18:06:18.502 page 1

Point Name Type Name Bytes
------------------------ --------- ----------
P000PVNO UI 2
P000PCKT UI 2
P000SHDF UI 2
P000ID UI 2
P000SEGF UI 2
P000SCNT UI 2
P000PLEN UI 2
P000STIME UTC 8
P000MTIME MET 8

You can change the justification of the column header by specifying a heading-justification with your HEADING option.
Either JUSTIFY LEFT to left justify the header, JUSTIFY RIGHT to right justify the header, or JUSTIFY CENTER
to center the header. The heading-justification must immediately follow the HEADING option, for example:

COLUMN NAME HEADING "Point Name" JUSTIFY CENTER

If you do not supply a heading justification, columns that contain numbers are right justified by default, all other columns
are left justified.

Similar to page headers and footers, you can create multi-line column headers by using the "headsep" character wherever
you want a new line to begin in your header. See the option table below.

You can control the width and data layout within the column by using the FORMAT option. For example, you can save
space with these commands:

COLUMN NAME FORMAT %-16s
COLUMN LENGTH FORMAT %5d

followed with the preceding SELECT statement gives:

97-197-18:06:18.502 page 1

Point Name Type Name Bytes
---------------- --------- -----
P000PVNO UI 2
P000PCKT UI 2
P000SHDF UI 2
P000ID UI 2
P000SEGF UI 2
P000SCNT UI 2
P000PLEN UI 2
P000STIME UTC 8
P000MTIME MET 8

Within a column, you can control how a text field is displayed by specifying a text wrapping method. The available text
wrapping methods are: TRUNCATED, WRAPPED, and WORD_WRAPPED. TRUNCATED, which is the default,
truncates the text at the right edge of the column. WRAPPED, causes the text to be continued on the next line with the
ASIST Users Guide–Version 9.6 17-11

CHAPTER 17
break occurring exactly at the right edge of column. WORD_WRAPPED, also causes the text to be continued on the
next line, but the break occurs at the first space found prior to the right edge of the column. The text wrapping method, if
specified, applies only to text fields.

The NEWLINE (or NEWLINE_BEFORE) option can be used when you want to display columns vertically down the
page. This option causes a new line to be started before printing the column. Both the contents of the column and the
header are printed on a new line. For example:

COLUMN APID NEWLINE
SELECT NAME,APID FROM POINTS WHERE APID=0 AND TYPE_NAME=”ULI”;

results in:

98-303-15:43:50.968 page 1

NAME

 APID

DOUBLE1
 0
DOUBLE2
 0

The NEWLINE_AFTER is used to place the new line after a column has been printed (as opposed to the NEWLINE
option described above, which outputs a new line *before* the column is printed).

 For example, to print the name of a command above each of its parameters, use:

SET HEADING OFF
CLEAR BREAKS
CLEAR COLUMNS
COLUMN CNAME NEWLINE_AFTER
COLUMN PNAME NULL " *NONE*"
SELECT cmds.name CNAME, " "||parms.name PNAME FROM cmds,parms
WHERE cmds.apid=25;

 displays:

SXSREAD
 CMD_WORD
SXSREAD
 WORDS
SXSREAD
 SUBADD
SXSREAD
 DIRECTION
SXSREAD
 RTADD
SXSWRITE
 CMD_WORD
SXSWRITE
17-12 ASIST Users Guide–Version 9.6

Database Query Tool
 WORDS
SXSWRITE
 SUBADD
SXSWRITE
 DIRECTION
SXSWRITE
 RTADD
SXSWRITE
 DATA

The NULL option lets you specify a string to be displayed when the value of a column is invalid. The default is a string of
blanks. For example:

COLUMN EPOCH NULL “** N/A **”
SELECT NAME,EPOCH FROM POINTS WHERE APID=0 AND LENGTH>4;

displays:

98-303-15:43:50.968 page 1

NAME EPOCH
------------------------ -------------------
P000STIME 93-001-00:00:00.000
P000MTIME ** N/A **
DFLOAT1 ** N/A **
DFLOAT2 ** N/A **
STR ** N/A **

The PRINT and NOPRINT options cause the column to be displayed or not displayed, respectively. This can be useful if
you have a very wide report and you want to temporarily disable the display of the columns on the right side so that you
can see the columns on the left side.

The NOPRINT ON column options causes this column to be printed only if the value of a (possibly different) column
has changed. This can be useful when combined with the NEWLINE options if you want the columns in a report to be
vertically stacked. The field it is based upon is indicated by column, which is the name of a column that appears in your
SELECT command. You must have an active break on column and the break must suppress duplicate values (NODU-
PLICATES).

For example, to print the name of command above all of its parameters, with each parameter indented by two spaces use:

SET HEADING OFF
CLEAR BREAKS
CLEAR COLUMNS
COLUMN CNAME NOPRINT ON CNAME NEWLINE_AFTER
COLUMN PNAME NULL " *NONE*"
BREAK ON CNAME SKIP 1
SELECT cmds.name CNAME, " "||parms.name PNAME from cmds,parms
WHERE cmds.apid=25;

which results in:

SXSREAD
ASIST Users Guide–Version 9.6 17-13

CHAPTER 17
 CMD_WORD
 WORDS
 SUBADD
 DIRECTION
 RTADD

SXSWRITE
 CMD_WORD
 WORDS
 SUBADD
 DIRECTION
 RTADD
 DATA

The VARIABLE option allows the width of the column to vary in size and causes TDQ not to truncate information which
exceeds the default width of the column. A natural consequence of this is that the right side of a variable length column is
ragged and no columns to the right of it will be aligned. Note also that if column headers are used they will be left aligned
rather than centered. For example:

COLUMN CCSDS_STRING VARIABLE
SELECT NAME,CCSDS_STRING,LENGTH FROM CMDS;

results in:

NAME CCSDS_STRING LENGTH
------------ ------------ ----------
AAASERCNT 1806C00000010121 0
AAAASBSROPT 1806C000000302??aaaa 2
AAABSBSROPT 1806C000000902??aaaaaaaaaaaaaaaa 8
SACHKSUMEN 1814C00000010B39 0
SACHKSUMDS 1814C00000010C3E 0

The FIXED option, which is the default, allows you to convert a variable length column back to fixed length.

Finally, any COLUMN commands you enter will be active until you exit TDQ. You can see all active column settings by
entering:

COLUMN

or, you can view the settings of a specific column with:

COLUMN attribute

where attribute is the name of the column you're interested in.To erase all columns use:

CLEAR COLUMNS

More report formatting

The look of your reports can be enhanced by using the BREAK command. It allows you to specify an event, such as the
end of the report, with a formatting action, like skipping a line. Using the BREAK command to place whitespace in your
report, improves the readability of your reports.
17-14 ASIST Users Guide–Version 9.6

Database Query Tool
The syntax of the BREAK command:

BREAK ON event action ...

where event can be:

and action can be:

The BREAK command can be used to skip a line whenever the value of a column changes. For example:

BREAK ON TYPE_NAME SKIP 1
SELECT TYPE_NAME,NAME FROM POINTS WHERE APID=0 AND LENGTH>4;

displays:

98-303-20:05:46.429 page 1

TYPE_NAME NAME
------------------------ -----------------------
UTC P000STIME

MET P000MTIME

DFP DFLOAT1
 DFLOAT2

CHAR STR

causes a blank line to be output whenever the value of the TYPE_NAME column changes. Note that DFP is printed only
once for DFLOAT1 and DFLOAT2, this is because NODUPLICATES is always assumed unless you specify otherwise.

To specify multiple events and actions, use a single BREAK command, like this:

BREAK ON REPORT ON APID SKIP 2

TABLE 17-5. BREAK events

Name Description

REPORT Initiate action after the last line of the report

ROW Initiate action after every row

attribute-or-column-alias Initiate action whenever attribute-or-column-alias
changes value

TABLE 17-6. BREAK actions

Name Description

SKIP n Skip n lines

SKIP PAGE Skip a single page

PAGE Skip a single page

DUPLICATES Display duplicate values

NODUPLICATES Do not display duplicate values, use spaces instead
ASIST Users Guide–Version 9.6 17-15

CHAPTER 17
which causes a page break to occur at the end of the report and causes two lines to be skipped whenever the value of APID
changes.

You can display the current BREAK settings with:

BREAK

To delete all BREAK settings use:

CLEAR BREAKS

Computing group values for a report

The COMPUTE command allows you to compute known functions, like the sum or average, of the contents of an entire
column. These functions are known as group value functions and are only available in TDQ with the COMPUTE com-
mand.

The syntax of the COMPUTE command is:

COMPUTE function-list OF attribute-or-column-alias ON event

where function-list is a comma-separated list of:

attribute-or-column-alias is an attribute or column-alias to apply the function on, and event is any of the events described
in Table 17-5.

COMPUTE must be coordinated with the BREAK command in order to work properly, that is, there must be a corre-
sponding BREAK for each event listed in the COMPUTE command. For example, to compute the number of telemetry
points in packet 0 that are declared to be of type ULI, use:

BREAK ON REPORT SKIP 2
COMPUTE COUNT OF NAME ON REPORT
SELECT TYPE_NAME,NAME FROM POINTS WHERE APID=0 AND TYPE_NAME=”ULI”;

results in:

98-303-21:11:48.123 page 1

TYPE_NAME NAME
------------------------ -----------------------
ULI DOUBLE1

TABLE 17-7. COMPUTE functions

Name Description

AVG The average of the column

COUNT The number of non-NULL values in the column

MAXIMUM The maximum value of the column

MINIMUM The minimum value of the column

NUMBER The number of values in the column

SUM The sum of all values in the column
17-16 ASIST Users Guide–Version 9.6

Database Query Tool
ULI DOUBLE2
************************ -----------------------
cnt 2

If you look at the output carefully, you will notice that an abbreviation for the function (“cnt”) is displayed beneath col-
umn 1and the value of the function is displayed in column 2. If you had used:

SELECT NAME FROM POINTS WHERE APID=0 AND TYPE_NAME=”ULI”;

or even:

SELECT NAME,TYPE_NAME FROM POINTS WHERE APID=0 AND TYPE_NAME=”ULI”;

instead, then the abbreviation for the function would not appear, just the value of the function.

You can display a list of the currently active COMPUTEs with:

COMPUTE

To erase all active COMPUTEs use:

CLEAR COMPUTES

Modifying other features

You can also modify other aspects of TDQ. The following table shows all the possible options you can set:

Note that all options that require char can use either a single character, C-style escaped characters (\t, \n, \r, \f) or a single
character within quotes. For example:

TABLE 17-8. TDQ Options you can modify

Option Default Description

COLSEPCHAR char " " Sets the character placed between columns

ECHO ON/OFF OFF Enables or disables displaying each line of a canned procedure

HEADING ON/OFF ON Enables or disables the display of headings

HEADSEP char "|" Sets the character used to create multi-line headers

HTML ON/OFF OFF Enables or disables formatting a report with HTML

LINESIZE number 80 Sets the width of a single line

NEWPAGE 1 Sets the number of lines from the end of page to the title

NUMWIDTH number 10 Sets the default width of a numeric column

PAGESIZE number 14 Sets the number of lines from top title to the end of page

PAUSE ON/OFF OFF Enables or disables pausing after displaying a page

SPACE number 1 Sets the number of COLSEPCHAR characters between columns

STRWIDTH number 24 Sets the default width of a character column

UNDERLINE char "-" Sets the character used to underline column headings
ASIST Users Guide–Version 9.6 17-17

CHAPTER 17
SET HEADSEP #

sets the character used between lines in a header to "#", while:

SET COLSEPCHAR \t

sets the character displayed between columns to a tab, or

SET COLSEPCHAR “ “

sets the column separator back to the default, a space.

You can display the current settings of all of these options, plus the current values of TTITLE and BTITLE with the
SHOW command. To display the current number of lines per page enter:

SHOW PAGESIZE

Redisplaying data

You can save time and energy by using a simple shortcut to cause your output to be redisplayed. The slash command (/)
causes the output from the last SELECT command to be formatted and displayed again. Any SET or COLUMN com-
mands you entered after the last SELECT command are applied when the data is redisplayed. So, you can create your
query first, and then repeatedly modify output options and redisplay your data with the slash command until you're satis-
fied with the report.

You can always interrupt the display (or redisplay) of your data by entering ctrl-c at the command line.

Saving reports to a file

Once you've formatted the output to your satisfaction, you can create a file for the report with the SPOOL command. The
syntax of the SPOOL command is:

SPOOL file-name[.file-type]

where file-name is the name of the file you want to output to and file-type is the desired file type. If you do not specify a
file type it will default to lst. The file is created in the current default directory. Alternatively, you can specify the
SPOOL command with:

SPOOL file-name-string

where file-name-string is a quoted string containing the name of the file you wish to create. You may specify a complete
path if you wish, however there is no default file type.

Now that you've created a file, you can output the report to it by entering the slash command (or retyping the SELECT
command, if you prefer).

Close the report file with:

SPOOL OFF

If you don't close the report file, all output will go to it until you exit TDQ.
17-18 ASIST Users Guide–Version 9.6

Database Query Tool
Creating a data file

Instead of creating a formatted report, you may want to output the results of your query to a file so that it may be read by
another program. You can do this with the following commands:

SET NEWPAGE 0
SET PAGESIZE 0
SET HEADING OFF

If you want a single comma between each column, enter these commands as well:

SET SPACE 1
SET COLSEPCHAR ,

Now, use the SPOOL and slash command to output the data:

SPOOL MYFILE.DAT
SPOOL OFF

Generating output in HTML

You can also output your reports using simple HTML, so that they can be viewed using your favorite web browser. To
enable HTML output, use:

SET HTML ON

Then, create your report like this:

SPOOL “my_report.html”
SELECT NAME,DESCRIPTION FROM POINTS WHERE APID=0;
SPOOL OFF

Now you can use a web browser to display the report (see the HOST command to do it directly from TDQ).
ASIST Users Guide–Version 9.6 17-19

CHAPTER 17
Additional Features

TDQ supplies several other additional features which you may find useful. The following sections describe these features.

Expressions in a SELECT attribute list

You can place an expression in the SELECT statement where an attribute would normally be placed. The displayed value
is the result of the expression. The expression must be followed by a unique identifier (called a column alias) which is
used to refer to the column in any COLUMN, COMPUTE, or BREAK statements. The syntax is:

SELECT expression column-alias[, expression column-alias ...] FROM table ...

For example, to display the starting and ending byte offsets for all telemetry packets from APID 0:

SELECT NAME,PACKET_OFFSET,(PACKET_OFFSET+LENGTH-1) PACKET_END FROM POINTS
WHERE APID = 0;

which outputs:

98-303-21:11:48.123 page 1

NAME PACKET_OFF PACKET_END
------------------------ ---------- ----------
P000STIME 6 13
P000MTIME 6 13
DFLOAT1 44 51
DFLOAT2 52 59
STR 60 69

Note that the column alias is used as the column header by default.

Searching more than one table with SELECT

You can use SELECT to access and display data from two tables simultaneously. This can be useful if you want to create
a report that contains all commands and their parameters or all packets and their points. The syntax for a multi-table
search is:

SELECT attribute-expr[,attribute-expr ...] FROM table[,table] ...

where attribute-expr is either attribute, table.attribute, or a general expression.

Note that you must specify the table name when referencing an attribute if the attribute name is not unique to a table (that
is, an attribute like NAME must be referred to as CMDS.NAME, PARMS.NAME, PKTS.NAME, or PTS.NAME).

In order to create a report that contains the names of all commands and parameters whose APIDS are either 5 or 6, use:

SELECT CMDS.NAME, APID, PARMS.NAME, FROM CMDS, PARMS WHERE APID IN (5,6);

which results in:
17-20 ASIST Users Guide–Version 9.6

Database Query Tool
98-306-19:47:45.681 page 1

NAME APID NAME
------------------------ ---------- ------------------------
AYHSCOLD 5
AYHSDIAG 5
AYHSRESET 5
AXARESET 6
AXABUSSEL 6 UN_AXABUSSEL
AXABUSSEL 6 SAMEB
AXABUSSEL 6 SAMEA
AXABUSSEL 6 ALTB
AXABUSSEL 6 ALTA
AXACHAN 6 CH
AXACHAN 6 UN_AXACH
AXACHAN 6 ON
AXACHAN 6 OFF

Notice that columns CMDS.NAME and PARMS.NAME both reference the same column (NAME). If you don’t want to
share a column definition, you can place a column alias after your table.attribute specification and then use this column
alias in subsequent COLUMN commands. To illustrate this and make the above report more readable, add a few format-
ting commands:

COLUMN PARMS_NAME NULL “************************”
BREAK ON CMDS_NAME ON APID

and modify the SELECT command to:

SELECT CMDS.NAME CMDS_NAME,APID,PARMS.NAME PARMS_NAME FROM CMDS,PARMS
WHERE APID IN (5,6);

Now this displays:

98-306-19:51:35.772 page 1

CMDS_NAME APID PARMS_NAME
------------------------ ---------- ------------------------
AYHSCOLD 5 ************************
AYHSDIAG ************************
AYHSRESET ************************
AXARESET 6 ************************
AXABUSSEL UN_AXABUSSEL
 SAMEB
 SAMEA
 ALTB
 ALTA
AXACHAN CH
 UN_AXACH
 ON
 OFF
ASIST Users Guide–Version 9.6 17-21

CHAPTER 17
The SET Function

SET is a special function that allows you to format a telemetry point’s limit sets or discrete ranges and labels. It can be
used with attributes that are in the LIMITS table or DISCRETES table only.

The syntax for the SET function is:

SET(attr1[,attr2[,attr3...]]) column-name

This function generates a single string as its output. Each attribute that appears is listed with its name, an equal sign, and
its value followed by a space and then the next attribute in the list formatted in the same fashion. At the end of the list, the
string is padded to the length of the column and then the process is repeated with the next limit set or discrete range and
label. If an attribute has no defined value the entire substring of attribute name, equal sign, value is replaced by blanks.
Each substring of attributes is preceded by the current set index and a colon.

For example:

COLUMN LIMITS FORMAT %40s WRAPPED
SELECT NAME,SET(RH,YH,YL,RL) LIMITS FROM PTS WHERE APID=309;

outputs:

NAME LIMITS
------------------------ -------------------------------------
WHICH_LIM
A4B_INTEGER 0: RH=4 YH=3
 1: RH=7 YH=5
B4B_INTEGER 0: RH=3 YH=4
 1: RH=4 YH=8

Restrictions:

The SET function may not be combined with any other function or attribute (say with concatenation) and any given SET
use must contain only attributes from one table (either LIMITS or DISCRETES). column-name must appear since its
width dictates how the SET function will format its output. The column must be set to WRAPPED.

XML Functions

If you need to generate XML-formatted output, the three XML functions: XMLELEMENT, XMLFOREST, and XML-
CONCAT are available. Each of these functions allow you to create XML output directly in a TDQ column.

The XMLELEMENT generates XML elements and has the following syntax:

XMLELEMENT(name[,attribute][,expression[,..]])

where name is an identifier or quoted string that names the XML element to be created, expression defines elements to be
contained within this element, and attribute defines one or more XML attributes using the following syntax:

XMLATTRIBUTES(expression [AS name][,...])
17-22 ASIST Users Guide–Version 9.6

Database Query Tool
where expression defines the value of the attribute and name, which is an identifier or quoted string, defines the name of
the attribute. Note that if expression is more complicated than a database field name then it must be identified with the AS
clause.

For example, to create a simple list of XML-formatted telemetry points:

SELECT XMLELEMENT(POINT,NAME) C1 FROM PTS;

which outputs:

<POINT>P000PVNOUI</POINT>
<POINT>P000PCKTUI</POINT>
<POINT>P000SHDFUI</POINT>

or to create a list of telemetry points with two attributes, name and data type, use:

SELECT XMLELEMENT(POINT,XMLATTRIBUTE(NAME,TYPE_NAME)) C1 FROM PTS;

which outputs:

<POINT NAME=”P000PVNO” TYPE_NAME=”UI”/>
<POINT NAME=”P000PCKT” TYPE_NAME=”UI”/>
<POINT NAME=”P000SHDF” TYPE_NAME=”UI”/>

or to create a list with nested elements, name and data type:

SELECT XMLELEMENT(POINT,XMLELEMENT(NAME,NAME),
 XMLELEMENT(TYPE_NAME,TYPE_NAME)) C1 FROM PTS;

which outputs:

<POINT><NAME>P000PVNO</NAME><TYPE_NAME>UI</TYPE_NAME></POINT>
<POINT><NAME>P000PCKT</NAME><TYPE_NAME>UI</TYPE_NAME></POINT>
<POINT><NAME>P000SHDF</NAME><TYPE_NAME>UI</TYPE_NAME></POINT>

or, finally, to combine both elements and attributes, use:

SELECT XMLELEMENT(POINT,XMLATTRIBUTES(NAME AS “Name”),
 XMLELEMENT(“Type”,TYPE_NAME)) C1 FROM PTS;

which outputs:

<POINT Name=”P000PVNO”><Type>UI</Type></POINT>
<POINT Name=”P000PCKT”><Type>UI</Type></POINT>
<POINT Name=”P000SHDF”><Type>UI</Type></POINT>

The XMLFOREST function allows you to create a group of XML elements easily. Its syntax is:

XMLFOREST(expression, [AS name}[,...])

where expression defines the contents of the element and name, either a quoted string or an identifier, defines the name of
the element. If expression is more complicated than a database field name then it must be identified with an AS clause.

For example, to create a list containing a NAME element followed by a TYPE_NAME element:

SELECT XMLFOREST(NAME,TYPE_NAME) C1 FROM PTS;
ASIST Users Guide–Version 9.6 17-23

CHAPTER 17
which produces:

<NAME>P000PVNO</NAME><TYPE_NAME>UI</TYPE_NAME>
<NAME>P000PCKT</NAME><TYPE_NAME>UI</TYPE_NAME>
<NAME>P000SHDF</NAME><TYPE_NAME>UI</TYPE_NAME>

or, in a slightly more readable form:

SELECT XMLFOREST(NAME AS “Name”, TYPE_NAME AS “Type”) C1 FROM PTS;

which outputs:

<Name>P000PVNO</Name><Type>UI</Type>
<Name>P000PCKT</Name><Type>UI</Type>
<Name>P000SHDF</Name><Type>UI</Type>

The XMLCONCAT function allows you to concatenate the results of other XML functions. Its syntax is:

XMLCONCAT(xml-function[,...])

where xml-function is either an XMLELEMENT function or an XMLFOREST function.

For example, to concatenate a name element with a data type element:

SELECT XMLCONCAT(XMLELEMENT(NAME,NAME)
 XMLELEMENT(TYPE_NAME,TYPE_NAME)) C1 FROM PTS;

results in:

<NAME>P000PVNO</NAME><TYPE_NAME>UI</TYPE_NAME>
<NAME>P000PCKT</NAME><TYPE_NAME>UI</TYPE_NAME>
<NAME>P000SHDF</NAME><TYPE_NAME>UI</TYPE_NAME>

Each of these functions produces only the pieces of XML generated by your SELECT statement and in general do not cre-
ate a well-formed XML file. It is up to you to either add the required wrapper XML externally or generate it using the
PROMPT command.

Numbering the output rows

 The ROWNUM attribute returns the number of each row as it is selected from the database. For example, the query:

SELECT ROWNUM,NAME FROM PTS WHERE APID=0 AND LENGTH=8;

returns:

 ROWNUM NAME
---------- ------------------------
 1 P000STIME
 2 P000MTIME
 3 DFLOAT1
 4 DFLOAT2

ROWNUM is valid for all tables. Note that since the row numbering is assigned when the row is pulled from the data-
base, use of an ORDER BY will cause ROWNUM to be out of order. Thus:
17-24 ASIST Users Guide–Version 9.6

Database Query Tool
SELECT ROWNUM,NAME FROM PTS WHERE APID=0 AND LENGTH=8
ORDER BY NAME;

results in:

 ROWNUM NAME
---------- ------------------------
 3 DFLOAT1
 4 DFLOAT2
 2 P000MTIME
 1 P000STIME

Executing canned procedures

You may create a report and then want to re-execute it periodically. Instead of typing all of the formatting commands and
then reentering the SELECT command, you can collect all of your TDQ commands together into a file and then execute
that file with the START command entered on the TDQ command line (not on the STOL command line). The syntax of
the START command is:

START file-name[.file-type]

or

@file-name[.file-type]

where file-name is the name of the file you want to execute and file-type is the desired file type. If you do not specify a file
type it will default to sql. The file is assumed to reside in the current default directory. Alternatively, you can specify the
START command with:

START file-name-string

or

@file-name-string

where file-name-string is a quoted string containing the name of the file you wish to execute. As with the SPOOL com-
mand, you may specify a complete path if you wish, however there is no default file type.

To run this canned procedure, TDQ searches for the procedure file in the directories specified in the environment variable,
SQL_SEARCH_PATH, which contains a colon-separated list of directories (i.e. “/s/opr/accounts/global/db:/
s/opr/accounts/configured/db:/s/opr/system/db”). It scans SQL_SEARCH_PATH from left-to-right
looking in each directory for the file you named. If it is found in one of the directories, it is immediately executed. If it
isn't found, TDQ tries the local directory before giving up.

Usually the SQL_SEARCH_PATH is setup to search your local database area first, then your global database area, then
your configured database area, and finally the system database area. If you want to modify this search path, you can do so
in your ASIST_user_profile (see “User-Configurable UNIX and X-Window Environment” on page 13-5 for more infor-
mation).

You can place any valid command in a procedure file. Each command will be executed (but by default, not echoed) and
output will either go to the screen or, if you use the SPOOL command, output will go to a file. If there are no more com-
mands in the procedure file, the file will be exited and control will return to the command line. You may nest START
commands within a file.
ASIST Users Guide–Version 9.6 17-25

CHAPTER 17
For example, to start a procedure named my_report.sql that resides in the current default directory, enter:

START MY_REPORT

You can place comments in your procedure file by placing either REM or "--" at the beginning of any line. All following
characters are ignored.

Additionally, you can supply arguments to a procedure file by specifying up to nine arguments on the command line sepa-
rated by spaces, like this:

START PKT_REPORT 10 “Report for packets with APID<10”

You reference the arguments in the procedure file by placing an ampersand (&) in front of the number of the argument that
you want (arguments are numbered from left to right, starting with one). Using the example given above, the contents of
pkt_report.sql might look like:

TITLE “&2”
SELECT NAME,APID,LENGTH FROM PKTS WHERE APID<&1;

Note the use of quotes in the second argument in order to include blanks in the argument.

If an argument is referenced in a procedure but is not passed a value from the command line, then the value of the argu-
ment defaults to the empty string “ “.

Displaying Prompts

 The PROMPT directive enables a canned procedure to output a string to the screen or a file. The syntax for PROMPT
is:

PROMPT string

string is always terminated with a new line. Parameter substitution is valid within string. For example:

PROMPT "Contents of APID &1"
PROMPT " as of 01/25/01"

outputs:

Contents of APID 0
as of 01/25/01

if the first script parameter is "0".

Normally, all PROMPT output is written to the display. However, if the SPOOL directive has been used to redirect out-
put to a file, PROMPT output is also redirected to the file. This gives you more flexibility to create shell scripts, STOL
procedures, or PSL files. An extensive example of its use can be found in /s/opr/system/db/genpsl.sql.

Executing operating system commands

While running TDQ, you may want to make use of tools provided by the operating system, like "awk" or "grep". TDQ
supplies you with the HOST command which allows you to access to these programs. The syntax of the HOST command
is:
17-26 ASIST Users Guide–Version 9.6

Database Query Tool
HOST command-string

where command-string is a quoted string containing the command you wish to execute. For example, if you want to count
the number of lines in a report file named some_output.lst, use:

HOST "wc -l some_output.lst"

The output of the command appears on the line following your HOST command.

Displaying the available tables

The USER_TABLES or TABS table contains the names and descriptions of all currently supported tables in TDQ. You
can query this table like any other table. For example:

SELECT TNAME FROM TABS;

yields:

00-228-19:12:01.321 page 1

TNAME

POINTS
PACKETS
LIMITS
DISCRETES
COMMANDS
MANDATES
PARAMETERS
ALL_PARAMETERS
USER_TABLES

The DESCRIBE command can be used to list all of the available attributes in USER_TABLES.

Displaying the attributes in a table

The DESCRIBE command displays every attribute that can be queried for a table. It produces a formatted report that
shows the attribute name, type (either STRING, INTEGER, REAL, or TIME) , and description. The columns in this report
(COLUMN_NAME, COLUMN_TYPE, and COLUMN_DESCRIPTION, respectively) may be reformatted as you see fit
using the COLUMN command.

For example: to show all of the available attributes for the USER_TABLES table, enter:

COLUMN COLUMN_DESCRIPTION WORD_WRAPPED
DESCRIBE USER_TABLES

TDQ will output:

99-236-15:38:59.373 page 1
ASIST Users Guide–Version 9.6 17-27

CHAPTER 17
COLUMN_NAME COLUMN_TYPE COLUMN_DESCRIPTION
------------------------ ------------------------ -----------------------
DESCRIPTION STRING Table description
SYNONYM STRING Alternate table name
TNAME STRING Table name

Termination and help

You can exit TDQ with the EXIT or QUIT command. These commands can be placed in a START file.

You can get simple help on legal TDQ commands with the HELP command. Just type HELP to receive a list of the com-
mands you can get help on. Further help is available by entering:

HELP topic

where topic is the command you want help on.
17-28 ASIST Users Guide–Version 9.6

Database Query Tool
How to use TDQ

The following sections detail information you need to know in order to run TDQ on the ASIST workstation.

Starting TDQ

TDQ can be started from the shell by entering:

tdq

or it can be started from STOL by typing:

TDQ

on the STOL command line. If started from STOL, a separate window will appear with the TDQ prompt. You may enter
queries into this window. When you exit (with QUIT or EXIT), the window will be deleted.

When TDQ starts it determines whether the telemetry data base is loaded. If the data base isn't loaded, TDQ automatically
loads it for you.

Entering queries from the TDQ command line

Once TDQ is started, you can type commands at the TDQ prompt. The following command line editing features are avail-
able:

Except where previously indicated, breaking commands across multiple lines is supported.

TABLE 17-9. TDQ’s command line editing keystrokes

Character Action

backspace Delete character to left of cursor

ctrl-d Delete character under cursor

ctrl-k Delete from cursor to end of line

ctrl-u Delete entire line

ctrl-a Move cursor to start of line

ctrl-e Move cursor to end of line

ctrl-f Move cursor right one character

right arrow Move cursor right one character

ctrl-b Move cursor left one character

left arrow Move cursor left one character

ctrl-p Recall previous command

up arrow Recall previous command

ctrl-n Recall next command

down arrow Recall next command
ASIST Users Guide–Version 9.6 17-29

CHAPTER 17
Entering queries from the shell

You can also execute TDQ from a shell script and pass it a command line with:

tdq -c tdq-command

where tdq-command is a quoted string containing a legal TDQ command. After the command has completed, TDQ exits.
When you use this feature, you can redirect the output of TDQ to another file. For example, if you want to select the
names of all points in the telemetry packet with APID 12 and write it to a file named apid12.txt use:

tdq -c "select name from points where apid_num=1;" >apid12.txt

Remember, don't forget to put the semicolon at the end of your SELECT command.
17-30 ASIST Users Guide–Version 9.6

AS
CHAPTER 18 Page Specification Language
Overview

The Page Specification Language (PSL) is a simple, easy-to-use, telemetry page description language. It takes an ASCII
file that you create using a standard text editor and converts it into a valid SAMMI binary format file. Once converted,
you can use the SAMMI format editor to perform further modifications.

The design of PSL simplifies creating telemetry pages by assuming reasonable defaults and by automatically placing
items on the page according to simple rules. This allows you to concentrate on the information that is to be displayed
rather than on the details of placement. Another result of this design philosophy allows you to automatically create pages
directly from information extracted from the telemetry database. But PSL also allows you to override item defaults and
placement so that you have complete control over the page.
IST Users Guide–Version 9.6 18-1

CHAPTER 18
PSL Language Reference

Page Specification

Telemetry pages are comprised of a single PAGE object which contains zero or more design objects. The available design
objects include: lines (LINE), rectangles (RECT), labels (TEXT), data (DATA), labeled data (LDATA), and buttons
(BUTTON). Each of these objects (and the PAGE as well) has an identifier and a set of attributes. Identifiers may be up
to 32 characters in length and are comprised of an alphabetic character followed by zero or more alphanumeric characters
or an underscore.

Each line that describes either a page or an object may start anywhere and may continue across multiple lines. No contin-
uation characters are required. Additionally, you may intersperse comments anywhere inside your file by beginning your
comment with a semicolon, and then following it with any text you like. Comments terminate at the end of a line.

The syntax for the PAGE directive is:

id: PAGE page-attribute,...

 [page-objects]

 ENDPAGE [id]

where:

 id is a unique identifier, and

page-attribute can be one or more of:

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the
page in pixels (uses the screen coordinate system).

0

Y = integer The Y coordinate of the upper left hand corner of the
page in pixels (uses the screen coordinate system).

0

WIDTH = integer The maximum width of the page in pixels. 640 pixels.

HEIGHT = integer The maximum height of the page in pixels. 480 pixels.

INITIAL_WIDTH = integer The initial width of the page in pixels. Value of WIDTH.

INITIAL_HEIGHT = integer The initial height of the page in pixels. Value of HEIGHT.

BACKGROUND = color-name The background color of the page (see SAMMI color list
for supported colors).

Black.
18-2 ASIST Users Guide–Version 9.6

Page Specification Language
To create a blank page that is 400 pixels wide by 200 pixels high
with a background that is LightSteelBlue, use:

example1:PAGE WIDTH=400,
 HEIGHT=200,
 BACKGROUND=LightSteelBlue
ENDPAGE

In addition to attributes that apply to the page as a whole there are also attributes available that specify either default
attributes for design objects or how to layout design objects on the page.

For example, to create a page that has a background of midnight blue, has a top margin of 50 pixels, uses 5 pixels between
objects horizontally, contains up to 3 columns, and uses red as the default foreground color for any design objects on the
page, use:

example2: PAGE BACKGROUND=MidnightBlue, TOP_MARGIN=50,HSPACING=5,
COLUMNS=3,DEFAULT_FOREGROUND=RED

...
ENDPAGE

Syntax What it does Default Value

TOP_MARGIN = integer The height of the top margin in pixels. 0

DECORATE = AUTO
Automatically apply decorations to the page (dismiss,
next, previous buttons, page title).

disabled

HSPACING = integer
The number of horizontal pixels between objects on
the page

1

VSPACING = integer
The number of vertical pixels between objects on the
page.

1

COLUMNS = integer | AUTO
The maximum number of columns to use in laying out
this page.

1

PAGES = integer | AUTO
The maximum number of pages to use in laying out
this page.

1

DEFAULT_FOREGROUND = color-name
The foreground color to use for objects on this page.
This attribute applies to LINE, RECT, TEXT, DATA,
LDATA, and BUTTON objects.

White.

DEFAULT_BACKGROUND = color-name
The background color to use for objects on this page.
This attribute applies only to DATA, LDATA, and
BUTTON objects.

Black.

DEFAULT_FONT = font-name
The font to use for objects on this page. This attribute
applies only to TEXT, DATA, LDATA, and BUTTON
objects.

Fixed.

DEFAULT_WIDTH = integer
The width of objects on this page in characters. This
attribute applies only to DATA and LDATA objects.

10.
ASIST Users Guide–Version 9.6 18-3

CHAPTER 18
Object Layout and Position Expressions

Normally, when PSL processes your input file, it automatically computes the address of the upper left hand corner of the
current object. This is done by adding the page vertical spacing value (VSPACING) to the coordinates of the lower left
corner of the last object (if there is no last object it uses (0,0) or the top margin). This means that if you want to create col-
umns of telemetry in top-to-bottom, left-to-right fashion, you need do nothing more than list the design objects. There is
no need to specify coordinates for each object. PSL allows you to override the default coordinates for an object by letting
you compute where to place it. These placement expressions provide simple arithmetic operations along with more com-
plex relative position references.

A design object has two fundamental coordinates, its upper left hand corner (X,Y) and its lower right hand corner
(X2,Y2). Usually when you place a design object, you specify the upper left hand corner (using page coordinates) like
this:

example4:PAGE
label1: TEXT X=50,Y=75,LABEL="Attitude"

ENDPAGE

which places the upper left hand corner of object label1 50 pixels to the right of the upper left hand corner of page
example4 and 75 pixels down from the upper left hand corner of example4.

Some objects (LINE and RECT) allow you to give (X2,Y2) as well. For example, to draw a box that is 100 pixels wide
and 100 pixels long, use:

example5:PAGE
box1: RECT X=10,Y=10,X2=110,Y2=110

ENDPAGE

which places the upper left hand corner of box1 10 pixels to the right of the upper left hand corner of the page and 10 pix-
els below the upper left hand corner.

When you specify either (X,Y) or (X2,Y2) you can use simple arithmetic expressions. The available operations are addi-
tion (+), subtraction (-), multiplication (*), or division (/). The usual order of operations applies, but you can change the
order by using parenthesis. For example, to shift the box in EXAMPLE5 over by 25 pixels and halve the length of each
side, use:

example6:PAGE
box1: RECT X=10+25,Y=10+25,X2=(100/2)+25,Y2=(100/2)+25

ENDPAGE

You can also reference the fundamental coordinates of another object, which allows you place objects relative to one
another. To access the X and Y coordinates of the upper left corner, use:

X(object-name)

Y(object-name)
18-4 ASIST Users Guide–Version 9.6

Page Specification Language
For example, to place object L2 50 pixels below object L1 use:

example7:PAGE
l1: TEXT LABEL="This is L1"
l2: TEXT X=X(L1), Y=Y(L1)+50,

LABEL="This is L2"
ENDPAGE

Likewise, you can reference the X and Y coordinates of the lower right hand corner of an object, with:

X2(object-name)

Y2(object-name)

So, to place object L2 5 pixels below and 5 pixels to the right of object L1 (stair-step like), use:

example8:PAGE
l1: TEXT LABEL="This is L1"
l2: TEXT X=X2(L1)+5,Y=Y2(L1)+5,LABEL="This is L2"

ENDPAGE

In a similar fashion, you can reference the width and height of an object, with:

WIDTH(object-name)

HEIGHT(object-name)

This lets us recast EXAMPLE8 above in a slightly different way:

example9:PAGE
l1: TEXT LABEL="This is L1"
l2: TEXT X=X(L1)+WIDTH(L1)+5,Y=Y(L1)+HEIGHT(L1)+5,

LABEL="This is L2"
ENDPAGE

Page-level global attributes are also available. You can reference the horizontal spacing, vertical spacing, and top margin
by using:

HSPACING

VSPACING

TOP_MARGIN

So, if HSPACING and VSPACING are both set to five pixels, then another way to write EXAMPLE9 is:

example10:PAGE VSPACING=5,HSPACING=5
l1: TEXT LABEL="This is L1"
l2: TEXT X=X(L1)+WIDTH(L1)+HSPACING,

Y=Y(L1)+HEIGHT(L1)+VSPACING,
LABEL="This is L2"

ENDPAGE

You can center objects on a page with:

XCENTER
ASIST Users Guide–Version 9.6 18-5

CHAPTER 18
YCENTER

The XCENTER specifier computes page-width/2 - object-width/2 and YCENTER computes page-height/2 - object-
height/2. Remember, to correctly center your object, use these in the last attributes you specify (PSL needs to know the
width or height of the object to center it properly). For example, to center a title in the top margin of a page, use:

example11:PAGE TOP_MARGIN=50
title: TEXT LABEL="This is the title",XCENTER

ENDPAGE

Finally, two shorthand position specifiers are available:

BELOW object-name

RIGHT_OF object-name

Either one of these specifiers can replace both the normal upper left hand corner coordinates. The BELOW object speci-
fier is the same as X=X(object), Y=Y2(object)+VSPACING while the RIGHT_OF object specifier is the same
as X=X2(object)+HSPACING and Y=Y(object). For example, to place two labels L3 and L4 adjacent to each
other horizontally, use:

example12:PAGE
l3: TEXT LABEL="This is L3"
l4: TEXT RIGHT_OF l3,LABEL="This is L4"

ENDPAGE

or, to place them vertically adjacent:

example13:PAGE
l3: TEXT LABEL="This is L3"
l4: TEXT BELOW l3,LABEL="This is L4"

ENDPAGE

Automatic Page Layout

Although, PSL allows incredibly complex positioning expressions you won't normally want to use it. PSL can automati-
cally place your design objects in a single column. While placing objects when the bottom of the page is reached, PSL
automatically starts a new column, just below the top margin and to the right of any previous column. If the new column
will not fit on the page, PSL creates a new page and starts the column on the far left side of the page just below the top
margin. PSL will also place navigation buttons and a title in each page it creates.

There are three page level attributes that control this: COLUMNS, PAGES, and DECORATE.

 The COLUMNS attribute tells PSL the maximum number of columns it can place on the page before it starts a new page
(or generates an error). This value defaults to one, which means that when the end of the first column is reached, PSL will
start a new page. For example, to create a page with a maximum of three columns:

example14:PAGE COLUMNS=3
....

ENDPAGE

If you don't care how many columns are on a page, you can tell PSL to pack as many as it can fit with:
18-6 ASIST Users Guide–Version 9.6

Page Specification Language
example15:PAGE COLUMNS=AUTO
....

ENDPAGE

The PAGES attribute works in a similar fashion. It tells PSL how many page it can create before generating an error. This
value defaults to one also, which means that when PSL reaches the end of the first column it will generate error messages
for any additional automatically placed design items. For example, if you want to create no more than two pages, use:

example16:PAGE PAGES=2
....

ENDPAGE

Similar to the COLUMNS attribute, if you don't care how many pages are created, use:

example17: PAGE PAGES=AUTO
....
ENDPAGE

Note that pages are named example17 for the first, example17_1 for the second, example17_2 for the third and so
on.

Finally, if you use the DECORATE=AUTO attribute, PSL will automatically create a top margin for you and place nav-
igation buttons and the name of each page in it. This attribute, along with COLUMNS=AUTO and PAGES=AUTO, is
used mostly for automated page creation. For example, to create a page (or pages) that contain all telemetry points in
APID 1, use:

example18:PAGE DECORATE=AUTO,PAGES=AUTO,COLUMNS=AUTO
 ...list of telemetry points...

ENDPAGE

Note that if PSL automatically places the page name in the top margin it uses the default font.

Design Objects

PSL provides six design objects: LINE, RECT, TEXT, DATA, LDATA, and BUTTON. The LINE object is used to
draw simple lines on the page. The RECT object is four different LINE objects arranged in a box. The TEXT object
allows labels to be placed on the page. The DATA object is used to display dynamically changing data, while the LDATA
object is combination of a label (TEXT) with dynamic data display (DATA). The BUTTON object provides a simple
button to send commands or directives. Each of these objects has a unique set of attributes which are used to describe it.
The following paragraphs discuss each object and its attributes.

The LINE object draws a line of specified thickness with or without arrowheads at each end point. Both (X,Y) and
(X2,Y2) coordinates are required. The syntax for LINE is:

[id]: LINE line-attribute,...
ASIST Users Guide–Version 9.6 18-7

CHAPTER 18
 where line-attribute can be one or more of:

To create a line that spans the entire width of a page along the top margin with a thickness of two, use:

example19:PAGE TOP_MARGIN=40
line1: LINE X2=WIDTH(example19),THICKNESS=2

ENDPAGE

The RECT object draws a rectangle with the specified width and height. You can also give the thickness of the lines used
to draw the box. The syntax for RECT is:

[id]: RECT rect-attribute,...

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the line
in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the line
in pixels (uses the page coordinate system).

Just below the last
object given or the
top margin.

X2 = integer The X coordinate of the lower right hand corner of the
line in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y2 = integer The Y coordinate of the lower right hand corner of the
line in pixels (uses the page coordinate system).

Just below the last
object given or the
top margin.

XCENTER Sets the X coordinate to page-width/2 - line-width/2.

YCENTER Sets the Y coordinate to page-height/2 - line-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2)
coordinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

FOREGROUND = color-name The foreground color to use for this line. The value of
DEFAULT_FORE
GROUND.

THICKNESS = integer Sets the line thickness to integer. Thickness may range
from 1 to 8, where 8 is the thickest.

1.

ARROW = NONE | FORWARD |
BACKWARD | BOTH

Applies arrowheads to the line, FORWARD points to
the right, BACKWARD points to the left.

NONE.
18-8 ASIST Users Guide–Version 9.6

Page Specification Language
where rect-attribute can be one or more of:

To create a white box 100 pixels in from the top and bottom of the page, and
the left and right sides, use:

example20:PAGE
rect1: RECT X=100, Y=100,

WIDTH=WIDTH(example20)-200,
HEIGHT=HEIGHT(example20)-10,
FOREGROUND=White

ENDPAGE

The TEXT object places fixed text on the page. You can specify a font other than the default font if you wish. The syntax
for TEXT is:

[id]: TEXT text-attribute,...

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the
rectangle in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the
rectangle in pixels (uses the page coordinate system).

Just below the last
object given or the
top margin.

XCENTER Sets the X coordinate to page-width/2 - rect-width/2.

YCENTER Sets the Y coordinate to page-height/2 - rect-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2) coor-
dinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

WIDTH = integer Sets the width of the rectangle in pixels. 0.

HEIGHT = integer Sets the height of the rectangle in pixels. 0.

FOREGROUND = color-name The foreground color to use for this rectangle. The value of
DEFAULT_FORE
GROUND.

THICKNESS = integer Sets the rectangle line thickness to integer. Thickness
may range from 1 to 8, where 8 is the thickest

1.
ASIST Users Guide–Version 9.6 18-9

CHAPTER 18
where text-attribute can be one or more of:

To create a page title centered at the top of a page using 18 point bold Helvetica font, use:

example21:PAGE
title: TEXT FONT=HelveticaBold18,LABEL="This is the title",

XCENTER
ENDPAGE

The DATA object places dynamically changing text on the page. You can specify a font and width other than the defaults
if you wish. The syntax for DATA is:

[id]: DATA data-attribute,...

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the text
in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the text
in pixels (uses the page coordinate system).

Just below the last
object given or the
top margin.

XCENTER Sets the X coordinate to page-width/2 - text-width/2.

YCENTER Sets the Y coordinate to page-height/2 - text-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2)
coordinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

FOREGROUND = color-name The foreground color to use for this label. The value of
DEFAULT_FORE
GROUND.

FONT = font-name The name of the font to use for this label. The value of
DEFAULT_FONT.

[LABEL =] string The text to be displayed. As an additional shortcut the
"LABEL=" portion is not required.

""
18-10 ASIST Users Guide–Version 9.6

Page Specification Language
where data-attribute can be one or more of:

To create a page which contains the value of RAMP*10 using a background color of white and a foreground color of
black, use:

example22:PAGE
rampy: DATA FOREGROUND=Black,Background=White,VALUE="ramp*10"

ENDPAGE

The LDATA object places a label with dynamically changing text to the right of it on the page. Like the DATA object,
You can specify a font and width other than the defaults if you wish. The syntax for LDATA is:

[id]: LDATA data-attribute,...

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the
data in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the
data in pixels (uses the page coordinate system).

Just below the last
object given or the top
margin.

XCENTER Sets the X coordinate to page-width/2 - text-width/2.

YCENTER Sets the Y coordinate to page-height/2 - text-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2)
coordinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

FOREGROUND = color-name The foreground color to use for this data. The value of
DEFAULT_FOREG
ROUND.

BACKGROUND = color-name The background color to use for this data. The value of
DEFAULT_BACKG
ROUND.

FONT = font-name The name of the font to use for this data. Helvetica and
Greek fonts may not be used with this attribute.

The value of
DEFAULT_FONT.

WIDTH = integer The width of the data in characters. The value of
DEFAULT_WIDTH.

VALUE = string A string containing the name of a telemetry point or a
telemetry point expression to display.

""
ASIST Users Guide–Version 9.6 18-11

CHAPTER 18
where ldata-attribute can be one or more of:

To create a page which contains the value of P@RAMP along with the label "P@RAMP" and is 6 characters wide, use:

example23:PAGE
ramp: LDATA LABEL="P@RAMP",VALUE="p@ramp",WIDTH=6

ENDPAGE

The BUTTON object places a push button that sends a command or directive whenever it is depressed. You can specify a
font or button thickness other than the defaults if you wish. The syntax for BUTTON is:

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the
labeled data in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the
labeled data in pixels (uses the page coordinate system).

 Defaults to just below
the last object given or
the top margin.

XCENTER Sets the X coordinate to page-width/2 - text-width/2.

YCENTER Sets the Y coordinate to page-height/2 - text-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2)
coordinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

FOREGROUND = color-name The foreground color to use for this data. The value of
DEFAULT_FOREG
ROUND.

BACKGROUND = color-name The background color to use for this data. The value of
DEFAULT_BACKG
ROUND.

FONT = font-name The name of the font to use for this data. Helvetica and
Greek fonts may not be used with this attribute.

The value of
DEFAULT_FONT.

WIDTH = integer The width of the data in characters. The value of
DEFAULT_WIDTH.

VALUE =string A string containing the name of a telemetry point or a
telemetry point expression to display.

"“

[LABEL =] string The label to be displayed. As an additional shortcut the
"LABEL=" portion is not required.

""
18-12 ASIST Users Guide–Version 9.6

Page Specification Language
[id]: BUTTON button-attribute,...

where button-attribute can be one or more of:

To create a page that contains a single button with a red background and a black foreground, which sends the directive
"EXIT" to the STOL server, and is located in the center of the page, use:

example24:PAGE
byebye:BUTTON LABEL="EXIT?",

COMMAND="EXIT",
SERVER=STOL,
FOREGROUND=Black,
BACKGROUND=Red,XCENTER,
YCENTER

ENDPAGE

Syntax What it does Default Value

X = integer The X coordinate of the upper left hand corner of the but-
ton in pixels (uses the page coordinate system).

The X coordinate of
the current column.

Y = integer The Y coordinate of the upper left hand corner of the but-
ton in pixels (uses the page coordinate system).

Just below the last
object given or the
top margin.

XCENTER Sets the X coordinate to page-width/2 - text-width/2.

YCENTER Sets the Y coordinate to page-height/2 - text-height/2.

BELOW object-name Sets (X,Y) to VSPACING pixels below the (X,Y2)
coordinates of object object-name.

RIGHT_OF object-name Sets (X,Y) to HSPACING pixels to the right of (X2,Y)
coordinates of object object-name.

FOREGROUND = color-name The value of DEFAULT_FOREGROUND.

BACKGROUND = color-name The background color to use for this button. The value of
DEFAULT_BACK
GROUND.

FONT = font-name The name of the font to use for this button. Defaults to
the value of DEFAULT_FONT.

[LABEL =] string The label to be displayed on the button. As an additional
shortcut the LABEL= portion is not required.

"".

THICKNESS = integer The thickness of the button relief in pixels. 2

SERVER = SAMMI | STOL The server to send the command to. SAMMI.

COMMAND = string The command or directive to send to the server. ""
ASIST Users Guide–Version 9.6 18-13

CHAPTER 18
Using PSL

Once you have created a file containing a description of your page, you can creating a SAMMI format from it by entering
the following command from the UNIX command line:

psl [switches] psl-file-name

where:

• psl-file-name is the name of your page description file (Note: it must have a file type of ".psl") and

• switches is one or more of:

Unless you force PSL to output a specific version of format file, it will decide automatically which version file to create from
your current environment. Thus, it is unnecessary to specify either -3 or -4 on the command line. PSL also, by default,
writes the format file to your local SAMMI work area. For example, if you want to create a format file from the file
"mypage.psl" and place it in /s/opr/accounts/global/sam/fmt, use:

psl mypage

If you want to automatically generate a page for an entire packet, you can use the TDQ script, genpsl.sql. Execute it
from the UNIX command line by:

tdq -c "@genpsl <apid> <page-width> <page-height>"

To automatically create a page from the telemetry points in the packet with APID=1 and is 640 pixels wide by 480 pixel
high, use:

tdq -c "@genpsl 1 640 480"
psl APID1

Supported Colors

The following colors are available for use in PSL. Note that color names are not case sensitive.

 black, white, red, green, blue, cyan, magenta, yellow,
 aquamarine, mediumaquamarine, turquoise, darkturquoise,
 mediumturquoise, cadetblue, cornflowerblue, darkslateblue,
 lightblue, lightsteelblue, mediumblue, mediumslateblue,
 midnightblue, navyblue, skyblue, slateblue, steelblue,
 coral, firebrick, mediumgoldenrod, darkgreen, darkolivegreen,
 forestgreen, limegreen, mediumforestgreen, mediumseagreen,
 mediumspringgreen, palegreen, greenyellow, seagreen,
 springgreen, yellowgreen, maroon, orange, orchid, darkorchid,
 mediumorchid, pink, plum, indianred, mediumvioletred,

Option What it does

-h Display help information

-3 Force the creation of a SAMMI V3 format file

-4 Force the creation of a SAMMI V4 format file

-odir Write format file to directory dir
18-14 ASIST Users Guide–Version 9.6

Page Specification Language
 orangered, violetred, violet, blueviolet, salmon, sienna,
 brown, sandybrown, gold, golderod, khaki, tan, thistle,
 wheat, darkslategray, dimgray, lightgray, gray, cadetblue1,
 cadetblue2, cadetblue3, cadetblue4, purple, gray59, gray91,
 aliceblue, bisque, bisque2, bisque3, bisque4, chartreuse1,
 chartreuse2, chartreuse3, chartreuse4, dodgerblue, dodgerblue2,
 dodgerblue3, dodgerblue4, firebrick3, firebrick4, green2,
 honeydew1, honeydew2, honeydew3, honeydew4, hotpink,
 lightseagreen, mistyrose, peachpuff, lightsteelblue1,
 lightsteelblue2, lightsteelblue3, lightsteelblue4, peru,
 powderblue

Supported Fonts

The following fonts are available for use in PSL. Note that font names are not case sensitive and that fonts which begin
with a number must be placed in quotes.

 fixed, 6x12, 8x13, 8x13bold, 9x15, greekmedium12,
 greekmedium14, greekmedium18, couriermedium8, couriermedium10,
 couriermedium12, couriermedium14, couriermedium18,
 couriermedium24, courierbold8, courierbold10, courierbold12,
 courierbold14, courierbold18, courierbold24,
 courierobliquebold8, courierobliquebold10, courierobliquebold12,
 courierobliquebold14, courierobliquebold18, courierobliquebold24,
 helveticabold8, helveticabold10, helveticabold12,
 helveticabold14, helveticabold18, helveticabold24
ASIST Users Guide–Version 9.6 18-15

CHAPTER 18
18-16 ASIST Users Guide–Version 9.6

AS
CHAPTER 19 EGSE Interface
Overview

The EGSE interface, also referred to as the Data Center, communicates between ASIST and EGSE via either UDP or TCP
connections. It’s connections are configured from STOL, and can provide both telemetry and command interfaces to mul-
tiple EGSE’s simultaneously.
IST Users Guide–Version 9.6 19-1

CHAPTER 19
Data Center

The data center program (which provides the EGSE interface) is only started upon request from STOL. To start it, enter:

dc_open

from STOL. But prior to issuing this directive, you must set up how the data center will communicate with ASIST

Configuration Prior to Startup

When the data center program starts, it:

1. Opens a tcp telemetry server which delivers the telemetry it receives from EGSEs, wrapped in SFDUs, to one or more
ASIST workstations.
Configuration Item: You can set what port is used for this telemetry server by sending the STOL directive:

dc_set_tlm_port #
 (i.e. dc_set_tlm_port 5001)

NOTE: You must set up a corresponding entry in the $STOL_CONFIG file of any ASIST workstation that wishes to
receive this telemetry. The $STOL_CONFIG file should contain:

TLMD=machine-name, 5001

where:
D=the channel defined,
machine-name=Machine running datacenter, 5001=port #

2. Opens a command/directive connection with ASIST, in order to receive open/close directives for connections with
EGSE and for receiving commands to send over these connections.

In client mode (the default), the program connects to ASIST's command port as a client. By default, it connects port
2002 on the ASIST workstation that is running it.

Configuration Item: You can change either of these parameters, and specify client mode, using the STOL directive:

In server mode, the program opens a passive command port on the given port, and awaits a connection from ASIST.
Configuration Item: You can choose this mode, and set the port, using the directive:

 When using server mode, modify the FEDSMachine entry in the $STOL_CONFIG file like this:

FEDSMachine=hostname,portnum

(i.e. FEDSMachine=jeffc,5002)

Controlling Data_Center

After data center has started, you can send directives to it to open/close ports for telemetry or commands. These direc-
tives are sent using the STOL directive:

dc_dir put-your-data-center-directive-here

dc_set_cmd_client Sets to client mode, localhost port 2002 This is the default!

dc_set_cmd_client hostname Sets to client mode, machine=hostname, port=2002 or

dc_set_cmd_client hostname,3004 Sets to client mode, machine=hostname, port=3004 (useful only for special
circumstances)

dc_set_cmd_server port# Sets to server mode, opening port=port#
19-2 ASIST Users Guide–Version 9.6

EGSE Interface
Valid directives are open (which initiates a connection to the EGSE) and close (which terminates it).

Open

This directive opens a network connection between the data center and the EGSE. It is of the form:

 open connection-type ddid ...

where:
connection-type can be: udp_write, udp_read, tcp_client, [tcp_server will be available at some future date]

For incoming connections (either tcp_server or udp_read), the rest of the arguments are:

 open connection-type ddid port# data_type

For outgoing connections (either tcp_client or udp_write), the rest of the arguments are:

 open connection-type ddid machine port# data_type [sfid]

The parameters for these are:

ddid 1. For output ports, when the data_center receives an SFDU with this DDID, it sends the
contents out over the given connection.

2. When telemetry is received, this DDID is used as the ID on the telemetry SFDU sent to
ASIST. For CCSDS packets, ddid can include a C-style printf format, using the packet's
APID as the arg.Thus, if ddid=C%03X and we receive packet 0x13, the DDID would be
C013.ASIST uses this DDID to match the incoming telemetry packet with the telemetry
database.

machine For outgoing connections only: The machine to connect to

port # 1. For outgoing connections, the port # to connect to on the other machine.

2. For incoming connections, the port # to open on this machine (the EGSE will connect to/
send to this port.
ASIST Users Guide–Version 9.6 19-3

CHAPTER 19
Close

This closes a connection. The directive is of the form:

close ddid

This closes the connection matching ddid.

What Data Center Does

Once the data center program is connected to an EGSE, it will:

• Forward any telemetry it receives from the EGSE to all ASIST stations connected to receive telemetry. If the incoming
messages are already in SFDUs, they are forwarded as is. Otherwise, they are embedded in an SFDU, whose ID is the
ddid you specified in the open statement.

• Forward any command received from ASIST to the appropriate EGSE, based upon the DDID of the incoming com-
mand (from the cmd sfdu) and the ddid specified in the open statement for each EGSE connection.

data_type 1. For incoming data (telemetry), this specifies what kind of data will be coming over this
port.

packets or ccsdspackets - One or more binary CCSDS packets (per message received from
the EGSE). This means that that multiple packets may be placed “back-to-back” within one
datagram.
packet or ccsdspacket - One and only one binary CCSDS packet. In this case, it is assumed
that for UDP, the datagram contains only the packet, and the length of data sent to ASIST is
the length of the datagram's data area.
packet_only or ccsdspacket_only - One and only one binary ccsds packet. In this case, the
length of data sent to ASIST is the length specified in the CCSDS packet (for UDP data-
grams). Any additional data after the packet is discarded.
datagram - The entire datagram is one message.
sfdu-Data is encapsulated in an SFDU. In this case, the SFDU is sent in telemetry exactly as
it was received. The DDID specified in the open directive isn't used.
sfdu_asist - The incoming data is encapslulated within SFDUs, but the port is using the
ASIST protocol, and thus needs an SFID/AKNK handshake upon connection. If this is spec-
ified, you must include an additional parameter, the SFID to connect as (i.e. 03, 1D, ...).

2. For outgoing data (commands), this specifies how to process the data prior to sending it.
The only command-specific data type is:

ascii_pkt-This tells data center that the data in the command is coming in ascii-hex, and
must be converted to binary prior to output.

sfid For sfdu_asist connections, this is the SFID to send to the telemetry server you are con-
necting to.
19-4 ASIST Users Guide–Version 9.6

EGSE Interface
Usage/Examples

The easiest way to undertand how to use the data center is to examine some sample setups. Thus, I will present three
sample cases:

Example 1: Reading UDP Telemetry

Goal: To read a UDP telemetry data stream sending packets on port 1234. No commanding necessary:

Steps:

1. Setup STOL_CONFIG file to read data from data center on channel D:
TLMD=my_machine,5001

2. Start ASIST, and configure data center to client mode, with TLM port 5001, by typing the following at STOL:
dc_set_cmd_client ;; Not really necessary, since this is default
dc_set_tlm_port 5001

3. Start the data center: dc_open

4. Acquire telemetry: acq d on

5. Open the telemetry port between the data center and EGSE by sending the following directive from STOL:
dc_dir open udp_read C%03X 1234 packets

 At this point the data center port has been established and is ready to process a data stream.

6. When done, send:
dc_dir close C%03X
dc_close

(Note: If the stream wasn't packets, just data, we could have used: dc_dir open STUF udp_read 1234 datagram which
would deliver data w/DDID=STUF to ASIST)

Example 2: UDP Commands and Telemetry, Data_Center in server mode

Rather than a front end, your flight unit uses a UDP interface to send and receive packets. In this case, I set the data
center in server mode, and the ASIST FEDSMachine to point to the data center, so that all commands go there rather
than to a separate FEDS.

1. Setup STOL_CONFIG file to read data from data center on channel D, and to connect to the data center on port 5002:
FEDSMachine=my_machine,5002
TLMD=my_machine,5001

2. Start ASIST, and configure data center to server mode, with TLM port 5001 and CMD port 5002 by sending the fol-
lowing directives from STOL:

dc_set_cmd_server my_machine,5002
dc_set_tlm_port 5001

3. Start the data center:
dc_open

4. Acquire telemetry
acq d on

5. Open the telemetry port to the data center:
dc_dir open udp_read C%03X 1234 packets

(Note: You will receive C001, C002, C003 for apids 1, 2, 3 respectively)
ASIST Users Guide–Version 9.6 19-5

CHAPTER 19
6. Open the command connection:
dc_dir open udp_write CPKT your_spacecraft 1234 ascii_packets

(Note: CPKT is the default SFDU for commands, so they will all go through this connnection)

 Now the data center is ready to process a data stream.

7. When done, send:
dc_dir close CPKT dc_dir close C%03X
dc_close

Example 3: Connect to a TCP-server providing telemetry in SFDUs, and broadcast that to multiple
ASIST clients

 You have an EGSE which "speaks" the ASIST Telemetry protocol, but only can serve one client. You would like
ASIST to receive that data and send it to other ASIST machines. No command connection is necessary.

1. Setup STOL_CONFIG file to read data from data center on channel D on all the ASIST machines that you want to
receive the data:

TLMD=my_machine,5001

2. Start all the ASIST's. On my_machine (which is to be the telemetry server), configure data center to client mode, with
TLM port 5001:

dc_set_cmd_client ;; Not really necessary, since this is default
dc_set_tlm_port 5001

3. On my_machine, start the data center:
dc_open

4. Acquire telemetry on all machines
acq d on

5. On my_machine, open the telemetry port on data center:
dc_dir open tcp_client WHAT egse_machine 2001 sfdu_asist 12

(This opens a tcp connection to port 2001 on egse_machine, connecting as SFID 12 For sfdu_asist connections, the
ddid is just a label; it isn't transmitted with the data).

 The data senter is ready to process a telemetry data stream.

6. When done, send:
dc_dir close WHAT
dc_close
19-6 ASIST Users Guide–Version 9.6

AS
Glossary
APID
A unique number used to uniquely identify telemetry packets and command destinations on-board the spacecraft.

AOS Transfer Frames
The packages of telemetry data sent from the spacecraft to the ground. Their format fits the CCSDS protocol.

ATCW
An ASIST workstation whose command link is connected to the Primary Test Conductor Workstation. All spacecraft
commands sent from this workstation must be screened by the PTCW before they are forwarded to the spacecraft.

CCSDS
ASIST uses the CCSDS international standard which describes a packet switched data network capability for space appli-
cations. This standard is modeled on the physical, link, application data, and file transfer layers of the International Stan-
dards Organization (ISO) layered network model.

CMH
The portion of ASIST which routes mandates to their final destination.

CITM Image and Table Manager
The portion of ASIST which sends memory loads to the spacecraft and receives memory dumps from the spacecraft.

CLTU Command Link Transmission Unit
A group of one or more command transfer frames. CLTUs are used to send transmit commands to the spacecraft.

Commands
Instructions ASIST sends to the spacecraft. Commands are formatted according to the user-defined command database
and are verified at the Primary Test Conductor Workstation before they are sent.

Command & GSE Communication LAN (CGCLAN)
The local area network in the I&T environment, separated by a filtering bridge from all other sites. All commands and
file-system transfers occurs over this network.

Command Database
A database containing the format of all commands and directives which can be sent by the user. The database is defined
using RDL. (see chapter 5 for more details).

COP-1 Command Operation Procedures #1
The CCSDS-defined protocol used by FCP to transmit commands to the spacecraft. This protocol includes spacecraft ver-
ification of commands, and guaranteed command sequence integrity.

Current Value Table (CVT)
IST Users Guide–Version 9.6 -1

A table in ASIST's memory containing the current state of the GSE and spacecraft.

DDO
An field on a telemetry page that displays changeable data.

Directives
Instructions to the ground system. Some directives control STOL, such as START a procedure and GO. Other directives
give instructions to other portions of the ground system, such as the ACQUIRE directive, which tells the telemetry han-
dler what data it should and should not handle. These directives are formatted according to the command database and
sent through the mandate handler to their destination, just as commands are.

Event
Messages from ASIST to the user. Each event has associated with it the level of severity, the class of event (such as status,
limit failure, or procedure), and the ASIST subsystem which sent it. They may be viewed in the event pages, on the event
printer, or by directly viewing the event log file.

Event Log
A file written by ASIST containing all messages from ASIST to the user. It is stored in the directory $STOL_LOG in the
file seqevh.log. This file contains all events generated during the current ASIST session.

FCP
A number used to identify a mandate to the subsystem which receives it.

FEDS
A gateway between the spacecraft and the ASIST GSE. It reads and interprets AOS frames, extracting data packets and
converting them into SFDUs, which are then sent to ASIST.

Function Code
A number used to identify a mandate to the subsystem which receives it.

GEVH Event Handler
The portion of ASIST which captures and writes to disk each event as it is generated.

GSE
Ground systems provide the capability to send commands to a spacecraft and receive, view, and interpret telemetry data
sent from a spacecraft.

ICD
A document describing how to interface to a particular system.

IGSE
Ground systems provided by (and for) the instrumenters which can send commands through ASIST to the spacecraft, and
which connect to the SIS to receive telemetry.

IMON Initialization Monitor
The portion of ASIST responsible for starting the system and maintaining its correct operation.

Mandate
A command or directive. ASIST formats mandates based upon the user-defined command database, then packages them
in CCSDS-compatible Standard Formatted Data Units (SFDUs) and routes them to their destination.

Meliorism
[from Latin, melior, better] noun 1. belief that things naturally tend to get better, especially when furthered by human
effort; 2. belief that all processes and projects evolve organically towards a perfect conclusion even when hindered by
human effort.

MWM Motif Window Manager
The system resource used by ASIST to interface with X-Windows.
-2 ASIST Users Guide–Version 9.6

Glossary
NFS
Allows PTCW and ATCW(s) to share a disk, and thus have a common database, and common sets of RDL files, telemetry
pages, and procedures.

Packet
A group of telemetry data which ASIST receives in a contiguous stream. Each packet is identified by a unique Applica-
tion ID.

Page Editor
The tool used to design and build telemetry pages.

Page Snap
A printout of a telemetry page.

Paste Buffer
A temporary storage area of the display, used to hold information the user wishes to copy from one place to another.

Postscript
The language used to describe graphics to most graphic-capable laser printers. Page snaps are generated in postscript, and
thus require a postscript-compatible printer.

Pseudo Telemetry
Data derived from telemetry, based upon a set of user-defined equations. The equations are defined in the telemetry data-
base RDL files and are executed periodically.

PTCW
The ASIST workstation which sends commands directly to the SIS. All other ASIST workstations and IGSEs send space-
craft commands to this workstation. Commands must first pass several screening tests before they are sent on to the space-
craft.

RDL Record Definition Language
The database-definition language used to define the telemetry and command databases. It is a hierarchical language,
which provides constructs to define scalar and aggregate data types and their attributes.

Read-Key
The portion of a DDO which tells ASIST what data to display.

RTFM
Generic ephithet. See Chapters 1 to 17 for more information on system operations. Repeat as necessary.

Sammi
The user-interface tool used to develop the page-display portions of ASIST. This term is often incorrectly used when dis-
cussing the page-display portions of ASIST. Sammi is a product of Kinesix Corporation.

SDS Spacecraft Data System
The command and data handling portion of the spacecraft.

SFDU Standard Formatted Data Units
A standard data-packet format defined by CCSDS which ASIST uses when sending and receiving telemetry and man-
dates. See the commanding chapter for more detail about SFDUs.

SIS Spacecraft Interface System
Systems which provide the link between ASIST and the spacecraft. Two examples of SISs are FEDS and the XTE/TRMM
spacecraft simulator.

SPTP
The portion of ASIST which periodically processes equations stored in the telemetry database and deposits the results into
the CVT.
ASIST Users Guide–Version 9.6 -3

STOL Systems Test and Operations Language
The primary interface between the user and ASIST. It is a procedural language which can send commands and directives
and run automated test procedures. STOL is often used to mean the STOL interface or the STOL language.

STOL Procedure
A sequence of STOL statements to be executed sequentially. They are stored in a procedure file and are initiated by a user
from the STOL window.

STOL Statement
Mandates (commands or directives), logic test statements (such as IF...THEN...ELSE or DOWHILE constructs), or other
flow control statements (such as GOTO or WAIT) which the user may enter in STOL or in STOL procedures.

Syzygonodelusion
[from the Greek, syzygos, yoked together, from syn+zygon, yoke + Middle English deluden, from Latin, delusio, past par-
ticiple of deludere, to play] 1. noun a pointless exercise undertaken in the belief that it is of monumental significance. 2.
syzygonodelusional adj state or quality of a group whose members are bonded primarily by their sharing the same persis-
tent false belief.

Telemetry
Data received from the spacecraft or other systems connected to ASIST.

Telemetry Database
A database containing the format of all the data ASIST will receive. The data is broken up into groupings called packets,
each of which must have a unique Application ID. Each packet is then broken into individual telemetry points. The data-
base is defined using RDL. (see chapter 5) and can be compiled by using the command dbcmptlm. To use a newly com-
piled database, you must load it (using the command dbloadtlm) and then restart ASIST.

Telemetry LAN (TLAN)
A high speed telemetry link between the FEDS and the ground systems (both ASIST and IGSEs).

Telemetry Page
A window which displays the current values of telemetry points. These can be created and edited using the Page Editor.

Telemetry Point
One particular value transmitted by the spacecraft and stored in the current value table.

TIO
The portion of ASIST which receives telemetry from either external sources or local archives and routes it to the local
archive or the telemetry handler.

TLMH
The portion of ASIST which checks limits of incoming telemetry data and deposits telemetry into the CVT.

Y2K
The year 2000 AD, when all software stopped working, and an age of darkness descended upon the world (along with
computer-bug generated plagues of locusts). I hope you stocked up on ammunition and ran for the hills while you had a
chance.
-4 ASIST Users Guide–Version 9.6

AS
APPENDIX A Directives
Introduction

The following pages contain directives that are currently supported by the SGSE system. The directives are listed in
alphabetical order. (The character '_' comes after 'Z'.)

The SGSE subsystems supported are Page Display (DPD), Front End Data System (FEDS), Event Logger (GEVH) Man-
date Handler (CMH), Image and Table Manager (CITM), Telemetry Handler (TIO/TLMH), and Stored Command Proces-
sor (OSCP).

Using On-line Help

Help is available for directives by entering HELP subject. This opens a SAMMI window displaying either help on sub-
ject, or a list of help items beginning with or matching subject. Typing HELPLOG subject will put the information in the
event log. Typing HELPFIND item will search all available help files for item, printing either a list of subjects containing
item, or the subject containing item if it was only found in one help file.

Example:

HELP help ; get help on help
HELP otlmbyapid; get info about otlmbyapid
HELP ; get a complete list of all available

; help
HELP o ; get a list of all directives beginning

; with the letter o

HELPFIND log; Find all help files containing the word
; "log"
IST Users Guide–Version 9.6 A-1

APPENDIX A
List of Directives

Directive Purpose ... Page

ACQUIRE Acquire Telemetry From Specified Channel .. A-7
/ALLOW Allow a command from the hazardous command pending queue A-8
/ALLOW_SOURCE Allow the command in the hazardous command pending queue from the given source

A-8
ARCHIVE Enable/Disable Local Telemetry Archiving ... A-9
BROADCAST Send a message to all workstations .. A-10
/CANCEL Cancel a command from the hazardous command pending queue A-10
/CANCEL_SOURCE Cancel a command in the hazardous command pending queue from the given source

A-11
CHANGE_PLOT Changes the characteristics of a plot telemetry page (opened using the plot directive)

A-11
CHART_TIME Tells strip-charts on telemetry pages whether to plot against current (ground) time or

spacecraft time .. A-12
CLEAR Remove Telemetry Page ... A-13
CLEARALL Remove All Telemetry Pages ... A-13
CLEARLP Clears the Event Printer buffer when you want to cancel printing in progress. ... A-13
/CLTU Transmit Raw CLTU .. A-14
CMD_DISABLE Turns off a given associate workstations ability to send hazardous, critical, or any com-

mands .. A-14
CMD_ENABLE Turns on a given associate workstations ability to send hazardous, critical, or any com-

mands .. A-15
CMD_HANDOVER Transfers the command path to a new FEDS-to-Ground Station connection A-15
CMD_HANDOVER_WITH_TIMEOUT Transfers command path to a new FEDS-to-Ground Station connection A-16
CMD_PARM_CHECKING_DISABLE Turns off checking of parameters in commands. A-16
CMD_PARM_CHECKING_ENABLE Turns on checking of parameters in commands. ... A-16
CommandsByAPID Generates a report of commands sorted by apid ... A-17
CommandsByName Generates a report of commands sorted by name ... A-17
CMPFIXED Compare Telemetry Archive with a Fixed Pattern ... A-17
COMPARE Compare Spacecraft Image or Table Files ... A-18
CONS_DISABLE Disable STOL commanding from an X-Terminal Console A-19
CONS_ENABLE Enable STOL commanding from an X-Terminal Console A-19
CREATE_LOAD Creates a load file from the current value table .. A-19
CREATE_PARTIAL_LOAD Creates a partial load file from the current value table ... A-20
CVT_TO_FILE Writes the contents of a CVT variable (or packet) to a file A-21
D422 Send a directive to the RS-422 Gateway Task of the FEDS Commanding Software ...

A-21
DBCMPCMD Compile Command Definitions .. A-22
DBCMPTLM Compile Telemetry Definitions .. A-22
DBEDIT Edit Command or Telemetry Definitions ... A-23
DBLOADCMD Copy Command Database .. A-23
DBLOADTLM Copy Telemetry Database .. A-23
DCOD Send a directive to the Coding Layer of the FEDS Commanding Software A-24
DDDD Send a directive to the DSN Gateway Task of the FEDS Commanding Software

A-24
DFMH Send a directive to the FEDS mandate handling task ... A-25
DHDS Request data from the Digital History Data Store .. A-25
A-2 ASIST Users Guide–Version 9.6

Directives
DHDS_WINDOW Open a telnet (playback) session with the Digital History Data StoreA-26
DISABLE Disable a command source ..A-27
DISABLE_EQUATION Turn off processing of a given pseudo-telemetry equationA-27
DISABLE_PACKET_EQUATIONS Turn off processing of all pseudo-telemetry equation with a given application ID.

A-28
 ...A-28

DISABLE_REMOTE_DIRECTIVES Turn off the ability to receive STOL directives via the ASIST command bus
A-28

DISABLE_VC Stop Processing Virtual Telemetry Channel ...A-28
DISPLAY Display Telemetry Mnemonic ...A-29
DNAS Send a directive to the Nascom Gateway Task of the FEDS Commanding Software ..

A-29
DPD_ARCH_TIME Set the source of time displayed on trend’s (stripcharts) on a given telemetry page

A-30
DPHY Send a directive to the Physical Layer of the FEDS Commanding SoftwareA-30
DSEG Send a directive to the Segmentation Layer of the FEDS Commanding Software

A-31
DUMP Dump Spacecraft Image or Table ..A-31
DUMP_TO_CVT Places the contents of a dump file in the current value table.A-32
DUMPARC Display Contents of Telemetry Archive ..A-33
DXFR Send a directive to the Transfer Layer of the FEDS Commanding SoftwareA-33
EMACS Edit Text File ...A-35
ENABLE Enable a command source ...A-35
ENABLE_EQUATION Turn on processing of a given pseudo-telemetry equationA-36
ENABLE_PACKET_EQUATIONS Turn on processing of all pseudo-telemetry equations within a given application ID

A-36
ENABLE_REMOTE_DIRECTIVES Causes STOL to accept/execute STOL directives received via the ASIST com-

mand bus ..A-37
ENABLE_VC Start Processing Virtual Telemetry Channel ...A-37
EVENT_PRINTER Control the event printer ..A-37
FILE_SEARCH Search for a file over a given set of directories ...A-38
FILE_SEARCH_NF Search for a file over a given set of directories ...A-38
FILE_TO_CVT Reads the contents of a file into a CVT variable (or packet)A-39
/FRAME Transmit Raw Transfer Frame ...A-39
GPIB_CMD Sends the given command string to the specified GPIB device.A-40
GPIB_DEFINE Assigns a device name to a given GPIB primary and secondary addresses.A-40
GPIB_END_MONITOR Ends all automatic queries (monitors) for the specified GPIB device.A-41
GPIB_MONITOR Similar to GPIB_QUERY, except that the query is repeated every 3 seconds.A-41
GPIB_PANEL To enable/disable the specified GPIB device's front panel buttons.A-41
GPIB_QUERY Queries the specified GPIB device and stores the response in the CVT.A-42
GPIB_SET_CRLF Overrides the default termination characters sent to the specified GPIB device. .A-42
GPIB_SET_DELAY Sets the delay used by the GPIB query directives. ..A-42
GPIB_SET_TIMEOUT Adjust how long ASIST will wait for the specified device to respond.A-43
GPIB_SHOW_MONITOR To show any/all automatic queries (monitors) for the specified GPIB device.A-43
GPIB_UNLOCK Clears a lockout condition for the specified GPIB device.A-44
/GPIB_CANCEL_POLL Cancel a poll event. ...A-44
/GPIB_LIST_POLL_EVENTS List poll events. ...A-44
/GPIB_POLL Poll a device at predefined rate. ..A-45
/GPIB_READ Read data from specified GPIB device. ..A-46
/GPIB_SET_CRLF Set whether an end-of-line indicator should be sent to the specified device after each

GPIB command. ..A-46
ASIST Users Guide–Version 9.6 A-3

APPENDIX A
/GPIB_SET_DELAY Set polling delay between GPIB write and read. .. A-47
/GPIB_SET_DEVICE_MODE Place device in specified operating mode. .. A-47
/GPIB_SET_TIMEOUT Set the time-out for the specified device .. A-48
/GPIB_UNLOCK Re-activate a locked GPIB device .. A-48
/GPIB_WRITE Send a command to specified GPIB device. ... A-49
HDF_CLOSE Stops collection of data to a given HDF file .. A-49
HDF_FLUSH Flush any buffered data for the given HDF file .. A-49
HDF_LIST Lists what is currently being collected to HDF files .. A-50
HDF_OPEN Starts collection of data to a given HDF file .. A-50
HELP Opens a window containing help on the requested subject A-51
HELPFIND Opens a window listing all available help subjects whose text contains a specified key-

word .. A-51
HELPLOG Prints help on the requested subject to the event log .. A-52
HIDELAYER Hides a layer on a SAMMI page .. A-52
IDL Add a page of trend plots to an IDL analysis page. .. A-53
IDL_BULK Collect raw data in IDL and create an output file. .. A-53
IDL_CHANGE_BULK_FILE Set the name of IDL’s bulk output file. .. A-53
IDL_COLLECT Collect data in IDL and create an output file in the specified format. A-54
IDL_GO Starts the COTS trending tool IDL. .. A-54
IDL_MANY Opens a list of plots specified in a file. ... A-55
IDL_STOP Stops the current session of the COTS trending tool IDL. A-55
IDL_XY Create an IDL plot of x-variable vs. the indicated y-variables in IDL. A-55
IS_STATION_CONNECTED_FOR_CMDS Determines if the given ground station is connected for commanding to the

FEDS .. A-56
KILL_THAT_PAGE Delete a Sammi “permanent” page ... A-56
LIMIT_REPORTS Set the format of ASIST’s limit failure messages .. A-57
LISTARC Produce a Directory Listing of Telemetry Archive Files A-57
/LIST_HAZ Lists all commands currently in the hazardous command pending queue A-57
LOAD Load Spacecraft Image or Table File ... A-58
LOAD_PSEUDO Load new pseudo-telemetry equations ... A-59
LOAD_TO_CVT Place the contents of a load file in the Current Value Table A-59
LOG_FILE Insert a Text File into the Event Message Log ... A-60
MESSAGE Send a message to a given ASIST workstation .. A-60
NEW_FEDS Switches the primary-to-FEDS command link (fails over) to a new machine A-60
NEWLOG Close and reopen the event log ... A-61
NEW_PRIMARY Switches the primary (fails over) to a new machine .. A-62
OCMDBYAPID Create Command Database Report Sorted By APID from the running database A-62
OCMDBYMNEM Create Command Database Report Sorted By Mnemonic from the running database .

A-62
OTLMBYAPID Create Telemetry Database Report Sorted By APID from the running database. A-63
OTLMBYMNEM Create Telemetry Database Report Sorted By Mnemonic A-63
OTLMSIZE Create Telemetry Database Report For Record Lengths A-64
PACKET_VIEW Views raw incoming packet data in an ASIST page .. A-64
PAGE Display a Telemetry Page ... A-64
PAGE_REMOTE Open a page on the specified console ... A-65
PAGE_UPDATE_RATE Open a page on the specified console ... A-65
PLOT Open a telemetry page containing a graph of up to four telemetry item(s) versus time

A-66
PLOT_SEQ Create a plot (using gnuplot) from a sequential print file A-66
PLOT_SEQ_LP Create a plot (using gnuplot) from a sequential print file and send it to the printer

A-67
A-4 ASIST Users Guide–Version 9.6

Directives
POPUP_HAZ Enable or disable the hazardous command pending popup window.A-68
PRCEDIT Edit STOL Procedure File ...A-68
PRINT Print Spacecraft Image or Table File ...A-68
PSEUDO_COMPILER Compile new pseudo-telemetry equations ...A-69
PVERIFY Verify that a telemetry point is within a range specified by percentageA-69
QUIT Exit STOL ...A-70
RAIL_OFF Disables rail-limit checking for a given telemetry pointA-70
RAIL_ON Enable rail-limit checking for a given telemetry point ..A-71
/RAW Transmit Raw SFDU ...A-71
RELOAD_PSEUDO Reload startup pseudo-telemetry equations ...A-71
REOPEN_TELEMETRY Close the current connection to a telemetry source and reopen a new oneA-72
RESETSTATE Resets the limit & polynomial states to those defined in the telemetry database ..A-72
RESHOW Sets the frequency of red exception messages for a given telemetry pointA-73
SAMMI Send a native SAMMI command to SAMMI ..A-73
SAMPLE_CVT Capture the current value of specified telemetry points ..A-74
SAVESTATE Saves the current limit & polynomial states to a procedure fileA-74
SCP Stored Command Sequence Processor ..A-75
SCREENING Enable/Disable User Screening of Commands ..A-76
SETLOG Set Event Logger Filter ...A-76
SEQ GNU Print Telemetry Point(s) to File Upon Receipt of Packet(s) in the format expected by

gnuplot ...A-77
SEQ INTERACTIVE Open an interactive session with the decommutated sequential telemetry stream server.

A-78
SEQ KILL_STREAMS Closes one or more sequential streams ..A-79
SEQ LIST Lists sequential client programs (either print, timed, gnu, or interactive) currently run-

ning. ...A-79
SEQ LIST_STREAMS Lists any currently open sequential streams ..A-79
SEQ PACKET Displays a raw dump of the given packet in a window. ..A-80
SEQ PRINT Print Telemetry Point(s) to File Upon Receipt of Packet(s)A-80
SEQ PRINT_TABBED Print Telemetry Point(s) to File With Tab-DelimitersUpon Receipt of Packet(s) A-81
SEQ TIMED Print user specified telemetry points to a file based upon receipt of specified packets

and packet times ..A-82
SHOWLAYER Show a layer on a SAMMI page ...A-83
SHOWLOG Show Event Logger Filter Settings ...A-83
SNAP Print Hardcopy of Telemetry Page ..A-84
SNAP_CUSTOM Generate a custom SNAP template for a given page ..A-84
SNAP_REMOTE Print Hardcopy of Telemetry Page and open it on an X-terminal, not on the console ..

A-85
START_XTERM Start an X-terminal console session on the named display (read the notes below)

A-85
STATARC Display Statistics on a Telemetry Archive ..A-87
STOP_BULK Stops collection of data in the IDL bulk file. ..A-87
STOP_XTERM Stops the X-terminal console session running on the named displayA-87
SVERIFY Verify that a string-valued telemetry point is equal to a given valueA-88
TDQ Opens a window containing a TDQ (Telemetry Database Query) sessionA-89
TelemetryByApid Generate a report of telemetry sorted by apid ...A-89
TelemetryByName Generates a report of telemetry sorted by name ..A-89
TLM_HANDOVER Change the source of telemetry to the given ground stationA-90
TLM_SOURCE Enable or disable receipt of telemetry over a given ethernet port.A-90
TVER Controls telemetry verification of commands ... A-90
TWO_STEP Control ASIST’s two-step command buffer ..A-91
ASIST Users Guide–Version 9.6 A-5

APPENDIX A
UPLINK BYPASS Enable/Disable Command Processor CCSDS Bypass Bit Mode A-92
UPLINK CONTROL Enable/Disable Command Processor CCSDS Control Bit Mode A-92
UPLINK COP1 Enable/Disable Command Processor CCSDS COP-1 Mode A-93
UPLINK FRAME Set the frame counter in the FEDS command software .. A-93
UPLINK RETRIES Set Command Processor Command Retransmission Count A-94
UPLINK RETRY Retransmit Last Command ... A-94
UPLINK TIMEOUT Set the timeout value for the FEDS command software A-94
VALIDATION Enable/Disable Command Validation Mode .. A-95
VERIFY Verify that a telemetry point is within a specified range A-95
VIEWRDLFILE Opens a text browser (less) to view the RDL file that defines a telemetry point . A-96
XTERM_LOOKUP Gets the console number for an attached X-terminal ... A-97

A-6 ASIST Users Guide–Version 9.6

Directives
Directive Descriptions

ACQUIRE
Acquire Telemetry From Specified Channel

Abbreviation:

ACQ

Syntax:

ACQUIRE [channel] [state]

or

ACQUIRE PLBK ON archive-name channel [FROM start-time] [TO end-time] [RATE (MANUAL | Xrate-multi-
plier | constant-rate)]

or

ACQUIRE PLBK OFF

or

ACQUIRE TRIGGER [number-of-sfdus]

Arguments:

Description:

This directive signals the telemetry subsystem to start or stop receiving real-time or playback telemetry data for the
specified physical channel(s).

Changing the state of real-time acquisition can only be done a single channel at a time. Thus, only one channel can be
entered when saying ACQ channel ON.

Playback, however, allows several channels to be specified on one line, since a new ACQ PLBK ON … directive
causes any previous playback to be stopped, and the given archive to be opened at the beginning. To playback from
some time other than the start of an archive, use the FROM and/or TO options. These cause playback to start at the
given FROM time and/or end at the given TO time.

The default playback rate is the same rate as the telemetry was received originally (also called real-time). This rate can
be changed to:

•A multiple of real-time: Add the option RATE X# to the acquire directive (where # is amount to multiply real-
time by).

channel A channel designator, A, B, C, … Z. Only a single real-time channel may be started at a time; how-
ever, multiple channels may be specified when starting playback data. Normally, telemetry is available
on the I or Q channel.
Note: The channel designator can be more than one letter. In this case, only the first letter is used. For
example, ACQ STIM ON would turn on acquire for channel S.

state ON or OFF

archive-name Which archive should be played back (from the LISTARC report)

start-time Begin playback from this time.

end-time End playback at this time.

rate-multiplier Amount to multiply real-time by for playback (i.e. X2 means two times real time, or twice as fast as it
originally occurred).

constant-rate Playback at a rate of one sfdu per this number of seconds (i.e. 2 means send one sfdu every two sec-
onds).

number-of-sfdus How many sfdus to playback (in MANUAL rate).
ASIST Users Guide–Version 9.6 A-7

APPENDIX A
•A constant rate: Add the option RATE constant-rate, where constant-rate is the number of seconds between
each SFDU.

•Manually: Add the option RATE MANUAL, meaning that one (or more) SFDU's is sent each time the direc-
tive ACQ TRIGGER is sent. This is useful for single stepping through data.

Example:
ACQUIRE I ON
ACQ Q OFF
ACQ PLBK ON FIRSTARC IQ
ACQ PLBK ON FIRSTARC IQ RATE X100
ACQ PLBK ON BIGTEST I RATE X2
ACQ PLBK ON SMALLTEST IQ RATE 2 !!! Send one SFDU every two seconds
ACQ PLBK ON 5 Q RATE MANUAL
ACQ TRIGGER

/ALLOW
Allow a command from the hazardous command pending queue

Abbreviation:

None

Syntax:

/ALLOW command-number

 or

/ALLOW TOP

Arguments:

Description:

This directive is used by the primary to send a command currently in the hazardous command pending queue to the
spacecraft. The command-number, which can be read from the event log, indicates what command to allow. After this
directive is issued, the command is sent to the spacecraft and an event message issued indicating this fact. If the com-
mand came from an ATCW, then an event message also appears on its event log indicating that the command was
accepted. Also, the issuer of the hazardous command is taken out of Hazardous Pending mode, meaning that it is now
free to issue more spacecraft commands.

This command only works when issued from the primary and when the given command number is actually pending in
the hazardous command pending queue. If either condition is not met, then an event message is displayed.

Example:
/ALLOW 1 ; Allows command #1 from the haz queue
/ALLOW TOP ; Allows the command at the top of the

; pending hazardous command queue

/ALLOW_SOURCE
Allow a command in the hazardous command pending queue from the given source

Abbreviation:

None

command-number The identifier for the hazardous command to allow. This number appears in the event log when the
hazardous command first enters the hazardous command queue, and in the hazardous command list
when the user issues the directive /LIST_HAZ.
A-8 ASIST Users Guide–Version 9.6

Directives
Syntax:

/ALLOW_SOURCE sfid

Arguments:

Description:

This directive is used by the primary to send a command currently in the hazardous command pending queue to the
spacecraft. The command allowed is the top command in the hazardous pending queue from the source with the given
sfid. After this directive is issued, the command is sent to the spacecraft and an event message issued indicating this
fact. If the command came from an ATCW, then an event message also appears on its event log indicating that the
command was accepted. Also, the issuer of the hazardous command is taken out of Hazardous Pending mode, mean-
ing that it is now free to issue more spacecraft commands.

This command only works when issued from the primary and when a command from the given source is actually
pending in the hazardous command pending queue. If either condition is not met, then an event message is displayed.

Example:
/ALLOW_SOURCE 0 ; Allows the top haz. command from the ; primary (SFID 0)
/ALLOW_SOURCE X'11'; Allows the top haz. command from PCA (SFID 11 hex)

ARCHIVE
Enable/Disable Local Telemetry Archiving

Abbreviation:

ARC

Syntax:

ARCHIVE ON ID channel-list [COMPRESSED | FILLCOMPRESS | UNCOMPRESSED]

or

ARCHIVE OFF

Arguments:

Description:

This directive signals the telemetry subsystem to start or stop archival of telemetry for the given channel(s).

Data is stored using one of the following compression methods:

Example:
ARCHIVE ON RUN1 I
ARCHIVE ON WAMPUM IQ
ARC OFF

sfid The self-identifier code of the command source (0=Primary, 1-9=Associate, and X'10'-X'1F' for
IGSEs).

ID A short string that identifies the archive (eight character maximum)

channel-list A list of one or more channel designators, A, B, C, … Z.

Method Meaning

Compressed (the default) Fill data and redundant CCSDS-header information are removed.

FillCompress Fill data only is removed.

Uncompressed Data is stored in the archive as received.
ASIST Users Guide–Version 9.6 A-9

APPENDIX A
BROADCAST
Send a message to all workstations

Abbreviation:

None

Syntax:

BROADCAST [message]

Arguments:

Description:

This directive sends a message to all workstations. This message will appear in each workstation’s event log, and will
be placed in each workstation’s CVT variable EV_MSG, while the SFID of the sender will be placed in each worksta-
tion’s CVT variable EV_SFID.

Example:
BROADCAST The spacecraft is on fire
BROADCAST Disregard the last message

/CANCEL
Cancel a command from the hazardous command pending queue

Abbreviation:

None

Syntax:

/CANCEL command-number

 or

/CANCEL TOP

Arguments:

Description:

This directive is used to reject a command currently in the hazardous command pending queue. The command-num-
ber, which can be read from the event log, indicates what command to cancel. After this directive is issued, the com-
mand is removed from the hazardous pending queue, a reject message sent to its issuer, and an event message issued
indicating this fact. If the command came from an ATCW, then an event message also appears on its event log indicat-
ing that the command was rejected. The issuer of the hazardous command is taken out of Hazardous Pending mode,
meaning that it is now free to issue more spacecraft commands.

This command works from either the primary or the associate test conductor workstation. It should be noted, however,
that the command number at the primary and at the associate may not be the same. These numbers are internal to each
machine, and it is ASIST's job to coordinate matching them between workstations.

If the command indicated is not pending, then an event message is displayed indicating the reason.

Example:
/CANCEL 1 ; Cancels command #1 from the haz queue
/CANCEL TOP ; Cancels the command at the top of the

message text to send to each ASIST workstation

command-number The identifier for the hazardous command to cancel. This number appears in the event log when the
hazardous command first enters the hazardous command queue, and in the hazardous command list
when the user issues the directive /LIST_HAZ.
A-10 ASIST Users Guide–Version 9.6

Directives
; pending hazardous command queue

/CANCEL_SOURCE
Cancel a command in the hazardous command pending queue from the given source

Abbreviation:

None

Syntax:

/CANCEL_SOURCE sfid

Arguments:

Description:

This directive is used to reject a command currently in the hazardous command pending queue. The command can-
celed is the top command in the hazardous pending queue from the source with the given sfid. After this directive is
issued, the command is removed from the hazardous pending queue, a reject message sent to its issuer, and an event
message issued indicating this fact. If the command came from an ATCW, then an event message also appears on its
event log indicating that the command was rejected. The issuer of the hazardous command is taken out of Hazardous
Pending mode, meaning that it is now free to issue more spacecraft commands.

This command only works when issued from the primary and when a command from the given source is actually
pending in the hazardous command pending queue. If either condition is not met, then an event message is displayed.

Example:
/CANCEL_SOURCE 0 ; Cancels the top haz. command from the ; primary (SFID 0)
/CANCEL_SOURCE X'11' ; Cancels the top haz. command from PCA (SFID 11 hex)

CHANGE_PLOT
Changes the characteristics of a plot telemetry page (opened using the plot directive)

Abbreviation:

None

Syntax:

CHANGE_PLOT [console console-id] [window window-name] [ymin min-value] [ymax max-value] [yminn min-
value] [ymaxn max-value] [update num-seconds] [span x-range-in-seconds] [spanm x-range-in-min] [spanh x-
range-in-hours] [title title-string] [xlabel xlabel-string] [ylabeln label-string]

Arguments:

sfid The self-identifier code of the command source (0=Primary, 1-9=Associate, and X'10'-X'1F' for
IGSEs).

console console-id specifies an attached X-terminal by console ID number. The default is 1. If you use the con-
sole argument, it must be first, immediately following the directive.

window window-name causes the plot in window-name to be change. If window is not defined, then the last win-
dow opened (in the STOL variable last_plot) is used.

ymin min-value sets the minimum value for the y axis.

ymax max-value sets the maximum value for the y axis.

yminn min-value sets the minimum value for the nth value on the y axis.

ymaxn max-value sets the maximum value for the nth value on the y axis.

update num-seconds defines how often the graph will be updated (in seconds).
ASIST Users Guide–Version 9.6 A-11

APPENDIX A
Description:

This directive allows you to change the characteristics of a plot opened using the plot directive.

Example:
change_plot ymin1 -20 ymax1 30

changes the y axis range to -20,30 for the first curve on the last plot window opened.

change_plot window gen_plot2:1 update 30 spanh 16

changes the plot in the window titled gen_plot2:1 to have an x-axis range of 16 hours and data to be updated every 30
seconds.

See also:

plot (page A-66)

CHART_TIME
Tells strip-charts on telemetry pages whether to plot against current (ground) time or spacecraft time

Abbreviation:

None

Syntax:

CHART_TIME [REAL | ARCH]

Description

This directive tells which time is plotted in a strip-chart (trend) DDO, either the current time (REAL) or the spacecraft
time in an archived telemetry-point’s packet (ARCH). Remember that pseudo telemetry is calculated on-the-fly and
so can only be plotted in real time.

If you switch from REAL to ARCH time, you must close and re-open any strip-charts you were running in order to
update the X-axis.

Use CHART_TIME with no arguments to see the current setting.

Note: CHART_TIME uses a global STOL variable and thus affects all plots that may be opened on attached X-termi-
nal consoles. Because of this and other problems, CHART_TIME is now obsolete, but maintained for compatibility
with existing pages. Please use its improved replacement, DPD_ARCH_TIME, to view archive time on playbacks.

Example:
CHART_TIME REAL
CHART_TIME ARCH
CHART_TIME

See also:

DPD_ARCH_TIME

CLEAR

span x-range-in-seconds defines the x range in seconds.

spanm x-range-in-minutes defines the x range in minutes.

spanh x-range-in-hours defines the x range in hours

title title-string puts a new subtitle on the plot.
Warning: this title can’t contain spaces, and also can’t contain quotes. To create multi-word
titles, put underscores or dashes between words, like This-is-a-funny-title.

xlabel label-string puts a new label on the x-axis.

ylabeln label-string redefines the name of the nth item on the y axis (and displays it on the y axis).
A-12 ASIST Users Guide–Version 9.6

Directives
Remove Telemetry Page

Abbreviation:

CLR

Syntax:

CLEAR pagename [console-number]

Arguments:

Description:

This directive signals the page management software to remove the specified telemetry page from the specified screen.

Example:
CLEAR "my_page"
CLEAR "your_page" 3; Clear your_page from X-term 3

CLEARALL
Remove All Telemetry Pages

Abbreviation:

none

Syntax:

CLEARALL [console-number]

Arguments:

Description:

This directive signals the page management software to remove all telemetry pages from the specified screen.

Example:
CLEARALL
CLEARALL 2

CLEARLP
Clears the Event Printer buffer when you want to cancel printing in progress.

Abbreviation:

None

Syntax:

CLEARLP

Arguments:

None

Description:

This directive interrupts spooling to the Event Printer and clears the spooler's buffer. Use this when you want to cancel
printing in progress. This directive does not clear the printer's memory buffers, so expect some lag time while lines
already in the printer's memory empty to the paper.

pagename The name of the page to remove from the screen.

console-number A number from 1 to 4 identifying the page’s X-terminal console.

console-number A number from 1 to 4 identifying the console to clear.
ASIST Users Guide–Version 9.6 A-13

APPENDIX A
If you accidentally send to the printer a file that is many times longer than the 1000 lines currently allocated for printer
spooling, you must repeat the CLEARLP directive several times to be sure that all of the file gets flushed from the
spooler's buffers.

Example
CLEARLP

/CLTU
Transmit Raw CLTU

Abbreviation:

CLTU

Syntax:

/CLTU cltu-data-string

Arguments:

Description:

This directive signals the command processor to transmit the specified hexadecimal string as the contents of a CLTU.

Example:
/CLTU 01AF45EE6D4140

CMD_DISABLE
Turns off a given associate workstations ability to send hazardous, critical, or any commands

CMD_DISABLE [CMD | HAZ | CRIT | HAZ_CRIT | ...)] (sfid | machine-name | ALL)

Arguments:

Description:

This directive is used by the primary to prevent associate workstations from sending spacecraft commands. The pri-
mary can specify whether to disable all commands, or just hazardous and/or critical commands. After this directive is
issued, any spacecraft commands of the type disabled sent from the indicated associate will be rejected. All command
sources default to being disabled for commanding (CMD), but hazardous and critical commanding is automatically
enabled the first time you enable an associate for commanding.

Entering CMD_DISABLE CMD,ALL disables all associates, preventing them from sending spacecraft commands.

Example:
DISABLE CMD,X'11' ; Disables SFID 17 (11 hex)

cltu-data-string A string of hexadecimal characters containing a CLTU.

sfid The self-identifier code (in hexadecimal) of the command source being disabled. This usually ranges
from 01 to 1F.

machine-name The name of the machine being disabled. This only works after the machine has connected on the com-
mand port.

ALL Specifies that all associates should be disabled.

CMD Causes ASIST to reject any command from the given associate

HAZ Causes ASIST to reject any hazardous commands sent from the given associate

CRIT Causes ASIST to reject any critical commands sent from the given associate

HAZ_CRIT, ... Any combination of the three keywords above, separated by an underscore, will cause multiple types
of commanding to be disabled. The only one which makes much sense, however, is HAZ_CRIT.
A-14 ASIST Users Guide–Version 9.6

Directives
DISABLE HAZ_CRIT,sgse5 ; Prevents sgse5 from sending hazardous
 ; and critical commands.

CMD_ENABLE
Turns on a given associate workstations ability to send hazardous, critical, or any commands

CMD_ENABLE [CMD | HAZ | CRIT | HAZ_CRIT | ...)] (sfid | machine-name | ALL)

Arguments:

Description:

This directive is used by the primary to allow associate workstations to send spacecraft commands. The primary can
specify whether to enable all commands, or just hazardous and/or critical commands. It should be noted, however, that
for an associate to be able to send hazardous commands, it must be enabled for both commanding (CMD) and hazard-
ous commands (HAZ). All command sources default to being disabled for commanding (CMD), but hazardous and
critical commanding is automatically enabled the first time you enable an associate for commanding.

Entering CMD_ENABLE CMD,ALL enables all associates, allowing them to send spacecraft commands.

Example:
ENABLE CMD,X'11' ; Enables SFID 17 (11 hex)
ENABLE HAZ_CRIT,sgse5 ; Allows sgse5 to send hazardous
 ; and critical commands.

CMD_HANDOVER
Transfers the command path to a new FEDS-to-Ground Station connection

Abbreviation:

none

Syntax:

CMD_HANDOVER station-name

Arguments:

Description:

sfid The self-identifier code (in hexadecimal) of the command source being enabled. This usually ranges
from 01 to 1F.

machine-name The name of the machine being enabled. This only works after the machine has connected on the com-
mand port.

ALL Specifies that all associates should be enabled.

CMD Causes the primary to allow the given associate to send spacecraft commands

HAZ Causes the primary to allow the given associate to send hazardous commands (although the primary
must still approve the commands, using the /ALLOW directive (See “/ALLOW” on page A–8.),
before the command is forwarded to the spacecraft).

CRIT Causes the primary to allow the given associate to send critical commands (although the primary must
still approve the commands, using the /ALLOW directive (See “/ALLOW” on page A–8.), before the
command is forwarded to the spacecraft).

HAZ_CRIT, ... Any combination of the three keywords above, separated by an underscore, will cause multiple types
of commanding to be disabled.

station-name The name of the station to which your commands should be delivered. station-name must match one of
the stations listed in the telemetry point AVAILABLE_CMD_GATEWAYS.
ASIST Users Guide–Version 9.6 A-15

APPENDIX A
This directive tells the FEDS what ground station to send your commands to. It waits for that station to be connected for com-
mands, and then makes that station the active command-gateway .

Example:
 cmd_handover "WGS"
; This directive will not return until the WGS ground station
; connects. Upon return, the command destination will be WGS.

CMD_HANDOVER_WITH_TIMEOUT
Transfers command path to a new FEDS-to-Ground Station connection

Abbreviation:

none

Syntax:

return-value=CMD_HANDOVER_WITH_TIMEOUT(station-name, timeout-in-secs)

Arguments:

Return Value:

1 if the command gateway was changed, or 0 if it wasn’t changed within the timeout period.

Description:

This function tells the FEDS what ground station to send your commands to. It then waits up to timeout-in-secs seconds to see
if the change has taken place. If it did, the function returns 1; otherwise, it returns 0.

Example:
if (cmd_handover_with_timeout ("AGS", 10) = 0) then

write “Please page Larry”; Handover failed; take appropriate action...
endif

CMD_PARM_CHECKING_DISABLE
Turns off checking of parameters in commands.

CMD_PARM_CHECKING_DISABLE

Arguments:

None

Description:

This directive turns off checking user-entered parameter values for commands to see that they are within the database-
prescribed limits. This is primarily for negative testing of commands.

CMD_PARM_CHECKING_ENABLE
Turns on checking of parameters in commands.

CMD_PARM_CHECKING_ENABLE

Arguments:

None

Description:

station-name The name of the station to which your commands should be delivered. station-name must match one of
the stations listed in the telemetry point AVAILABLE_CMD_GATEWAYS.

timeout-in-secs The number of seconds to wait before “declaring” that the gateway didn’t change.
A-16 ASIST Users Guide–Version 9.6

Directives
This directive enables checking user-entered parameter values for commands to see that they are within the database-
prescribed limits. Command parameter checking is enabled by default.

CommandsByAPID
Generates a report of commands sorted by apid

Abbreviation:

CMDBYAPID

Syntax:

CommandsByAPID [apid]

Arguments:

Description:

This directive generates a report of commands by APID/function. If no apid is entered, a report of the entire database
is generated. If an APID is entered, then the report consists of all commands with that APID. In either case, the report
is sorted by APID/function code.

CommandsByName
Generates a report of commands sorted by name

Abbreviation:

CMDBYNAME

Syntax:

CommandsByName command-search-string

Arguments:

Description:

This directive generates a report of commands by name. If no name is entered, the report is for the entire database. If a
name is entered, then the report consists of items starting with the given string. This name is a regular expression
which is anchored to the beginning of the name. Thus, SNO matches SNOOPCMD OR SNOWBALL while '.*ABC'
matches any name with ABC anywhere in it (i.e. ABCdefg or bABCock).

CMPFIXED
Compare Telemetry Archive with a Fixed Pattern

Abbreviation:

None

Syntax:

CMPFIXED archive-name,vcid,apid,filter,pattern,[output],[miscompare]

Arguments:

apid The apid of the commands to appear in this report.

command-search-string The command search string is a string that appears somewhere in the command name.

archive-name The name of the archive to be compared.

vcid The virtual channel identifier (0-63) of the virtual channel to select packets from for comparison.

apid The APID of the packet to be compared.
ASIST Users Guide–Version 9.6 A-17

APPENDIX A
Description:

This directive compares a packet from the specified archive with a fixed pattern. The packet may be selected from a
specific virtual channel, based on the filter factors given. The results of the comparison are normally displayed on the
screen. If the output and/or miscompare files are specified, sequence gaps and general comparison information is writ-
ten to the output file and miscompared packets are dumped to the miscompare file.

Example:
CMPFIXED 1,0,1,1:1,APID_1_PATTERN

COMPARE
Compare Spacecraft Image or Table Files

Abbreviation:

None

Syntax:

COMPARE file1,[file2],[start1],[end1],[start2],[end2],[print-device],[copies]

Arguments:

Description:

This directive compares the two spacecraft images or tables contained within the given files (which may be either load
or dump files). Each file defines the area to be compared, but the contents may be overridden by command line argu-
ments.

If required, (and this shouldn't normally be the case) you can tell COMPARE to swap the bytes of either the first or
second input file by setting the STOL global GSE_COMPARE_OPTIONS to “-b1” to byte swap the first file or “-
b2” to byte swap the second file.

filter The filter factors of the packet to compare, in the format xx:yy.

pattern The name of the file containing the pattern to compare the selected packets against.

output The name of the file to output the results of the comparison to. If this file is not specified, the output is
directed to the screen.

miscompare The name of the file to output the contents of any packets which do not compare successfully with the
pattern. If this file is not specified, the output is directed to the screen.

file1 The name of the first file (including the file extension) to be compared.

file2 The name of the second file (including the file extension) to be compared. If this argument is not spec-
ified, the name of the second file is derived from the base name of the first file.

start1 An address indicating where to start the comparison within the first file. If this argument is not speci-
fied, the contents of the first file define the start address.

end1 An address indicating where to stop the comparison within the first file. If this argument is not speci-
fied, the contents of the first file define the end address.

start2 An address indicating where to start the comparison within the second file. If this argument is not
specified, the contents of the second file define the start address.

end2 An address indicating where to stop the comparison within the second file. If this argument is not
specified, the contents of the second file define the end address.

print-device The name of a device to place the output of the comparison, either SCREEN or PRINTER. If this
argument is not specified, the output is placed in a file.

copies An integer indicating the number of images or tables to compare in the source files. If this argument is
not specified, it defaults to 1.
A-18 ASIST Users Guide–Version 9.6

Directives
Example:
COMPARE test_image.ftf,dump_image.dtf
COMPARE another_image.ftf,new_dump.dtf,,,,,,3

CONS_DISABLE
Disable STOL commanding from an X-Terminal Console

Abbreviation:

None

Syntax:

CONS_DISABLE

Arguments:

None

Description:

This directive disables access to STOL by any and all X-terminal consoles until the CONS_ENABLE directive is
issued. Consoles are enabled by default.

Note: Consoles do not have a STOL window, so their access to STOL is through the PAGE directive. Disabling con-
soles causes these directives to be rejected rather than forwarding them to STOL.

Example:
CONS_DISABLE

CONS_ENABLE
Enable STOL commanding from an X-Terminal Console

Abbreviation:

None

Syntax:

CONS_ENABLE

Arguments:

None

Description:

This directive enables access to STOL by any and all X-terminal consoles until the CONS_DISABLE directive is
issued. Consoles are enabled by default.

Example:
CONS_ENABLE

CREATE_LOAD
Creates a load file from the current value table

Abbreviation:

write_load

Syntax:

CREATE_LOAD filename,variable-name [,processor[,table_id][,spacecraft-id]]]
ASIST Users Guide–Version 9.6 A-19

APPENDIX A
Arguments:

Description:

This directive reads the values from the Current Value Table item variable-name and creates a table load file named
filename in the $WORK/image directory. If processor or table_id are not entered on the directive, then ASIST reads
the description of variable-name from the database to determine the processor and table id (they must have been
entered in the form TABLE(processor-name,table-id) [e.g. TABLE(SCPRI,12)]). If this is not found, the directive is
aborted.

Example:
CREATE_LOAD "my_table.ftf", ACS_TABLE_5, ACSPRI, 5
CREATE_LOAD "yet_again.ftf",ACS_TABLE_5 ; Use proc & id from description

See Also:

Create_Partial_Load (page A-20), Dump_To_CVT(), Load_To_CVT ()

CREATE_PARTIAL_LOAD
Creates a partial load file from the current value table

Abbreviation:

write_partial_load

Syntax:

CREATE_PARTIAL_LOAD filename,variable-name,[processor],[table_id],[from],[to],[spacecraft-id]

Arguments:

Description:

This directive reads the values from the Current Value Table item variable-name and creates a table load file named
filename in the $WORK/image directory.

This load file will contain a partial load of this table, beginning at the start of the word containing:

•telemetry item from, or

filename The name of the load file to create (must have extension .ftf). It must be in quotes

variable-name The name of the table in the CVT.

processor The name of the processor that holds this table.

table_id An integer indicating the table's ID.

spacecraft-id An integer indicating the ID of the spacecraft to create this file for.

filename The name of the load file to create (must have extension .ftf). It must be in quotes.

variable-name The name of the table in the Current Value Table.

processor The name of the processor that holds this table.

table_id An integer indicating the table's ID.

from The telemetry item (if a string) or byte offset from the beginning of the table (if an integer) to start
from. From must begin on an even-word boundary (from the beginning of variable-name). If it doesn't,
the load will begin from the even-word boundary before from.

to The telemetry item (if a string) or byte offset from the beginning of the table (if an integer) to end after.
To must complete an even-word (from the beginning of variable-name). Hence, the byte offset must be
odd. If it is not, the load will end after the word containing to.

spacecraft-id The ID of the spacecraft to create this load for.
A-20 ASIST Users Guide–Version 9.6

Directives
•from bytes past the beginning of table variable-name (if from is an integer).

and ending after the word containing:

•telemetry item to, or

•to bytes past the beginning of table variable-name (if to is an integer). Note: the byte at offset to is included in
the load.

Since all loads are performed in words (rather than bytes), from must begin at a word boundary and to must end at a
word boundary. If they do not, CREATE_PARTIAL_LOAD will expand the area loaded to these boundaries.

If processor and table_id are NULL, then ASIST reads the description of variable-name from the database to deter-
mine the processor and table ID (the must have been entered in the form TABLE(processor-name,table-id) [e.g.
TABLE(SCPRI,12)]). If this is not found, the directive is aborted.

Example:
CREATE_PARTIAL_LOAD "my_table.ftf",ACS_TABLE_5,ACSPRI,5,A_REAL_VALUE, ;;
A_REAL_VALUE ; Creates a load containing only A_REAL_VALUE
CREATE_PARTIAL_LOAD "yet_again.ftf",ACS_TABLE_5,,0,4 ;;
; Use proc & id from description and creates a
; load containing the first 4 bytes of the table.

See Also:

Create_Load (page A-19), Dump_To_CVT(), Load_To_CVT ()

CVT_TO_FILE
Writes the contents of a CVT variable (or packet) to a file

Syntax:

CVT_TO_FILE filename,variable-name

Arguments:

 Description:

This directive reads the values from the Current Value Table item variable-name and writes it to a file named filename
in the $WORK/image directory.

Example:
CVT_TO_FILE "my_packet1.dat", P001
CVT_TO_FILE "just_two_bytes.dat", P001SCNT

D422
Send a directive to the RS-422 Gateway Task of the FEDS Commanding Software

Abbreviation:

None

Syntax:

D422 directive

filename The name of the file to create (in the $WORK/image directory). It must be in quotes.

variable-name The name of the table/variable in the CVT. It can be any cvt item, either a scalar (i.e.
P001SCNT, which would write two bytes) or an aggregate structure (i.e. P001 would write
the entire packet 1 to file).
ASIST Users Guide–Version 9.6 A-21

APPENDIX A
Arguments:

Description:

This directive sends the specified configuration directive to the RS-422 gateway task of the FEDS commanding soft-
ware. Valid directives include:

Example:
D422 “IDLE_PATTERN=DEAD”

DBCMPCMD
Compile Command Definitions

Abbreviation:

None

Syntax:

DBCMPCMD

Arguments:

None

Description:

This directive causes the user’s command definitions (in the file user_cmd.rdl) to be compiled.

Example:
DBCMPCMD

DBCMPTLM
Compile Telemetry Definitions

Abbreviation:

None

Syntax:

DBCMPTLM

Arguments:

None

Description:

directive The directive to send to the rs-422 gateway task on the FEDS (i.e. “format=NRZ-M”). Note that this
must be within double quotes.

CLOCK_FREQUENCY=frequency The frequency in bits/second

DATARATE=rate The data rate in bits/second

FORMAT=NRZ-L|NRZ-M Set data format to NRZ-L or NRZ-M

IDLE_PATTERN=hex-pattern Set idle pattern

INVERT_DATA=1|0 Enable/disable data inversion

CLOCK_SOURCE=INTERNAL|EXTERNAL Set clock to use internal or external
source

SEND_CLOCK=1|0 Enable/disable output of clock

USE_RS422_CARD=1|0 Enable/disable RS422 output
A-22 ASIST Users Guide–Version 9.6

Directives
This directive causes the user’s telemetry definitions (in the file user_tlm.rdl) to be compiled.

Example:

DBCMPTLM

DBEDIT
Edit Command or Telemetry Definitions

Abbreviation:

None

Syntax:

DBEDIT

Arguments:

None

Description:

This directive starts the EMACS editor (in EDT mode) and allows the user to edit any command or telemetry defini-
tion.

Example:
DBEDIT

DBLOADCMD
Copy Command Database

Abbreviation:

None

Syntax:

DBLOADCMD

Arguments:

None

Description:

This directive copies the last command database that was compiled to the operational directory.

Example:
DBLOADCMD

DBLOADTLM
Copy Telemetry Database

Abbreviation:

None

Syntax:

DBLOADTLM

Arguments:

None

Description:

This directive copies the last telemetry database that was compiled to the operational directory.

Example:
ASIST Users Guide–Version 9.6 A-23

APPENDIX A
DBLOADTLM

DCOD
Send a directive to the Coding Layer of the FEDS Commanding Software

Abbreviation:

None

Syntax:

DCOD directive

Arguments:

Description:

This directive sends the specified Coding-layer configuration directive to the Coding Layer of the FEDS commanding
software. Valid directives include:

Example:
DCOD “codeblock_total_length=64”

DDDD
Send a directive to the DSN Gateway Task of the FEDS Commanding Software

Abbreviation:

None

Syntax:

DDDD directive

Arguments:

Description:

This directive sends the specified configuration directive to the DSN gateway task of the FEDS commanding software.
Valid directives include:

directive The directive to send to the coding layer (i.e. “codeblock_total_length=56”). Note that this
must be within double quotes.

Directive Valid arguments

codeblock_total_length=40|48|56|64 Set the length of a codeblock in bits

tail_sequence_version=1|2 Set the tail sequence pattern by version: 1= old style sequence
(5555…55), 2 = new style sequence (C5C5…79)

directive The directive to send to the DSN gateway task on the FEDS (i.e. “spacecraft_code=4”).
Note that this must be within double quotes.

Directive Valid arguments

DESTINATION_FACILITY=%u 0-127

DESTINATION_SUBFACILITY=%u 0-15

DESTINATION_ASSEMBLY=%u 0-7

SOURCE_FACILITY=facility Set the facility code (0-127)
A-24 ASIST Users Guide–Version 9.6

Directives
Example:
DDDD “DATA_NATURE=REAL-TIME”

DFMH
Send a directive to the FEDS mandate handling task

Abbreviation:

None

Syntax:

DFMH directive

Arguments:

Description:

This directive sends the specified configuration directive to the FEDS mandate handler. Valid directives include:

Example:
DFMH “disable_remote_commands”

DHDS
Request data from the Digital History Data Store

Abbreviation:

None

SOURCE_SUBFACILITY=subfacility Set the subfacility code (0-15)

SOURCE_ASSEMBLY=assembly Set the assembly code (0-7)

SPACECRAFT_CODE=spacecraft Set the spacecraft code (0-255)

DATA_TYPE=%u Set the data type code

DATA_NATURE=REAL-TIME|PLAYBACK Set the data nature code

BLOCK_SERIAL_NUMBER=block Set the block serial number code

PROTOCOL=DDD|OPS-6-7|OPS-6-8|DFMC Set the protocol code

VIRTUAL_STREAM_ID=stream Set the stream code

GRADE_OF_SERVICE=grade Set the service grade code

PRIORITY_LEVEL=level Set the priority leve code

directive The directive to send to the FEDS mandate handler task (i.e. “enable_remote_commands”).
Note that this must be within double quotes.

Directive Description

clients? shows a list of attached clients to the FEDS command router

remote_commands? reports whether or not commanding from a remote FEDS is
allowed

enable_remote_commands enables commanding from a remote FEDS

disable_remote_commands disables commanding from a remote FEDS

? gives you help about what directives can be sent

Directive Valid arguments
ASIST Users Guide–Version 9.6 A-25

APPENDIX A
Syntax:

DHDS REALTIME

DHDS PLAYBACK [FROM start-time] [TO end-time] [RATE multiplier] [REPEAT] [FORCE]

DHDS PLAYBACK OFF

Arguments:

Description:

This directive controls the Digital History Data Store (DHDS). When the REALTIME option is selected, the DHDS
sends data to this workstation as it is received.

When a PLAYBACK is requested, the DHDS plays back from start-time, (or the beginning of recorded data if no
FROM clause is specified) until end-time (or until the current time, when it will enter real-time mode, if no TO clause
is specified). The multiplier indicates at what rate the data should be sent.

Specifying REPEAT causes the DHDS to play this data back in a loop, restarting at start-time whenever end-time is
reached.

Specifying FORCE causes the DHDS to stop any previous playbacks and start the one requested. If it is not specified
and you are already playing back data (or receiving it in real-time), the request will be rejected.

To stop a playback before the end-time is reached, or to stop real-time receipt of data, send the DHDS PLAYBACK
OFF directive.

Example
DHDS REALTIME
DHDS PLAYBACK FROM 94-247-11:00 TO 94-247-13:30 FORCE
DHDS PLAYBACK OFF

DHDS_WINDOW
Open a telnet (playback) session with the Digital History Data Store

Abbreviation:

None

Syntax:

DHDS_WINDOW [machine-name [,account-name]]

Arguments:

Description:

This directive opens a telnet session to the Digital History Data Store (DHDS). The top of the window indicates which
account you should log into.

Example

start-time Begin playing back data from this time.

end-time End playback when data from this time is reached.

multiplier Amount to multiply real-time by for playback (i.e. x2 would mean two times the rate it was originally
received).

machine-name The name of the machine to access. If machine-name is not specified, then the machine identified as
TLMI in the $STOL_CONFIG file (the source of I channel telemetry for your workstation) will be
used.

account-name The name of the account on the DHDS to log into. All this really does is put that name in the top of the
window.
A-26 ASIST Users Guide–Version 9.6

Directives
DHDS_WINDOW
DHDS_WINDOW my_friend_the_dhds

DISABLE
Disable a command source

Abbreviation:

None

Syntax:

DISABLE sfid

or

DISABLE machine-name

or

DISABLE ALL

Arguments:

Description:

This directive is used by the primary to disable a command source (prevent it from sending spacecraft commands).
After this is done, all spacecraft commands sent from the indicated source will be rejected. All command sources
default to being disabled.

Entering DISABLE ALL disables all associates and IGSE's, preventing them from sending spacecraft commands.

Example:
DISABLE X'11' ; Disables SFID 17 (11 hex)
DISABLE sgse5 ; Disables associate sgse5
DISABLE ALL ; Disables all command sources

DISABLE_EQUATION
Turn off processing of a given pseudo-telemetry equation

Abbreviation:

None

Syntax:

DISABLE_EQUATION name

Arguments:

Description:

This directive tells the pseudo-telemetry processor not to perform the given calculation. It may later be turned back on
using ENABLE_EQUATION.

Example:
DISABLE_EQUATION RAMP ; Don't calculate RAMP

sfid The self-identifier code (in hexadecimal) of the command source being disabled. This usually ranges
from 01 to 1F.

machine-name The name of the machine being disabled. This only works after the machine has connected on the com-
mand port.

name The pseudo-telemetry point whose equation you wish disabled.
ASIST Users Guide–Version 9.6 A-27

APPENDIX A
See also:

DISABLE_PACKET_EQUATIONS (page A-28), ENABLE_EQUATION (), ENABLE_PACKET_EQUATIONS ()

DISABLE_PACKET_EQUATIONS
Turn off processing of all pseudo-telemetry equation with a given application ID.

Abbreviation:

None

Syntax:

DISABLE_PACKET_EQUATIONS apid

Arguments:

Description:

This directive tells the pseudo-telemetry processor not to evaluate any of the equations for pseudo-telemetry points
within packet apid.

Example:
DISABLE_PACKET_EQUATION 201 ; Don't calculate anything in packet 201

See also:

DISABLE_EQUATION (page A-27), ENABLE_EQUATION (), ENABLE_PACKET_EQUATIONS ()

DISABLE_REMOTE_DIRECTIVES
Turn off the ability to receive STOL directives via the ASIST command bus

DISABLE_REMOTE_DIRECTIVES

Arguments:

None

Description:

This directive causes STOL directives received via the ASIST command bus to be rejected. This is the default behav-
iour.

See also:

ENABLE_REMOTE_DIRECTIVES (page A-37)

DISABLE_VC
Stop Processing Virtual Telemetry Channel

Abbreviation:

None

Syntax:

DISABLE_VC virtual-channel

Arguments:

Description:

apid The apid whose equations you wish not to be processed.

virtual-channel The number of the virtual channel (0-63) or ALL.
A-28 ASIST Users Guide–Version 9.6

Directives
This directive terminates processing of the specified virtual telemetry channel by the telemetry processor. The teleme-
try data in this channel is no longer limit checked or placed in the Current Value Table. Any spacecraft event messages
in this virtual channel are ignored.

Example:
DISABLE_VC 63

DISPLAY
Display Telemetry Mnemonic

Abbreviation:

DIS

Syntax:

DISPLAY mnemonic1[,mnemonic2…[,mnemonic6]…]

Arguments:

Description:

This directive displays the values of the specified telemetry mnemonics in both decimal and hexadecimal.

Example:
DISPLAY p001scnt,p002scnt

DNAS
Send a directive to the Nascom Gateway Task of the FEDS Commanding Software

Abbreviation:

None

Syntax:

DNAS directive

Arguments:

Description:

This directive sends the specified configuration directive to the DNAS gateway task of the FEDS commanding soft-
ware. Valid directives include:

mnemonic1…mnemonic6 The names of up to six telemetry mnemonics to be displayed.

directive The directive to send to the Nascom gateway task on the FEDS (i.e. “format=NRZ-M”). Note that
this must be within double quotes.

Directive Valid arguments

SOURCE_CODE=source Set the source code (0-255)

DESTINATION_CODE=destination Set the destination code (0-255)

SPACECRAFT_ID=id Set the spacecraft id code (0-255)

BLOCK_SERIAL_NUMBER=number Set the block serial number

DELAY_BETWEEN_BLOCKS=delay Set the delay between blocks

PREAMBLE_LENGTH=length Set the length of the preamble (maximum is 500 bytes)

PREAMBLE_PATTERN=hex-pattern Set the preamble pattern
ASIST Users Guide–Version 9.6 A-29

APPENDIX A
Example:
DNAS “SPACECRAFT_ID=42”

DPD_ARCH_TIME
Set the source of time displayed on trend’s (stripcharts) on a given telemetry page

Abbreviation:

none

Syntax:

DPD_ARCH_TIME pagename on_off [console-id]

Arguments:

Description:

This directive causes the display server to switch to using ARCHIVE time for any trend DDO (stripchart) on the
telemetry page pagename.

When ARCHIVE time is on, ASIST will plot the spacecraft time found in the telemetry-point’s packet. When
ARCHIVE time is off, ASIST will plot the current (real) time. Remember that pseudo telemetry is calculated on-the-
fly and so can only be plotted in real time.

DPD_ARCH_TIME is the recommended replacement for the obsolete CHART_TIME directive.

Example:
DPD_ARCH_TIME _trend_test 1 ; switches to plotting archived time for

 ; the page “_trend_test”

See also:

CHART_TIME (page A-12)

DPHY
Send a directive to the Physical Layer of the FEDS Commanding Software

Abbreviation:

None

Syntax:

DPHY directive

Arguments:

Description:

CLEAR_BUFFERS Clear buffers

FORMAT=NRZ-L|NRZ-M Set the data format

pagename The page on which the trend DDO(s) reside.

on_off 1 means to use spacecraft time, while 0 means use current (ground) time.

console-id Specifies an X-term console by number.

directive The directive to send to the physical layer (i.e. “acq_sequence_length=128”). Note that
this must be within double quotes.

Directive Valid arguments
A-30 ASIST Users Guide–Version 9.6

Directives
This directive sends the specified Physical-layer configuration directive to the Physical Layer of the FEDS command-
ing software. Valid physical layer directives include:

Example:

DPHY “acq_sequence_length=128”
DPHY “plop=2”

DSEG
Send a directive to the Segmentation Layer of the FEDS Commanding Software

Abbreviation:

None

Syntax:

DSEG directive

Arguments:

Description:

This directive sends the specified Segmentation-layer configuration directive to the Segmentation Layer of the FEDS
commanding software.

Example:
DSEG “use_seg_header=1”
DSEG “is_aggregation_allowed=1”

DUMP
Dump Spacecraft Image or Table

Abbreviation:

None

Directive Valid arguments

acq_sequence_length=length Set the sequence length in bits (typically 128)

plop=NONE|1|2 Configure PLOP:

NONE = No preamble (no Phys Layer)
1 = Preamble before every CLTU
2 = Preamble before first CLTU

directive The directive to send to the segmentation layer (i.e. “map_id=3” or
“max_seg_length=155”). Note that this must be within double quotes.

Directive Valid arguments

is_aggregation_allowed=1|0 Enable/disable aggregation

is_segmentation_allowed=1|0 Enable/disable segmentation

map_id=id Set the map id (0-3F)

max_seg_length=length Set the maximum segment length (2-1019)

use_seg_header=1|0 Enable/disable segment headers

xor_pkt_data=1|0 Enable/disable XOR of packet data (not part of CCSDS standard)
ASIST Users Guide–Version 9.6 A-31

APPENDIX A
Syntax:

DUMP file1,[start],[end],[table-id],[memory-type],[processor],[copies],[file2]

Arguments:

Description:

This directive signals the Image and Table Manager to dump the contents of the spacecraft image or table. A load file
defines the area to be dumped, but the contents may be overridden by command line arguments. The dump continues
asynchronously with respect to STOL and returns status upon completion.

Example:
DUMP test_image.ftf,x’1000’,x’2000’,,,ACSPRI,2
DUMP DUMPONLY,0,199,1,RAM,SCPRI,1,my_dump.dtf

DUMP_TO_CVT
Places the contents of a dump file in the current value table.

Abbreviation:

None

Syntax:

DUMP_TO_CVT [options] filename , variable-name

Arguments:

Description:

This directive reads dump file filename and places its contents in the Current Value Table entry variable-name. This
allows you to dump a table from the spacecraft and then copy its contents into the Current Value Table

Example:
DUMP DUMPONLY,0,20,5,RAM,ACSPRI,1,my_table.dtf
; Creates the dump file

file1 The name of a load file (including the file extension) that defines the area to be dumped, or
DUMPONLY if a load file does not exist. Optional argument file2 must be used with DUMPONLY.

start An address indicating where to start the dump. This address must be even. If this argument is not spec-
ified, the contents of the load file define the start address.

end An address indicating where to stop the dump. This address must be odd. If this argument is not speci-
fied, the contents of the load file define the end address.

table-id An integer indicating which table to dump. If this argument is not specified, the contents of the load
file define the table number.

memory-type The name of the memory that is to be dumped, either EEPROM, BPROM, or RAM. If this argument
is not specified, the contents of the load file define the memory type. When DUMPONLY is specified,
this argument is not required.

processor The name of the processor that is to be dumped. If this argument is not specified, the contents of the
load file define the processor.

copies An integer that specifies the number of times that the defined area is to be dumped. If this argument is
not specified, the default is 1.

filename The name of the dump file to read (must have extension .dtf). It must be in the $(WORK)/image
directory. It should be in quotes.

variable-name The name of the table in the CVT.

options -s Byte swap the data before putting it into the CVT.
A-32 ASIST Users Guide–Version 9.6

Directives
W Until (p@SCH_DPST="DONE" OR P@SCH_DPST="ABRT")
; Verify CITD processing complete
IF (SCH_DPST="DONE" AND p@CITDABRT="GOOD") THEN
DUMP_TO_CVT "my_table.dtf",ACS_TABLE_5
; write to variable acs_table_5
write "Dump complete and CVT updated."
ELSE
WRITE "Dump was not successful."
ENDIF

See Also:

Create_Load (page A-19), Create_Partial_Load (page A-20), Load_To_CVT ()

DUMPARC
Display Contents of Telemetry Archive

Abbreviation:

None

Syntax:

DUMPARC archive-name optional-arguments

Arguments:

Description:

This directive displays each packet (or specified packet) from the given archive in hexadecimal format. The message
header, packet header and annotation data may be displayed as well. If the -f option or the -t option are not specified
then the first record of the archive and the last record of the archive (respectively) are used.

Example:
DUMPARC 1 -p -d
DUMPARC 4 -a -d -f94-161-13:00 -t94-161-13:10
DUMPARC 9 -d -s -m -f0-119-08:42

DXFR
Send a directive to the Transfer Layer of the FEDS Commanding Software

archive-name The name of the archive to be displayed (from the LISTARC report)

optional-arguments One or more of the following formatting arguments:

-p display the message header

-a display the packet annotation data

-s display the packet header

-d display the packet data

-oapid display packets with the specified APID only. If apid is non-numeric, then it is assumed to be an
SFDU’s ddid, and only SFDUs with that ddid are displayed.

-m Interpret any following time fields as METs, not GMTs

-ftime display packets time stamped on or after time

-ttime display packets time stamped on or before time

-c exclusion-file interprets all SFDU data as CCSDS packets. The optional exclusion-file allows you to specify a
file containing a list of SFDU ddids which should not be interpreted as CCSDS.
ASIST Users Guide–Version 9.6 A-33

APPENDIX A
Abbreviation:

None

Syntax:

DXFR directive

Arguments:

Description:

This directive sends the specified Transfer-layer configuration directive to the Transfer Layer of the FEDS command-
ing software. Transfer-layer directives include:

directive The directive to send to the transfer layer (i.e. “timeout=35” or “spacecraft_id=32”). Note that this
must be within double quotes.

Dealing with Frame content

bypass_flag=1|0 Enable/disable bypass flag

max_frame_data_unit_length=length Set the maximum frame data unit length (< 1020)

spacecraft_id=id Set the spacecraft id (0-3FF)

version_of_farm_dirs=1|2 Set the version of the FARM directives (1 = old, 2 = new)

virtual_channel_id=id Set the virtual channel id (0-3F)

Configuring FOP-1 logic (standard stuff)

sliding_window_width=width Set the sliding window width (2-127)

timeout=seconds Set the FOP-1 timeout in seconds

timeout_type=1|0 Set the timeout action (0 = terminate, 1 = suspend)

transmission_limit=limit Set the transmission limit

Configuring FOP-1 logic (additional stuff)

allow_blind_commanding=1|0 Enable/disable blind commanding

(Can frames be sent while the FOP-1 Service is uninitialized [S6]?)

retransmit_type=1|0 Set the retransmit action (0 = terminate, 1 = suspend)
What is done when retransmit bit is set and transmission_limit is reached [E12+S2
or E12+S3]? Similar to timeout_type

feedback_loop_time=seconds Set the feedback loop time in seconds.

How many seconds does it take for the spacecraft to respond to a frame being
sent? We don't want to respond to a CLCW that left the spacecraft BEFORE our
last transmission

To request specific actions by FOP-1 (standard stuff)

frame_number=number Set the frame number (0-255)

init_blind Start the FOP-1 service in blind command mode

init_with_clcw Start the FOP-1 service if the lockout is clear and after the ground and spacecraft
counters match (no directives are sent to the spacecraft)

init_with_unlock Sends the unlock directive to the spacecraft and starts the FOP-1 service if the
lockout condition is cleared and confirming that the ground and spacecraft
counters match
A-34 ASIST Users Guide–Version 9.6

Directives
Example:
DXFR “sliding_window_width=2”
DXFR “retransmit+type=1”

EMACS
Edit Text File

Abbreviation:

None

Syntax:

EMACS filename

Arguments:

Description:

This directive invokes the EMACS editor (in EDT mode) and allows the user to edit any text file.

Example:
EMACS myfile.txt

ENABLE
Enable a command source

Abbreviation:

None

Syntax:

ENABLE [sfid | machine-name | ALL]

Arguments:

init_with_sync=hex-pattern Sends the sync directive to the spacecraft and starts the FOP-1 service if the lock-
out condition is cleared and confirming that the ground and spacecraft counters are
set to hex-pattern (0-FF)

terminate Terminate service

resume Resume suspended service

To request specific actions by FOP-1 (additional stuff)

init_with_unlock_and_sync=hex-pattern Sends the unlock directive and the sync directive to the spacecraft and starts the
FOP-1 service if the lockout condition is cleared and confirming that the ground
and spacecraft counters are set to hex-pattern (0-FF)

resume_with_retransmit Retransmits pending frames before resuming the suspended FOP-1 ser-
vice

filename The name of a file to edit.

sfid The self-identifier code (in hexadecimal) of the command source being enabled. This usually ranges
from 01 to 1F.

machine-name The name of the machine being enabled. This only works after the machine has connected on the com-
mand port.

ALL enables all IGSE's and Associates to send commands.
ASIST Users Guide–Version 9.6 A-35

APPENDIX A
Description:

This directive is used by the primary test conductor to enable a command source to send spacecraft commands.When
ASIST is started, all command sources are disabled, meaning that any commands they send will be rejected.

Selecting the ALL option enables all IGSE's and Associates to send commands.

Example:
ENABLE X'11' ;; Enables SFID 17 (11 hex)
ENABLE sgse5 ;; Enables associate sgse5
ENABLE ALL ;; Enables all associates and IGSE's

ENABLE_EQUATION
Turn on processing of a given pseudo-telemetry equation

Abbreviation:

None

Syntax:

ENABLE_EQUATION name

Arguments:

Description:

This directive tells the pseudo-telemetry processor to evaluate the equation for telemetry point name. A pseudo-telem-
etry point can be disabled either manually (using the DISABLE_EQUATION or ENABLE_PACKET_EQUATIONS
directive) or automatically due to an error (see “Enabling and Disabling Pseudo-Telemetry Equations” on page 4-33
for more details).

Example:
ENABLE_EQUATION RAMP ; Calculate RAM

See also:

DISABLE_EQUATION (page A-27), DISABLE_PACKET_EQUATIONS (page A-28),
ENABLE_PACKET_EQUATIONS (page A-36)

ENABLE_PACKET_EQUATIONS
Turn on processing of all pseudo-telemetry equations within a given application ID

Abbreviation:

None

Syntax:

ENABLE_PACKET_EQUATIONS apid

Arguments:

Description:

This directive tells the pseudo-telemetry processor to evaluate all the equations for pseudo-telemetry points within
packet apid.

Example:
ENABLE_PACKET_EQUATION 201 ; Calculate all equations in packet 201

name The pseudo-telemetry point whose equation you wish enabled.

apid The apid whose equations you wish enabled.
A-36 ASIST Users Guide–Version 9.6

Directives
See also:

DISABLE_EQUATION (page A-27), DISABLE_PACKET_EQUATIONS (page A-28), ENABLE_EQUATION
(page A-36)

ENABLE_REMOTE_DIRECTIVES
Causes STOL to accept/execute STOL directives received via the ASIST command bus

ENABLE_REMOTE_DIRECTIVES

Arguments:

None

Description:

This directive causes STOL to accept and execute directives received via the ASIST command bus.

See also:

DISABLE_REMOTE_DIRECTIVES (page A-28)

ENABLE_VC
Start Processing Virtual Telemetry Channel

Abbreviation:

None

Syntax:

ENABLE_VC virtual-channel

Arguments:

Description:

This directive initiates processing of the specified virtual telemetry channel by the telemetry processor. The telemetry
data in this channel is limit checked and placed in the Current Value Table. Any spacecraft event messages in this vir-
tual channel are sent to the event logger.

Example:
ENABLE_VC 0

EVENT_PRINTER
Control the event printer

Abbreviation:

None

Syntax:

EVENT_PRINTER [ON | OFF | CLEAR]

Arguments:

Description:

virtual-channel The number of the virtual channel (0-63) or ALL.

ON Allows printing to an external event printer.

OFF Stops printing to an external event printer.

CLEAR Clears all events currently waiting to be printed.
ASIST Users Guide–Version 9.6 A-37

APPENDIX A
This directive allows you to turn printing of events to an external printer ON or OFF, and to CLEAR all events cur-
rently waiting to be printed.

Example:
EVENT_PRINTER ON; Turn it on
EVENT_PRINTER CLEAR; Clear out the spool
EVENT_PRINTER OFF; Turn printing back off

FILE_SEARCH
Search for a file over a given set of directories

Abbreviation:

none

Syntax:

return_string_var = file_search(search-path, separator, filename, ext)

Arguments:

Returns:

If the file is found, return_string_var contains the full, expanded name. Otherwise, return_string_var contains a null
string, "", which is of length 0.

Description:

This function appends ext to filename and searches for a file of this name in all of the directories in search-path . It
returns the full, expanded name of the file found, or a NULL string.

If you set the STOL global variable debug_file_search to one, you will see an echo of each path as it is being
searched.

Example:
n = file_search(%env("STOL_SEARCH_PATH"), " ", "wu", ".prc")
(found) n == "/s/dev/accounts/global/prc/wu.prc"

n = file_search(%env("PATH"), ":", "dpd_server", "")
(found) n == "/s/dev/system/bin/dpd_server"

n = file_search(%env("PATH"), ":", "whosonfirst", "")
(not found) n == ""

FILE_SEARCH_NF
Search for a file over a given set of directories

Abbreviation:

none

Syntax:

file_search_nf search-path, separator, filename, ext , full-name

search-path A string containing a list of directories to search, each separated by the character indicated in separa-
tor.

separator The character which separates each directory name in the search list.

filename The name of the file to search for.

ext An extension to add to this file name.
A-38 ASIST Users Guide–Version 9.6

Directives
Arguments:

Description:

This directive appends ext to filename and searches for a file of this name in all of the directories in search-path . It
then sets full-name to the full, expanded name of the file found, or a NULL string.

If you set the STOL global variable debug_file_search to one, you will see an echo of each path as it is being
searched.

Example:
file_search_nf "/u/asist/private"," ","ASIST_user_profile","", longname
(result) longname == "/u/asist/private/ASIST_user_profile"

file_search_nf (%env("STOL_SEARCH_PATH"))," ", "wu", ".prc",longname
(result) longname == "/s/dev/accounts/global/prc/wu.prc"

FILE_TO_CVT
Reads the contents of a file into a CVT variable (or packet)

Syntax:

FILE_TO_CVT filename,variable-name

Arguments:

 Description:

This directive reads the raw data from the file $WORK/image/filename. If it is the correct size, then it writes that data
to the Current item variable-name.

Options can be set using the variable gse_file_to_cvt_options. These include:

-z For variable-length packets, if the file size is less than the CVT variable size, zero-fill the CVT variable after the
available data.

-Z # For variable-length packets, if the file size is less than the CVT variable size, fill the CVT variable after the
available data with the value specified in the arg (#).

Example:
FILE_TO_CVT "my_packet1.dat", P001
FILE_TO_CVT "just_two_bytes.dat", P001SCNT

/FRAME
Transmit Raw Transfer Frame

search-path A string containing a list of directories to search, each separated by the character indicated in separa-
tor.

separator The character which separates each directory name in the search list.

filename The name of the file to search for.

ext An extension to add to this file name.

full-name The directive sets this variable to the fully qualified name of the file, if the file is found. Otherwise, it
is set to NULL

filename The name of the file to read (from the $WORK/image directory). It must be in quotes.

variable-name The name of the table/variable in the CVT to write the contents of filename into. It can be
any cvt item, either a scalar or an aggregate structure.
ASIST Users Guide–Version 9.6 A-39

APPENDIX A
Abbreviation:

FRAME

Syntax:

/FRAME transfer-frame-data-string

Arguments:

Description:

This directive signals the command processor to transmit the specified hexadecimal string as the contents of a transfer
frame.

Example:
/FRAME A143454E66CE1B0000FF

GPIB_CMD
Sends the given command string to the specified GPIB device.

Abbreviation:

None

Syntax:

GPIB_CMD device_name command_string

Arguments:

Description:

This directive sends the given commandstring to the specified GPIB device. Note - ASIST does not verify that the
GPIB device interpreted the string properly.

Example:
GPIB_CMD HP6510 "frequency 1000"

GPIB_DEFINE
Assigns a device name to a given GPIB primary and secondary addresses.

Abbreviation:

None

Syntax:

GPIB_DEFINE device_name primary_address [secondary_address]

Arguments:

Description:

transfer-frame-data-
string

A string of hexadecimal characters containing a transfer frame.

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

command_string A character string to send.

device_name The name assigned to the GPIB device.

primary_address The device's primary GPIB address (1-16)

secondary_address The device's secondary GPIB address (0-16). The default value is zero.
A-40 ASIST Users Guide–Version 9.6

Directives
This directive assigns device_name to the given GPIB primary and secondary addresses. This name can then be used
with all the other generic GPIB directives.

Example:
GPIB_DEFINE HP6510 6

GPIB_END_MONITOR
Ends all automatic queries (monitors) for the specified GPIB device.

Abbreviation:

None

Syntax:

GPIB_END_MONITOR device_name

Arguments:

Description:

This directive ends all automatic queries (monitors) for the specified GPIB device. (see also GPIB_MONITOR and
GPIB_SHOW_MONITOR)

Example:
GPIB_END_MONITOR HP6510

GPIB_MONITOR
Similar to GPIB_QUERY, except that the query is repeated every 3 seconds.

Abbreviation:

None

Syntax:

GPIB_MONITOR device_name query_string telemetry_item

Arguments:

Description:

Similar to GPIB_QUERY, except that query is repeated every 3 seconds indefinitely. (see also
GPIB_END_MONITOR and GPIB_SHOW_MONITOR)

Example:
GPIB_MONITOR HP6510 "freq?" HP6510_frequency

GPIB_PANEL
To enable/disable the specified GPIB device's front panel buttons.

Abbreviation:

None

Syntax:

GPIB_PANEL device_name (ENABLE | DISABLE)

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

query_string The string to send to the device.

telemetry_item Where to store the device's response (the name of a telemetry item).
ASIST Users Guide–Version 9.6 A-41

APPENDIX A
Arguments:

Description:

This directive can either enable or disable the specified GPIB device's front panel buttons.

Example:
GPIB_PANEL DISABLE HP6510

GPIB_QUERY
Queries the specified GPIB device and stores the response in the CVT.

Abbreviation:

None

Syntax:

GPIB_QUERY device_name query_string telemetry_item

Arguments:

Description:

This directive sends the given query_string to the specified device, reads the device's response, and stores the result in
the Current Value Table (writes over the current value of the specified telemetry item).

Example:
GPIB_QUERY HP6510 "freq?" HP6510_frequency

GPIB_SET_CRLF
Overrides the default termination characters sent to the specified GPIB device.

Abbreviation

None

Syntax:

GPIB_SET_CRLF device_name setting

Arguments:

Description:

This directive overrides the default termination characters used when ASIST sends data to the specified GPIB device.

Example:
GPIB_SET_CRLF CR

GPIB_SET_DELAY
Sets the delay used by the GPIB query directives.

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

query_string The string to send to the device.

telemetry_item Where to store the device's response (the name of a telemetry item).

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

setting One of the following: NOCRLF (no CR/LF required), CR (append CR), LF (append LF), CRLF
(append CR/LF)
A-42 ASIST Users Guide–Version 9.6

Directives
Abbreviation:

None

Syntax:

GPIB_SET_DELAY device_name microseconds

Arguments:

Description:

This directive overrides the default delay built into the GPIB query directives. i.e. how long to wait after sending the
query command to the device before issuing a read for the device's response. The delay can be anywhere from 0 to
32000 microseconds. Note - the total time the device has to respond is the sum of this delay plus the timeout value
(see GPIB_SET_TIMEOUT).

Example:
GPIB_SET_DELAY HP6510 10000

GPIB_SET_TIMEOUT
Adjust how long ASIST will wait for the specified device to respond.

Abbreviation:

None

Syntax:

GPIB_SET_TIMEOUT device_name milliseconds

Arguments:

Description:

This directive adjusts how long ASIST will wait for the specified device to respond to queries. Recommendation - set
this to 3000 and lower it after gaining confidence that the device works. Note - If a timeout does occur, the GPIB sub-
system can become rather confused and start putting data into the wrong telemetry items.

Example:
GPIB_SET_TIMEOUT HP6510 3000

GPIB_SHOW_MONITOR
To show any/all automatic queries (monitors) for the specified GPIB device.

Abbreviation:

None

Syntax:

GPIB_SHOW_MONITOR device_name

Arguments:

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

microseconds How many microseconds to delay.

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

milliseconds The number of milliseconds before timeout occurs. Must be one of these values: 0, 1, 3, 10, 30, 100,
300, 1000, or 3000.

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).
ASIST Users Guide–Version 9.6 A-43

APPENDIX A
Description:

This directive shows a list of all automatic queries (monitors) for the specified device. (see also GPIB_MONITOR
and GPIB_END_MONITOR)

Example:
GPIB_SHOW_MONITOR HP6510

GPIB_UNLOCK
Clears a lockout condition for the specified GPIB device.

Abbreviation:

None

Syntax:

GPIB_UNLOCK device_name

Arguments:

Description:

This directive clears a lockout condition for the specified GPIB device. Lockout occurs if repeated attempts to commu-
nicate with a GPIB device are unsuccessful.

Example:
GPIB_UNLOCK HP6510

/GPIB_CANCEL_POLL
Cancel a poll event.

Abbreviation:

None

Syntax:

/GPIB_CANCEL_POLL PAD=pad, SAD=sad, AP_ID=apid

Arguments:

Description:

This directive cancels a poll event submitted by a prior /GPIB_POLL with the specified pad, sad, and apid. pad must
not be zero. When apid is zero, all poll events for the specified device will be canceled.

Example:
; Cancel all poll events for device (3, 0)
/GPIB_CANCEL_POLL PAD=3,SAD=0,AP_ID=0

/GPIB_LIST_POLL_EVENTS
List poll events.

Abbreviation:

device_name The name assigned to the GPIB device (see GPIB_DEFINE directive).

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

apid APID to be canceled
A-44 ASIST Users Guide–Version 9.6

Directives
None

Syntax:

/GPIB_LIST_POLL_EVENTS PAD=pad, SAD=sad

Arguments:

Description:

This directive allows you to list polled events for the specified device. If pad is zero, all poll events will be listed.

Example:
; List all poll events
/GPIB_LIST_POLL_EVENTS PAD=0,SAD=0

; Report displayed in the event window
---Poll Events---
PAD SAD APID COUNT INTERVAL COMMAND
5 0 396 0 5 measure:volt?
5 0 397 0 3 measure:curr?
6 0 420 3 2 func 0
---End of Poll Events---

; List poll events for device (6,0)
/GPIB_LIST_POLL_EVENTS PAD=6,SAD=0

; Report displayed in the event window
---Poll Events---
PAD SAD APID COUNT INTERVAL COMMAND
6 0 420 3 2 func 0
---End of Poll Events---

/GPIB_POLL
Poll a device at predefined rate.

Abbreviation:

None

Syntax:

/GPIB_POLL PAD=pad, SAD=sad, COMMAND=cmd, AP_ID=apid, COUNT=cnt, INTRV=intrv, PRI=pri

Arguments:

pad An integer specifying the device primary address (0=list all polled events)

sad An integer specifying the device secondary address

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

cmd A string containing the command to send. It must be less than 80 characters

apid The apid for the received data packet

cnt An integer specifying the maximum number of times to poll the device

intrv An interval specifying the number of seconds between device polls

pri The command priority, between 1 (highest) and 30 (lowest).
ASIST Users Guide–Version 9.6 A-45

APPENDIX A
Description:

This directive generates poll events at the predefined rate to the specified device. During each poll event, command is
sent and immediately followed by a /GPIB_READ. If cnt is zero, /GPIB_POLL sends poll event every intrv seconds
until the poll event is canceled by a /GPIB_CANCEL_POLL directive or until ASIST shuts down. If cnt is greater
than 0, only cnt number of poll events will be generated. apid is the APID for the received data. If apid is 0, no read
command is sent to the device.

Example:
; Measure power supply output level every two seconds.
; Data format is defined by APID 0x40.
/GPIB_POLL PAD=5, SAD=0, COMMAND="meas:volt?", AP_ID=0x'40', COUNT=0,
INTRV=2

/GPIB_READ
Read data from specified GPIB device.

Abbreviation:

None

Syntax:

/GPIB_READ PAD=pad, SAD=sad, AP_ID=apid

Arguments:

Description:

This directive reads data from specified the GPIB device, tags data with the requested APID, and sends it to the work-
stations as channel G telemetry.

Example:
/GPIB_READ PAD=5,SAD=0,AP_ID=0x'40'

/GPIB_SET_CRLF
Set whether an end-of-line indicator should be sent to the specified device after each GPIB command.

Abbreviation:

None

Syntax:

/GPIB_SET_CRLF PAD=pad, SAD=sad, eol

Arguments:

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

apid The apid for the received data packet

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

eol is one of the following:
NOCRLF no CR/LF is required
CR CR is required
LF LF is required
CRLF both CR and LF are required
A-46 ASIST Users Guide–Version 9.6

Directives
Description:

This directive tells ASIST whether or not to send an end-of-line indicator to the specified GPIB device, and what end-
of-line indicator to send.

Example:
/GPIB_SET_CRLF PAD=5,SAD=0,CRLF; Curly Fries
/GPIB_SET_CRLF PAD=4,SAD=0,NOCRLF; No Curly Fries, on diet

/GPIB_SET_DELAY
Set polling delay between GPIB write and read.

Abbreviation:

None

Syntax:

/GPIB_SET_DELAY PAD=pad, SAD=sad, DELAY=usec
Arguments:

Description:

This directive tells ASIST how long to delay between writing a command and reading data from a GPIB device during
GPIB Polling. It should be used when the error “asynchronous operation was aborted “ is seen while
using /GPIB_POLL. This error normally occurs when the device doesn't have enough time to respond to your query.
Using this directive to increase the time between sending the command and reading the data may solve this problem.

Note:

This is only necessary for a small subset of commands. Therefore you should normally set DELAY to 0 after the com-
mand is finished.

Example:
/GPIB_SET_DELAY PAD=5,SAD=0,DELAY=2000 ;No hurry. Lets wait.
/GPIB_SET_DELAY PAD=5,SAD=0,DELAY=0 ;Reset it when done

/GPIB_SET_DEVICE_MODE
Place device in specified operating mode.

Abbreviation:

None

Syntax:

/GPIB_SET_DEVICE_MODE PAD=pad, SAD=sad, LOCAL | LOCALLOCKOUT

Arguments:

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

usec is the delay between GPIB writes and GPIB reads when polling. The range is from 0 to 10000 micro-
seconds. The default is 0 µs.

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

LOCAL Set device to local mode

LOCALLOCKOUT Set device to local lockout mode
ASIST Users Guide–Version 9.6 A-47

APPENDIX A
Description:

This directive commands the specified device into either local mode or local lockout mode When LOCAL is used,
device is temporarily placed in local mode. When LOCALLOCKOUT is specified, device will not accept any front
panel inputs.

Example:
/GPIB_SET_DEVICE_MODE PAD=5,SAD=0,LOCAL

/GPIB_SET_TIMEOUT
Set the time-out for the specified device

Abbreviation:

None

Syntax:

/GPIB_SET_TIMEOUT PAD=pad, SAD=sad, TIMEOUT=msec

Arguments:

Description:

This directive tells ASIST how long to wait for acknowledgment on the GPIB bus before signalling that an error has
occurred.

Note:

The entire GPIB system may slow down if a device with a high time-out value is having a problem. Use this directive
only when necessary and remember to set it to 0 as soon as possible.

Example:
/GPIB_SET_TIMEOUT PAD=5,SAD=0,DELAY=100 ;Sloooow Doooowwwwn.
/GPIB_SET_TIMEOUT PAD=5,SAD=0,DELAY=0 ;Reset it when done

/GPIB_UNLOCK
Re-activate a locked GPIB device

Abbreviation:

None

Syntax:

/GPIB_UNLOCK PAD=pad, SAD=sad

Arguments:

Description:

This directive tells ASIST to unlock a GPIB device which is currently locked. A device is locked after ten (10) consec-
utive errors have occurred while attempting to access it.

Example:
/GPIB_UNLOCK PAD=5,SAD=0; We have fixed the problem

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

msec is the time-out value in milliseconds. The range is from 0 to 300 milliseconds. The default is 0 (300 µs).

pad An integer specifying the device primary address

sad An integer specifying the device secondary address
A-48 ASIST Users Guide–Version 9.6

Directives
/GPIB_WRITE
Send a command to specified GPIB device.

Abbreviation:

None

Syntax:

/GPIB_WRITE PAD=pad, SAD=sad, COMMAND=cmd
Arguments:

Description:

This directive sends cmd to the GPIB device with the specified address. cmd will be parsed and executed by the
device.

Example:
/gpib_write pad=5,sad=0,command="volt?"
/gpib_write pad=3,sad=0,command="curr 3 ma"

HDF_CLOSE
Stops collection of data to a given HDF file

Abbreviation:

None

Syntax:

HDF_CLOSE [filename | all]

Arguments:

Description:

This directive stops collection of data to filename. If all is specified, all HDF data collection is terminated.

Example:
HDF_CLOSE some_attitude.hdf ; Stop collection to some_attitude.hdf
HDF_CLOSE ALL

See also:

HDF_FLUSH
Flush any buffered data for the given HDF file

Abbreviation:

None

Syntax:

HDF_FLUSH [filename | all]

pad An integer specifying the device primary address

sad An integer specifying the device secondary address

cmd A string containing the command to send. It must be less than 80 characters

filename The file whose HDF collection should be stopped.
ASIST Users Guide–Version 9.6 A-49

APPENDIX A
Arguments:

Description:

This directive writes all data currently buffered for collection to the HDF file filename. If all is specified, all HDF files
are flushed. This is useful if you want to view the data that has been collected up until now without stopping that col-
lection (viewing the data in the given file using IDL will show all data collected up until the HDF_FLUSH was
issued).

Example:
HDF_FLUSH some_attitude.hdf
HDF_FLUSH ALL

See also:

HDF_LIST
Lists what is currently being collected to HDF files

Abbreviation:

None

Syntax:

HDF_LIST or HDF_LIST TRIGGERS

Arguments:

none

Description:

This directive produces a list of the HDF file collection currently being performed. When issued with no option, the
report is a list of open files and the points being collected into them,while adding the TRIGGERS option produces a
report of points collected ordered by the apid which signals data arrival.

Example:
HDF_LIST
HDF_LIST TRIGGERS

See also:

HDF_OPEN
Starts collection of data to a given HDF file

Abbreviation:

None

Syntax:

HDF_OPEN filename pt [, pt , pt, …]

Arguments:

Description:

filename The file whose HDF buffer should be flushed.

filename The file to write the data in.

pt The point(s) to be collected (i.e. RAMP, P@FLOAT1)
A-50 ASIST Users Guide–Version 9.6

Directives
This directive starts collection of data to filename. The data is saved in HDF format, in the directory indicated by the
Unix environment variable $STOL_DATA.

Example:
HDF_OPEN some_attitude.hdf,P@X,P@Y,P@Z,P@DX,P@DY,P@DZ

See also:

HELP
Opens a window containing help on the requested subject

Abbreviation:

None

Syntax:

HELP [subject]

Arguments:

Description:

This directive opens a help window describing the given subject. If no exact match is found for the requested subject,
ASIST attempts to either find the nearest match or give you a list of help available on items beginning with subject.

Example:
HELP help ; opens this help message
HELP a ; opens a list of all help available for
subjects beginning with the letter a
HELP "*log" ; opens a list of all help available for subjects
whose name contains the word log.
HELP ; Returns a list of all subjects for which help
is available

See also:

HELPLOG, HELPFIND (page A-51)

HELPFIND
Opens a window listing all available help subjects whose text contains a specified keyword

Abbreviation:

None

Syntax:

HELPFIND keyword

Arguments:

Description:

This directive opens a help window containing a list of all help available which contain keyword. If only one subject is
found which contains keyword, then help for this subject is displayed. If a list is displayed, you can use help to get
information about any of those subjects.

subject What you would like help on.

keyword What you would like help on.
ASIST Users Guide–Version 9.6 A-51

APPENDIX A
Example:
HELPFIND help ; opens a list of subjects whose help text includes
the keyword "help"
HELPFIND a ; opens a list of all subjects whose help text
contains the letter a

See also:

HELPLOG (page A-52), HELP (page A-51)

HELPLOG
Prints help on the requested subject to the event log

Abbreviation:

None

Syntax:

HELPLOG [subject]

Arguments:

Description:

This directive prints help on subject to the event log. If no exact match is found for the requested subject, ASIST
attempts to either find the nearest match or give you a list of help available on items beginning with subject.

Example:
HELPLOG helplog ; Shows this help
HELPLOG a ; Shows a list of all help available for
subjects beginning with the letter a
HELPLOG "*log" ; Shows a list of all help available for subjects
whose name contains the word log.
HELPLOG ; Shows a list of all subjects for which help
is available

See also:

HELP (page A-51), HELPFIND (page A-51)

HIDELAYER
Hides a layer on a SAMMI page

Abbreviation:

None

Syntax:

HIDELAYER pagename layername

Arguments:

Description:

This directive makes a SAMMI layer invisible on the given page.

subject What you would like help on.

pagename The name of the page.

layername The name of the layer to display
A-52 ASIST Users Guide–Version 9.6

Directives
Example:
HIDELAYER 'cmnd-win-lay' FEDS
HIDELAYER 'cmnd-win-lay' 'Spacecraft'

IDL
Add a page of trend plots to an IDL analysis page.

Abbreviation:

None

Syntax:

IDL [time] points-for-plot1 [points-for-plot2 …]

Arguments:

Description:

This directive adds one or more pages of trend plots to an IDL analysis page. A trend plot is a graph of a telemetry or
non-telemetry parameter point versus time. The first trend plot page will be displayed and all other trends will be hid-
den behind the first page.

Example:
idl ramp
idl FLOAT1&FLOAT2 P000SCNT

IDL_BULK
Collect raw data in IDL and create an output file.

Abbreviation:

idl_b

Syntax:

IDL_BULK points-to-collect1 [point-to-collect2 …]

Arguments:

Description:

This directive tells IDL to collect raw data and create an output file. The output file will be stored in
$IDL_OUTPUT_DIR.

Example:
idl_bulk ramp float1 image_set2 image_set3

IDL_CHANGE_BULK_FILE
Set the name of IDL’s bulk output file.

Abbreviation:

idl_change

Syntax:

time Specifies what time to use on the x-axis. May be either TREND_GRT (use ground receipt time) or
TREND_SC (use spacecraft time). If no time is listed then TREND_SC will be used.

points-for-plot# A list of one or more points to plot on plot#. To put multiple points on a single plot, separate them
using the & sign (i.e. FLOAT1&FLOAT2).

point-to-collect# The telemetry point(s) to collect.
ASIST Users Guide–Version 9.6 A-53

APPENDIX A
IDL_CHANGE_BULK_FILE [filename]

Arguments:

Description:

This directive changes the name of IDL’s bulk output file. If one file is already active, it will close the active file and
create a new file.If you don’t change the file name, it will default to idlbulk_year_day-of-year_hour_min.dat
(i.e. idlbulk_98_204_19_17.dat). All output files will be stored in $IDL_OUTPUT_DIR.

Example:
idl_change_bulk_file /my_directory/my_file

IDL_COLLECT
Collect data in IDL and create an output file in the specified format.

Abbreviation:

idl_c

Syntax:

IDL_COLLECT [format] [time] points-to-collect1 [point-to-collect2 …]

Arguments:

Description:

This directive will collect data and create an output file. The output file may be one of several types, including GIF
files, HDF files, CDF files, An XY plot is a graph of a telemetry or non-telemetry parameter point versus telemetry or
non-telemetry parameters. The first XY plot page will be displayed and all others will be hidden behind the first page.
It can be run while telemetry is running or while it is not running. The output file will be stored in
$IDL_OUTPUT_DIR.

Example:
idl_collect CDF ramp SINE P@sawtooth acst1s1mres

IDL_GO
Starts the COTS trending tool IDL.

Abbreviation:

idl_g

Syntax:

IDL_GO

Arguments:

None

Description:

This directive starts the commercial analysis tool IDL.

filename The new name of the bulk output file.

format The output file type. This can be either GIF, HDF, CDF

time Specifies what time to use on the x-axis. May be either TREND_GRT (use ground receipt time) or
TREND_SC (use spacecraft time). If no time is listed then TREND_SC will be used.

point-to-collect# The telemetry point(s) to collect.
A-54 ASIST Users Guide–Version 9.6

Directives
Example:
idl_go

IDL_MANY
Opens a list of plots specified in a file.

Abbreviation:

idl_m

Syntax:

IDL_MANY filename

Arguments:

Description:

This directive adds one or many pages of IDL trends and/or XY plots. The first page displayed, while the others are
hidden behind the first page. Only 200 parameters at a time can be run during one analysis session. All parameters that
are listed in the database may be accessed

Example:
idl_many mylist

where the file mylist contains:
trend float1 bit1 trend sawtooth&sine trend ramp trend sine p@sine double2
trend sramp
trend p@sramp plot acst1s1mres acst1s1yres acst1s1xres

IDL_STOP
Stops the current session of the COTS trending tool IDL.

Abbreviation:

idl_s

Syntax:

IDL_STOP

Arguments:

None

Description:

This directive stops the current session of IDL.

Example:
idl_stop

IDL_XY
Create an IDL plot of x-variable vs. the indicated y-variables in IDL.

Abbreviation:

None

Syntax:

IDL_XY x-variable y-variable1 [y-variable2 …]

filename The file containing a list of plots.
ASIST Users Guide–Version 9.6 A-55

APPENDIX A
Arguments:

Description:

This directive adds one page of XY plots on an IDL analysis page. An XY plot is a graph of a dependent telemetry
point (x-variable) versus one or more independent telemetry points (y-variable1…).

Example:
idl_xy ramp sawtooth

IS_STATION_CONNECTED_FOR_CMDS
Determines if the given ground station is connected for commanding to the FEDS

Abbreviation:

none

Syntax:

return-value=Is_station_connected_for_cmds(station-name)

Arguments:

Return Value:

1 if station-name is connected, or 0 otherwise.

Description:

This function checks the list of ground station command connections at the FEDS, and determines if station-name is one of them.

Example:
answer = is_station_connected_for_cmds ("WGS")
; Or, Another example:
WAIT UNTIL (is_station_connected_for_cmds ("WGS"))
 ; This will wait until the WGS station is connected for commands.

KILL_THAT_PAGE
Delete a Sammi “permanent” page

Abbreviation:

None

Syntax:

KILL_THAT_PAGE pagename

Arguments:

Description:

This directive will delete a Sammi “permanent” page. It should only be used as a last resort to delete a page that just
won’t go away, usually because of a SNAP failure.

Example:
KILL_THAT_PAGE dumb_page

x-variable The dependent variable on the plot.

y-variable-# The independent variable(s) on the XY plot.

station-name The name of the station to check for.

pagename The name of the displayed Sammi page to delete.
A-56 ASIST Users Guide–Version 9.6

Directives
LIMIT_REPORTS
Set the format of ASIST’s limit failure messages

Abbreviation:

None

Syntax:

LIMIT_REPORTS [NONE | POINT | SUMMARY | ALL]

Arguments:

Description:

This directive tells ASIST how to report limit failures. Examples of the two different kinds of event messages can be
found in “Types of limit-failure messages” on page 8-26.

Example:
LIMIT_REPORTS POINT
LIMIT_REPORTS SUMMARY

LISTARC
Produce a Directory Listing of Telemetry Archive Files

Abbreviation:

None

Syntax:

LISTARC

Arguments:

None

Description:

This directive prints a report of the status of local archives.

Example:
LISTARC

/LIST_HAZ
Lists all commands currently in the hazardous command pending queue

Abbreviation:

None

Syntax:

/LIST_HAZ

Arguments:

None

NONE No limit failure messages should be reported.

POINT Reports the arrival of each telemetry point which is out-of-range. This is the default.

SUMMARY Sends only one event message at the end of a telemetry exception, reporting how long it was in that
state, and for how many points.

ALL Produce both forms of limit failure messages

none specified Report the current limit_report type.
ASIST Users Guide–Version 9.6 A-57

APPENDIX A
Description:

This directive lists the commands currently in this machines hazardous command pending queue. This report includes
the command number and the “BITS” pattern of the command, and the commands source. If the pending “Command”
is a block, then the entire block is printed if on the primary, or just an indicator that it was a block if on an associate
(because the associate does not hold the queued block).

Note: Command numbers for a given hazardous command normally will not match between an associate and the pri-
mary. ASIST keeps a list to perform this function internally.

Example:
/LIST_HAZ

produces
Hazardous commands currently pending:
#1:<C00001801C0000003042D000A> from sgse2:SPR
#2:Cmd 1 of block:<D00BLOCKBEGIN> from sgse1:SPR
#2:Cmd 2 of block:<C00001801C0000003042D000A> from sgse1:SPR
#2:Cmd 3 of block:<C00002801C0000003042D000A> from sgse1:SPR
#2:Cmd 4 of block:<C00003801C0000003042D000A> from sgse1:SPR
#2:Cmd 5 of block:<D00BLOCKEND> from sgse1:SPR

or

No hazardous commands pending

/ALLOW TOP ; Allows the command at the top of the
; pending hazardous command queue

LOAD
Load Spacecraft Image or Table File

Abbreviation:

None

Syntax:

LOAD file,[start],[end],[table-id],[memory-type],[processor],[abs_flag]

Arguments:

file The name of a load file.

start An address indicating where to start loading the file. If this argument is not specified, the contents of
the load file define the start address.

end An address indicating where to stop loading the file. If this argument is not specified, the contents of
the load file define the end address.

table-id An integer indicating which table to load. If this argument is not specified, the contents of the load file
define the table number.

memory-type The name of the memory that this file is to be loaded into. If this argument is not specified, the con-
tents of the load file define the memory type.

processor The name of the processor that this file is to be loaded into. If this argument is not specified, the con-
tents of the load file define the processor.

abs_flag This flag is used for absolute loads, load data contents of the file to addresses specified by start and
end.
A-58 ASIST Users Guide–Version 9.6

Directives
Description:

This directive transmits the specified load file to the spacecraft.

Example:
LOAD test_image.ftf,,,,EEPROM,SCPRI
LOAD test_image.ftf,X'100',X'1FF',,RAM,ACSPRI,ABSOLUTE

LOAD_PSEUDO
Load new pseudo-telemetry equations

Abbreviation:

None

Syntax:

LOAD_PSEUDOfile

Arguments:

Description:

This directive reads the file file containing new pseudo-telemetry equations, loads the new equations into the periodic
and event-driven pseduo-telemtry processors, and

Example:
LOAD_PSEUDO "new_equations"

See Also:

Pseudo_Compiler(page A-19), Reload_Pseudo(page A-20),

LOAD_TO_CVT
Place the contents of a load file in the Current Value Table

Abbreviation:

None

Syntax:

LOAD_TO_CVTfilename , variable-name

Arguments:

Description:

This directive reads the load file filename and places its contents in the Current Value Table entry variable-name. This
allows you to initialize the value of a table.

Example:
LOAD_TO_CVT "my_table.ftf",ACS_TABLE_5

See Also:

Create_Load (page A-19), Create_Partial_Load (page A-20), Dump_To_CVT(page A-32),

file The name of the file containing the new equations (must have extension .pi). It must be in the
$(WORK)/rdl directory. It should be in quotes.

filename The name of the load file to read (must have extension .ftf). It must be in the $(WORK)/image direc-
tory. It should be in quotes.

variable-name The name of the table in the CVT.
ASIST Users Guide–Version 9.6 A-59

APPENDIX A
LOG_FILE
Insert a Text File into the Event Message Log

Abbreviation:

None

Syntax:

LOG_FILE filename [-d] [-p]

Arguments:

Description:

This directive inserts an ASCII text file into the event log streams. Use the event class FILE to turn filtering on or off
to the Events Window (X) or the Event Printer (LP). Files will always be copied to the Event Log File, but never to the
4 Sammi event streams E1, E2, E3, and E4.

Example
LOG_FILE /s/opr/system/rdl/tlm.rdl
LOG_FILE /s/opr/system/rdl/tlm.rdl -p
LOG_FILE temp.junk -d -p

MESSAGE
Send a message to a given ASIST workstation

Abbreviation:

None

Syntax:

MESSAGE destination-sfid message

Arguments:

Description:

This directive sends a message to the workstation whose SFID is destination-SFID. This message will appear in the
receivering workstations event log, and will be placed in its CVT variable EV_MSG, while the SFID of the sender will
be placed in the receivers’ CVT variable EV_SFID.

Example:
MESSAGE X’01’ Nobody knows the trouble I’ve seen
MESSAGE X’00’ Nobody knows my sorrooooooowwwwww

NEW_FEDS
Switches the primary-to-FEDS command link (fails over) to a new machine

Abbreviation:

None

filename Name of the text file you want inserted into the event log streams. Give the complete filename relative
to the current working directory. Symbolic directory paths, such as $STOL_LOG, are not translated.

-d If you use this optional argument, the file will be deleted after it is logged.

-p Using this option causes a page break to be sent to the Event Printer before and after the file is printed.

destination-sfid the Self-Identifier (SFID) of the destination workstation

message the message to send
A-60 ASIST Users Guide–Version 9.6

Directives
Syntax:

NEW_FEDS machine-name

Arguments:

Description:

This directive causes the primary to connect to machine-name for its forward command link. It may only be issued on
the primary.

Important Note:

This directive causes the command link to drop and changes the topology of the command network. This will cause a
disruption in the ability to command the spacecraft.

Example
NEW_FEDS ifeds72

See Also:

Reopen_telemetry (page A-71) and CHAPTER 9: “Commanding” and CHAPTER 10: “Front End Data System”

NEWLOG
Close and reopen the event log

Abbreviation:

None

Syntax:

NEWLOG [UNCOMPRESSED | DISCARD | COMPRESSED | filename]

Arguments:

Description:

This directive closes the current event log and opens a new one. The argument determines what the old event log is
named. If no argument is specified, the old event log is compressed and given a name of the form
seqevh.log.yymmdd.hhmm.gz, where yymmdd.hhmm is the date and time the event log was created.

If an argument is specified, it is interpreted as:

For more information, see chapter 7.

Example
NEWLOG
NEWLOG DISCARD; Throw out previous event log.
NEWLOG nice.events.log; I like that name.

NEW_PRIMARY

machine-name Name of the new FEDS machine.

file-name What to name the old event log.

Argument Meaning

UNCOMPRESSED Don't compress, but name based upon creation date.

DISCARD Throw out the old event log.

COMPRESSED Name based upon creation date & compress (the default).

filename This is what to name the old event log.
ASIST Users Guide–Version 9.6 A-61

APPENDIX A
Switches the primary (fails over) to a new machine

Abbreviation:

None

Syntax:

NEW_PRIMARY machine-name

Arguments:

Description:

This directive causes the primary to switch to machine-name. If issued on the current primary, it will inform all associ-
ates to change. If issued on a machine which is currently an associate, it will only inform the machine on which it is
typed.

Important Note:

This directive causes the command link to drop and changes the topology of the command network. This will cause a
disruption in the ability to command the spacecraft.

If the machine receiving the NEW_PRIMARY is to be an associate, it will drop its command link and connect to the
machine designated as the new primary. If it is the new primary, it will drop its command link and connect to the
FEDS.

Example
NEW_PRIMARY chelseaa

See Also:

Reopen_telemetry (page A-71) and CHAPTER 9: “Commanding” and CHAPTER 10: “Front End Data System”

OCMDBYAPID
Create Command Database Report Sorted By APID from the running database

Abbreviation:

None

Syntax:

OCMDBYAPID

Arguments:

None

Description:

This directive generates a report of the contents of the command database sorted by command Application ID (APID).
The output appears in a separate window in which the user may browse.

Example
OCMDBYAPID

OCMDBYMNEM
Create Command Database Report Sorted By Mnemonic from the running database

Abbreviation:

None

Syntax:

machine-name Name of the new primary machine.
A-62 ASIST Users Guide–Version 9.6

Directives
OCMDBYMNEM

Arguments:

None

Description:

This directive generates a report of the contents of the command database sorted by command mnemonic. The output
appears in a separate window in which the user may browse.

Example

OCMDBYMNEM

OTLMBYAPID
Create Telemetry Database Report Sorted By APID from the running database.

Abbreviation:

None

Syntax:

OTLMBYAPID

Arguments:

:

Description:

This directive generates a report of the contents of the telemetry database sorted by telemetry Application ID (APID).
The output appears in a separate window in which the user may browse.

Example
OTLMBYAPID

OTLMBYMNEM
Create Telemetry Database Report Sorted By Mnemonic

Abbreviation:

None

Syntax:

OTLMBYMNEM [data-source]

Arguments:

Description:

This directive generates a report of the contents of the telemetry database sorted by telemetry mnemonic. The output
appears in a separate window in which the user may browse.

Example
OTLMBYMNEM

data-source An optional command switch indicating the source of the telemetry database. If the switch -r appears,
the currently running database is used. If no switch appears, the database in the local working directory
is used.

data-source An optional command switch indicating the source of the telemetry database. If the switch -r appears,
the currently running database is used. If no switch appears, the database in the local working directory
is used.
ASIST Users Guide–Version 9.6 A-63

APPENDIX A
OTLMSIZE
Create Telemetry Database Report For Record Lengths

Abbreviation:

None

Syntax:

OTLMSIZE

Arguments:

None

Description:

This directive generates a report of the lengths of all records in the created telemetry database. The output appears in a
separate window in which the user may browse.

Example
OTLMSIZE
OTLMBYMNEM

PACKET_VIEW
Views raw incoming packet data in an ASIST page

Abbreviation:

None

Syntax:

PACKET_VIEW packet_number [console]

Arguments:

Description:

This opens an ASIST page to watch raw packet data. Data are displayed in hexadecimal.

Example:
PACKET_VIEW 2067
PACKET_VIEW 2067 2 ; to console 2

PAGE
Display a Telemetry Page

Abbreviation:

P

Syntax:

PAGE pagename [, console-number]

Arguments:

Description:

packet_number The APID (in decimal) of the packet to view.

console-number A number from 1 to 4 identifying the console on which to open this page.

pagename The name of the telemetry page to display.

console-number A number from 1 to 4 identifying the console on which to open this page.
A-64 ASIST Users Guide–Version 9.6

Directives
This directive opens and displays the named page (a Sammi format). If the console-number argument is specified, it
tells ASIST what screen to open the page on. Console 1, the default, is the main ASIST display. Consoles 2-4 are X-
terminal sessions attached to this workstation.

Examples:
PAGE xmdinxbt
PAGE diskmon ; Open it on the main console
PAGE anicepage,3 ; Open it on that X-term over there

PAGE_REMOTE
Open a page on the specified console

Abbreviation:

PR

Syntax:

PAGE_REMOTE pagename [, console-number]

Arguments:

Description:

This directive opens and displays the named page (a Sammi format) on the specified console.

Examples:
PAGE_REMOTE xmdinxbt; Open this page on the main console
PAGE_REMOTE anicepage,3; Open it on that X-term over there

See also:

Page (page A-64), Clear (page A-12), Start_Xterm (page A-85)

PAGE_UPDATE_RATE
Open a page on the specified console

Abbreviation:

none

Syntax:

PAGE_UPDATE_RATE pagename rate [console-number]

Arguments:

Description:

This directive causes the display server to update telemetry page pagename at a rate other than the default. Specify the
rate in seconds. Use a rate of 0 to restore a page to the normal service rate which is usually once a second.

Example:
PAGE_UPDATE_RATE _trend_test 10

pagename The name of the telemetry page to display.

console-number A number from 1 to 4 identifying the console on which to open this page.

pagename The name of the telemetry page whose rate you want to modify.

rate How often to update pagename (in seconds)

console-number A number from 1 to 4 identifying the console on which pagename is open.
ASIST Users Guide–Version 9.6 A-65

APPENDIX A
PLOT
Open a telemetry page containing a graph of up to four telemetry item(s) versus time

Abbreviation:

None

Syntax:

PLOT [console console-id] item1 [… item4] [ymin min-value] [ymax max-value] [update num-seconds] [span x-
range-in-seconds] [spanm x-range-in-min] [spanh x-range-in-hours]

Arguments:

Description:

This directive opens a telemetry page containing a graph of up to four telemetry item(s) versus time. As part of the
directive, you may specify the x and y ranges and the rate at which the graph is updated. You may access this directive
either by typing it into STOL or by opening the telemetry page “_ezplot” and following the directions found on that
page.

Example:
plot p001scnt p002scnt

opens a telemetry page with two items trended against time, updated once per second.

PLOT P@WBSAMYTT P@WBSAMYMT P@WBSAMYBT YMIN -10.0 YMAX 25.0 UPDATE 30 ;;
SPANH 16

opens a plot with three items plotted against time, with the y scale ranging between -10 and 25, the x-axis having a
range of 16 hours and data updated every 30 seconds.

See also:

change_plot (page A-11)

PLOT_SEQ
Create a plot (using gnuplot) from a sequential print file

Abbreviation:

None

Syntax:

PLOT_SEQ [-p] [-t "Title"] [-y "y-label"] [-x "x-label"] filename pt1 [pt 2 …]

consoleconsole-id specifies an attached X-terminal by console ID number. The default is 1. If you use the con-
sole argument, it must be first, immediately following the plot directive.

ymin min-value sets the minimum value for the y axis.

ymax max-value sets the maximum value for the y axis.

update num-seconds defines how often the graph will be updated (in seconds). The default is once per second.

span x-range-in-seconds defines the x range in seconds. The default is five minutes.

spanm x-range-in-minutes defines the x range minutes

spanh x-range-in-hours defines the x range in hours.
A-66 ASIST Users Guide–Version 9.6

Directives
Arguments:

Description:

This directive opens a plotting control window and a window containing your plot. Within the control window, you
can change the format of your plot by typing gnuplot control directives (described in the gnuplot manual), followed by
replot.

To close the plot, press ctrl-d while in the packet display window.

Example:

Collect some data using sequential print:
seq print on Float1 P@float2 to my_file.dat

Then it could be plotted with:
plot_seq my_file.dat float1 p@float2

or, to make it prettier:
plot_seq -t "I feel like I'm floating" -y "Floating Units" float1 P@float2

and finally, to print this plot:
plot_seq -p -t "I feel like I'm floating" -y "Floating Units" float1 P@float2

PLOT_SEQ_LP
Create a plot (using gnuplot) from a sequential print file and send it to the printer

Abbreviation:

None

Syntax:

PLOT_SEQ_LP [-t "Title"] [-y "y-label"] [-x "x-label"] filename pt1 [pt 2 …]

Arguments:

Description:

This directive reads the specified input from a sequential print file, generates a plot (using gnuplot) and prints the plot
to your laser printer.

filename the name of the sequential print file.

pt1 (pt2 …) are the points to put on the plot. The point names must exactly match the data requested, so if you
asked for P@voltage on the seq print line, you must ask for P@voltage here also.

-p Sends the plot to the printer (otherwise, it goes to a window on the screen)

-t "Title" Sets the title of your plot to Title

-y "y-label" Sets the label on the plots y axis.

-x “x-label" Sets the label on the plots x axis. If none is specified, then a label indicating the time range of the plot
is used.

filename the name of the sequential print file.

pt1 (pt2 …) are the points to put on the plot. The point names must exactly match the data requested, so if you
asked for P@voltage on the seq print line, you must ask for P@voltage here also.

-t "Title" Sets the title of your plot to Title

-y "y-label" Sets the label on the plots y axis.

-x “x-label" Sets the label on the plots x axis. If none is specified, then a label indicating the time range of the plot
is used.
ASIST Users Guide–Version 9.6 A-67

APPENDIX A
Example:

Collect some data using sequential print:
seq print on Float1 P@float2 to my_file.dat

Then it could be plotted with:
plot_seq my_file.dat float1 p@float2

or, to make it prettier:
plot_seq -t "I feel like I'm floating" -y "Floating Units" float1 P@float2

and finally, to print this plot:
plot_seq_lp -t "I feel like I'm floating" -y "Floating Units" float1 P@float2

POPUP_HAZ
Enable or disable the hazardous command pending popup window.

Abbreviation:

None

Syntax:

POPUP_HAZ ON|OFF

Arguments:

None

Description:

This directive turns on or off the hazardous command pending window feature.

When this feature is enabled, if any hazardous commands are pending, a window will pop up displaying the hazardous
command pending, and buttons which can either allow or cancel the command. This window will go away when no
hazardous commands are pending.

Note: On associates, the ALLOW button is disabled, because only the primary can allow hazardous commands.

Example:
POPUP_HAZ ON

PRCEDIT
Edit STOL Procedure File

Abbreviation:

None

Syntax:

PRCEDIT

Arguments:

None

Description:

This directive invokes the EMACS editor (in EDT mode) and allows the user to edit STOL procedure files.

Example:
PRCEDIT

PRINT
Print Spacecraft Image or Table File

Abbreviation:
A-68 ASIST Users Guide–Version 9.6

Directives
None

Syntax:

PRINT file,[start],[end],[print-device],[copies]

Arguments:

Description:

This directive formats and prints the spacecraft image or table contained within the given file. The file defines the area
to be printed, but the contents may be overridden by command line arguments.

Example:

PRINT test_image.ftf,x’0010’,x’2010’,,2

PSEUDO_COMPILER
Compile new pseudo-telemetry equations

Abbreviation:

None

Syntax:

PSEUDO_COMPILER file

Arguments:

Description:

This directive compiles the pseudo-telemetry equations in file and, if no errors occur, places the compiled output into
the $WORK/rdl directory with an extension of .pi.

Example:

PSEUDO_COMPILER “my_new_equations”

PVERIFY
Verify that a telemetry point is within a range specified by percentage

Abbreviation:

None

Syntax:

PVERIFY telemetry-point value [percent] [time-out]

file The name of the file to be printed.

start An address indicating where to start printing in the file. If this argument is not specified, the contents
of the file define the start address.

end1 An address indicating where to stop printing in the file. If this argument is not specified, the contents
of the file define the end address.

print-device The name of an output device, either SCREEN or PRINTER. If this argument is not specified, the
output is placed in a file.

copies An integer indicating the number of images or tables to print in the file. if this argument is not speci-
fied, it defaults to 1.

file The name of the file to be compiled. It should have the file extension .psd and be located in the direc-
tory $WORK/rdl.
ASIST Users Guide–Version 9.6 A-69

APPENDIX A
Arguments:

Description:

This directive verifies that telemetry-point is approximately equal to value (telemetry-point = value ±percent %).

This directive keeps looping until:

a) The comparison succeeds (telemetry-point = value ± percent %)

b) time-out seconds (if specified) are exceeded OR

c) The user sets the STOL variable XIT to 1.

When verify ends because of a success (case a), it returns TRUE in the STOL variable %status.

When verify ends because of a failure (case b or c), it then examines the STOL variable DieOnBadVerify. If it is
set to TRUE, then STOL enters an error state, stopping any procedure it was called from. If DieOnBadVerify is set
to FALSE, however, then verify sets the STOL variable %status to FALSE and returns, allowing the procedure to
continue.

Example
PVERIFY P@MYTEMP 98.6 1; Within 1% of 98.6
PVERIFY P@MYEARS 2 10 5; Check only for 5 seconds

QUIT
Exit STOL

Abbreviation:

None

Syntax:

QUIT

Arguments:

None

Description:

This directive terminates STOL.

Example.
QUIT

RAIL_OFF
Disables rail-limit checking for a given telemetry point

Abbreviation:

None

Syntax:

RAIL_OFF tlm-point [tlm-point tlm-point ...]

telemetry-point The item to verify. This point must be a numeric value (you can’t verify P@ of discrete values, since
they result in strings).

value The desired value of telemetry-point.

percent The percentage telemetry-point may be different from value and still be considered within the range
(i.e. telemetry-point = value ± percent %).

time-out How many seconds to keep attempting the comparison before giving up (default is forever).
A-70 ASIST Users Guide–Version 9.6

Directives
Arguments:

Description:

This directive disables rail limit checking for one or more telemetry points.

Example:
RAIL_OFF my_voltage
RAIL_OFF joe_mama,his_mama,bad_mama_jamma

RAIL_ON
Enable rail-limit checking for a given telemetry point

Abbreviation:

None

Syntax:

RAIL_ON tlm-point [tlm-point tlm-point ...]

Arguments:

Description:

This directive enables rail limit checking for one or more telemetry points. This means that these points will be
checked against the rail (as well as against any defined yellow and red limits) when limit checking is also enabled for
these points.

Example:
RAIL_ON my_voltage
RAIL_ON joe_mama,his_mama,bad_mama_jamma

/RAW
Transmit Raw SFDU

Abbreviation

RAW

Syntax:

/RAW sfdu-data-string

Arguments:

Description:

This directive signals the command processor to transmit the specified hexadecimal string as the contents of an SFDU.

Example:
/RAW 414243EFAC555512

RELOAD_PSEUDO
Reload startup pseudo-telemetry equations

Abbreviation

tlm-point The telemetry point(s) to turn off rail limit checking for.

tlm-point The telemetry point(s) to turn on rail limit checking for.

sfdu-data-string A string of hexadecimal characters to be placed into an SFDU.
ASIST Users Guide–Version 9.6 A-71

APPENDIX A
none

Syntax:

RELOAD_PSEUDO

Arguments:

none

Description:

This directive causes the pseudo-telemetry equations contained in the telemetry database to be reloaded and executed.

Example:
RELOAD_PSEUDO

REOPEN_TELEMETRY
Close the current connection to a telemetry source and reopen a new one

Abbreviation

none

Syntax:

REOPEN_TELEMETRY channel [machine-name]

Arguments:

Description:

This directive closes the current telemetry connection for channel. It then reopens another connection. If machine-
name is specified, then the new connection is made to the specified machine; otherwise, ASIST reconnects to the same
machine as before.

This is useful for failing over to different telemetry sources in the case of failures. It has also been used when faulty
test equipment caused the telemetry port to be “hung up.”

Example:
REOPEN_TELEMETRY S
REOPEN_TELEMETRY I feds_tlm; Switch from DHDS to FEDS
REOPEN_TELEMETRY Q feds_tlm; Switch from DHDS to FEDS

See Also:

Acquire (page A-7), new_primary (page A-61), and the telemetry chapter (CHAPTER 8: “Telemetry Processing”)

RESETSTATE
Resets the limit & polynomial states to those defined in the telemetry database

Abbreviation

none

Syntax:

RESETSTATE

Arguments:

none

channel Which telemetry channel to close and reopen (i.e. I or Q)

machine-name The machine to connect to for telemetry on this port. If none is specified, ASIST reconnects to the
same machine.
A-72 ASIST Users Guide–Version 9.6

Directives
Description:

This directive resets all telemetry limits, polynomial definitions and what items are being limit checked to what they
were when ASIST was started (as defined in the telemetry database).

WARNING: RESETSTATE does not work if the database has been loaded since you last started ASIST.

Example:
RESETSTATE

See Also:

SaveState, and STOL directives Limit, Limit Def and Poly

RESHOW
Sets the frequency of red exception messages for a given telemetry point

Abbreviation

none

Syntax:

RESHOW telemetry-point frequency

Arguments:

Description:

This directive allows you to set how many RED limit violations occur for telemetry-point between red-limit violation
events. It also controls how often procedures are halted due to red-limit violations (because procedures are only halted
on REPORTED red limit violations). It should be noted that changes in state (i.e. Red to Yellow, or Red Low to Red
High) are always reported, and cause the counter of the “number of packets until the next red limit violation report” to
be reset.

Example:
RESHOW SpyroGyro 5

causes ASIST to report the first packet a red exception occurred, then the 6th, 11th, 16th,…

See Also:

Acquire (page A-7), new_primary (page A-61), and the telemetry chapter (CHAPTER 8: “Telemetry Processing”)

SAMMI
Send a native SAMMI command to SAMMI

Abbreviation:

None

Syntax:

SAMMI command

Arguments:

Description:

This directive sends a command to SAMMI.

telemetry-point which telemetry point to affect

frequency how many red-limit violations should occur between event messages for telemetry-point

command Any legal SAMMI command (see the SAMMI User and Command Reference Manuals for help).
ASIST Users Guide–Version 9.6 A-73

APPENDIX A
Example:

To delete the last window opened:
SAMMI d-w -l

To purge all deleted windows from SAMMI's cache:
SAMMI purge

To open SAMMI's add-window selection box:
SAMMI a-w

SAMPLE_CVT
Capture the current value of specified telemetry points

Abbreviation:

None

Syntax:

SAMPLE_CVT specification-file output-file [subtitle]

Arguments:

Description:

This directive reads the telemetry sample specification file, retrieves the value of each named telemetry point, formats
each point, and outputs each formatted value to the given output file. If a subtitle is specified, it is printed as the second
header line of the file.

Example:
SAMPLE_CVT thermals.dat cpt_7a_thermals.out
SAMPLE_CVT acs.dat acs_2b.out "ACS data after wheel spinup"

SAVESTATE
Saves the current limit & polynomial states to a procedure file

Abbreviation

none

Syntax:

SAVESTATE filename

Arguments:

Description:

This directive saves any changes to limits, polynomial definitions and what items are being limit checked to a proce-
dure file, which can later be run to restore you to this state.

Note:

Filename will be overwritten if it currently exists.

Example:

specification-file The name of a file containing the mnemonics of telemetry points to be sampled

output-file The name of a file to receive the formatted values of the specified telemetry points

subtitle An optional character string containing a subtitle to be printed for this run of SAMPLE_CVT

filename The name of the procedure to store the current telemetry limits, polynomial conversions, and limit
checking states in.
A-74 ASIST Users Guide–Version 9.6

Directives
SAVESTATE special_limits; saves limits to proc special_limits
RESETSTATE ; reset limits to original
…
START special_limits;Set them back to before reset

See Also:

ResetState (page A-72), and STOL directives Limit, Limit Def and Poly

SCP
Stored Command Sequence Processor

Abbreviation:

None

Syntax:

SCP options input-scs-file output-ftf-file

Arguments:

options One or more of the following options may appear:

-ABSTRACT=quoted-
string

Enters the specified string into the abstract record of the output file. Defaults to
“Stored Command Processor generator V1.0”, if not specified.

-MISSION=quoted-string Enters the specified string into the identification record of the output file as the mission
name. If not specified, the STOL mission name is used.

-VERSION=integer Enters the specified integer into the identification record of the output file as the version
number. Defaults to 1, if not specified.

-SOURCE=quoted-string Enters the specified string into the identification record of the output file as the source.
Defaults to “ASIST”, if not specified.

-COMMENT=quoted-
string

Enters the specified string into the identification record of the output file as a comment.
Defaults to “OSCP Ver 1.0”, if not specified.

-PROCESSOR=identifier Identifies the processor to generate the load for. This field is required.

-FILETYPE=LOAD or
PART

Enters the specified keyword into the file type field of the data descriptor record of the
output file. Defaults to LOAD, if not specified.

-IMAGETYPE=SCPATS
or SCPRTS or MEMORY
or TABLE

Enters the specified keyword into the image type field of the data descriptor record of the
output file. Defaults to SCPATS for an ATS file, if not specified. Defaults to SCPRTS for
an RTS file, if not specified.

-ATS=letter Indicates that the input file is an absolute time sequence (ATS) file and specifies the buffer
to be used. This field (or the -RTS field) is required.

-RTS=integer Indicates that the input file is a relative time sequence (RTS) file and specifies the buffer
to be used. This field (or the -ATS field) is required.

-SELSOURCE=NULL or
EEPROM or RAM

Specifies the select source for the stored command sequence. Defaults to NULL, if not
specified.

-COMMITDES=RAM or
EEPROM or NOLOAD

Specifies the select destination for the stored command sequence. Defaults to RAM, if not
specified.

-OFFSET=integer Specifies the starting offset of the stored command sequence. Defaults to 0, if not speci-
fied.

-Didentifier=value Specifies the value of a preprocessor variable. Usually used to specify a starting time for
an ATS.
ASIST Users Guide–Version 9.6 A-75

APPENDIX A
Description:

This directive compiles a stored command sequence file and creates a loadable image file

Example:
SCP -DSTART=93-301-12:10.00 -ATS=A -PROCESSOR=SCPRI ATS.SCS ATS.FTF

SCREENING
Enable/Disable User Screening of Commands

Abbreviation:

SCR

Syntax:

SCREENING screening-flag

Arguments:

Description:

This directive signals the Mandate Handler to enable or disable screening of commands based on user ID. Screening is
enabled if ON is specified. Screening is disabled if OFF is specified.

Example:
SCREENING OFF

SETLOG
Set Event Logger Filter

Abbreviation:

None

Syntax:

SETLOG filter-list state [filter-list state] TO destination-list
OR

SETLOG DEFAULT

-MNEMONIC Displays the mnemonic form of commands in the output report (instead of the hexadeci-
mal command packet

-EXPAND Displays commands from referenced RTS’s in the output report

-INTEGRATED Displays any events that occurred, commands that were generated as a result of those
events, and commands from referenced RTS’s

-SPACECRAFT_ID=id Specifies the spacecraft id that the load is to be built for. Defaults to 0, if not specified.

input-scs-file The name of the file containing the stored command sequence to compile.

output-ftf-file The name of the file that receives the compiled command sequence.

screening-flag Either ON or OFF.
A-76 ASIST Users Guide–Version 9.6

Directives
Arguments:

Description:

This directive sets all event filter parameters for all event pages in a single directive.

Example:
SETLOG DEBUG OFF TO X,LP
SETLOG ACE,ACS,SC ON TO E2
SETLOG ALL_CLASSES OFF TO ALL_PAGES
SETLOG ALL_FILTERS OFF ALL_L,ALL_S,ACE,ACS,SC ON TO E3
SETLOG ALL_FILTERS ON DEBUG,DBG OFF TO X,LP
SETLOG DEFAULT ; This special case resets all filters for all

;destinations to the default settings used at ASIST start-up.

SEQ GNU
Print Telemetry Point(s) to File Upon Receipt of Packet(s) in the format expected by gnuplot

Abbreviation:

None

Syntax:

SEQ GNU ON mnem1 [USING fmt1] […mnem n] [EVERY #sec] [WHEN apid1 [… apid n]] TO filename]

or

SEQ GNU OFF [filename | ALL]]

filter-list A comma separated list of filter settings from the following lists:

Levels: DEBUG, INFO, WARNING, ERROR, FATAL

Classes: ACEA, ACEB, ACS, CLTU, CMD, COMM, DBG, DIR, ERES, FILE, LF, LRES, OPRI,
PAEA, PAEB, PACS, PKT, PSC, SC,STS, STTE, TLM, XFRM

Subsystems: CITM, CMH, DKEY, DPD, DPE, DPH, FEDC, FEDE, FEDS, FEDT, FCP, FFP,
FPP, FSM, GENS, GEVH, GPIB, OGSE, ORDC, OSCC, SPR, SPTP, TIME, TIO, TLMH,
TSDS, UCMD, VCVT

Also, ALL_LEVELS may be used to specify all event levels, ALL_CLASSES may be used to spec-
ify all event classes, ALL_SUBSYSTEMS may be used to specify all event subsystems, and
ALL_FILTERS may be used to specify everything. These special filter names may be abbreviated.
For example, ALL_SUBSYSTEMS may be abbreviated to ALL_S. See the EVENT MESSAGE
HANDLING chapter for the meanings of the class and subsystem names.

state Either ON to enable the setting or OFF to disable the setting.

destination-list A comma separated list of destinations from the following list:

LP the event printer,
X the start-up X events page,
E1 the SAMMI events page EVENTS1,
E2 the SAMMI events page EVENTS2,
E3 the SAMMI events page EVENTS3,
E4 the SAMMI events page EVENTS4.

Additionally, ALL_DEVICES may be used to specify all destinations, and ALL_PAGES may be
used to specify all destinations except the event printer.
ASIST Users Guide–Version 9.6 A-77

APPENDIX A
Arguments:

Description:

This directive initiates the sequential gnu function, which prints the values of the specified telemetry points to the
specified file. If a “trigger” is specified (via the WHEN clause), then a line is printed each time a packet is received
with one of these “trigger” APIDs. If no “trigger” is specified, then a line is printed each time a packet is received con-
taining one (or more) of the telemetry points being printed. The sequential print file is placed in the $WORK/data
directory.

Multiple concurrent sequential gnu jobs may be run by sending the output to different files using the TO clause. The
system supports up to 64 concurrent jobs, with a total of up to 2000 mnemonics to be sequential printed at any given
time.

Turning sequential gnu OFF causes the given file to be closed, and the sequential gnu to that file to be stopped.

Example:
SEQ GNU ON SHSRPPS TO DUMMY.TXT
SEQ GNU OFF DUMMY.TXT
SEQ GNU ON SHSHCMDPC USING %d, SHSPPRES WHEN 1,2,6
SEQ GNU OFF

SEQ INTERACTIVE
Open an interactive session with the decommutated sequential telemetry stream server.

Abbreviation:

None

Syntax:

SEQ INTERACTIVE ON

Arguments:

None

Description:

This directive opens a window containing an interactive session with the Sequential Stream Server. It allows you to
type in the commands specified in the Sequential Decommutated Telemetry Stream Interface Control Document (see
Appendix C). This is useful for developers of client programs to gain experience with the protocol.

mnem1 - mnem n From 1-n valid mnemonics from the current telemetry database which are to be printed to the sequen-
tial print file. Each mnemonic may optionally be followed by a USING format-spec clause, which
allows the print format to be specified. The format specification must start with a % and must follow
the rules for C language output formats. If no format is specified, the data will be printed using the
format(s) described in Table 16-1 on page 16-5

apid1 - apid n This argument is optional. If APIDs are specified on the command line, then this function prints the
value of the telemetry points to the sequential print file when packets with one of these APIDs are
received.

#sec This argument is optional. If present, it causes data to be printed to the file only when the difference in
packet time between the received packet and the previously printed packet is greater than or equal to
#sec

filename This is the filename where the sequential print is written. If no filename is given, seqprint.dat, is
used. The sequential print file is always written to the $WORK/data directory.

On SEQ GNU OFF, this is the TO filename of the sequential print job to be stopped. If no filename is
given, the sequential print to file seqprint.dat is stopped. If filename is ALL for SEQ GNU OFF,
all sequential print jobs are stopped.
A-78 ASIST Users Guide–Version 9.6

Directives
In addition to the commands listed in the ICD, this program accepts:
QUIT
Ctrl-C

Example:
SEQ INTERACTIVE ON

SEQ KILL_STREAMS
Closes one or more sequential streams

Abbreviation:

None

Syntax:

SEQ KILL_STREAMS stream-name [stream-name ...]

Arguments:

None

Description:

This directive closes one or more sequential stream clients. These clients can include a stream for any open sequential
print jobs or a stream for any external TSDS client programs running externally.

Example:
SEQ KILL_STREAMS MATLAB_COLLECTOR ; Kills matlab_collector client

SEQ LIST
Lists sequential client programs (either print, timed, gnu, or interactive) currently running.

Abbreviation:

None

Syntax:

SEQ LIST

Arguments:

None

Description:

This directive lists all sequential print, gnu, timed, and interactive jobs currently executing on this workstation. The list
is printed to the event log.

Example:
SEQ LIST

SEQ LIST_STREAMS
Lists any currently open sequential streams

Abbreviation:

None

Syntax:

SEQ LIST_STREAMS

Arguments:

None

Description:
ASIST Users Guide–Version 9.6 A-79

APPENDIX A
This directive lists all sequential streams opened in the TSDS (sequential stream) server. This will include a stream for
any open sequential print jobs, and additionally for any external TSDS client programs running externally. The list is
printed to the event log. This directive can be used to find streams to kill using the SEQ KILL_STREAM directive.

Example:
SEQ LIST_STREAMS

SEQ PACKET
Displays a raw dump of the given packet in a window.

Abbreviation:

None

Syntax:

SEQ PACKET ON [packet-apid [offset]]

Arguments:

Description:

This directive opens a window which displays a dump of the packet specified by packet-apid. The displayed data
begins offset bytes into the data portion of the packet, or at 14 bytes before the data portion (at the beginning of the
CCSDS header) if no offset is specified. If neither packet-apid nor offset is specified, you are prompted for them in the
packet display window.

To end a packet display, hit Ctrl-C while in the packet display window.

Example:
SEQ PACKET ON 0
SEQ PACKET ON 1 20

SEQ PRINT
Print Telemetry Point(s) to File Upon Receipt of Packet(s)

Abbreviation:

None

Syntax:

SEQ PRINT ON mnem1 [USING fmt1] [… mnem 16] [WHEN apid1 [… apid n]] [TO filename]

or

SEQ PRINT OFF [filename | ALL]

Arguments:

packet-apid The APID of the packet to dump.

offset What byte in the data portion of the packet to begin displaying data.

mnem1 - mnem n From 1-n valid mnemonics from the current telemetry database which are to be printed to the sequen-
tial print file. Each mnemonic may optionally be followed by a USING format clause, which allows
the print format to be specified. The format specification must start with a % and generally follow the
rules for C language output formats. If no format is specified, the data will be printed using the for-
mat(s) described in Table 16-1 on page 16-5.
A-80 ASIST Users Guide–Version 9.6

Directives
Description:

This directive initiates the sequential print function. This function prints the values of the specified telemetry points to
the specified file. If a “trigger” is specified (via the WHEN clause), then a line is printed each time a packet is received
with one of these “trigger” APIDs. If no “trigger” is specified, then a line is printed each time a packet is received con-
taining one (or more) of the telemetry points being printed. The sequential print file is placed in the $WORK/data
directory.

Multiple concurrent sequential print jobs may be run by sending the output to different files using the TO clause. The
system supports up to 64 concurrent jobs, with a total of up to 2000 mnemonics to be sequential printed at any given
time.

Turning sequential print to OFF causes output to the given file to be closed, and the sequential print to that file to be
stopped.

Example:
SEQ PRINT ON SHSRPPS TO DUMMY.TXT
SEQ PRINT OFF DUMMY.TXT
SEQ PRINT ON SHSHCMDPC USING %d, SHSPPRES WHEN 1,2,6
SEQ PRINT OFF

SEQ PRINT_TABBED
Print Telemetry Point(s) to File With Tab-DelimitersUpon Receipt of Packet(s)

Abbreviation:

None

Syntax:

SEQ PRINT_TABBED ON mnem1 [USING fmt1] [… mnem 16] [WHEN apid1 [… apid n]] [TO filename]

or

SEQ PRINT_TABBED OFF [filename | ALL]

Arguments:

apid1 - apid n This argument is optional. If APIDs are specified on the command line, then this function prints the
value of the telemetry points to the sequential print file when packets with one of these APIDs are
received.

filename This is the filename where the sequential print is written. If no filename is given, seqprint.dat, is
used. The sequential print file is always written to the $WORK/data directory.

On SEQPRINT OFF, this is the TO filename of the sequential print job to be stopped. If no filename is
given, the sequential print to file seqprint.dat is stopped. If filename is ALL for SEQPRINT
OFF, all sequential print jobs are stopped.

mnem1 - mnem n From 1-n valid mnemonics from the current telemetry database which are to be printed to the sequen-
tial print file. Each mnemonic may optionally be followed by a USING format clause, which allows
the print format to be specified. The format specification must start with a % and generally follow the
rules for C language output formats. If no format is specified, the data will be printed using the for-
mat(s) described in Table 16-1 on page 16-5.
ASIST Users Guide–Version 9.6 A-81

APPENDIX A
Description:

This directive works the same as SEQ PRINT, except that it produces a file whose fields are tab-delimited.

Example:
SEQ PRINT_TABBED ON SHSRPPS TO DUMMY.TXT
SEQ PRINT_TABBED OFF DUMMY.TXT
SEQ PRINT_TABBED ON SHSHCMDPC USING %d, SHSPPRES WHEN 1,2,6
SEQ PRINT_TABBED OFF

SEQ TIMED
Print user specified telemetry points to a file based upon receipt of specified packets and packet times

Abbreviation:

None

Syntax:

SEQ TIMED ON mnem1 [USING fmt1] […mnem n] [EVERY #sec] [WHEN apid1 [… apid n]] [TO filename]

or

SEQ TIMED OFF [filename]

Arguments:

Description:

This directive performs the same action as SEQ PRINT, but adds the additional optional keyword EVERY. When
EVERY is used, the data is printed to the file only when the difference in packet time between the received packet and
the previously printed packet is greater than or equal to #sec from the EVERY clause.

apid1 - apid n This argument is optional. If APIDs are specified on the command line, then this function prints the
value of the telemetry points to the sequential print file when packets with one of these APIDs are
received.

filename This is the filename where the sequential print is written. If no filename is given, seqprint.dat, is
used. The sequential print file is always written to the $WORK/data directory.

On SEQPRINT OFF, this is the TO filename of the sequential print job to be stopped. If no filename is
given, the sequential print to file seqprint.dat is stopped. If filename is ALL for SEQPRINT
OFF, all sequential print jobs are stopped.

mnem1 - mnem n From 1-n valid mnemonics from the current telemetry database which are to be printed to the sequen-
tial print file. Each mnemonic may optionally be followed by a USING format clause, which allows
the print format to be specified. format specification must start with a % and generally follow the rules
for C language output formats. If no format is specified, the data will be printed using the format(s)
described in Table 16-1 on page 16-5

apid1 - apid n This argument is optional. If APIDs are specified on the command line, then this function prints the
value of the telemetry points to the sequential print file when packets with one of these APIDs are
received.

#sec This argument is optional. If present, it causes data to be printed to the file only when the difference in
packet time between the received packet and the previously printed packet is greater than or equal to
#sec.

filename This is the filename where the sequential print is written. If no filename is given, seqprint.dat, is
used. The sequential print file is always written to the $WORK/data directory.

On SEQPRINT OFF, this is the TO filename of the sequential print job to be stopped. If no filename is
given, the sequential print to file seqprint.dat is stopped. If filename is ALL for SEQPRINT
OFF, all sequential print jobs are stopped.
A-82 ASIST Users Guide–Version 9.6

Directives
Note: When EVERY is not specified, this directive operates like SEQ PRINT.

Example:
SEQ TIMED ON P001SCNT USING %d P@P001STIME P@SHSPMODE EVERY 10 TO p1.dat
SEQ TIMED OFF p1.dat
SEQ TIMED ON P001 EVERY 20 TO allp001.dat
SEQ TIMED OFF ALL

SHOWLAYER
Show a layer on a SAMMI page

Abbreviation:

None

Syntax:

SHOWLAYER pagename layername

Arguments:

Description:

This directive makes a SAMMI layer visible on the given page.

Example:
SHOWLAYER 'cmnd-win-lay' FEDS
SHOWLAYER 'cmnd-win-lay' 'Spacecraft'

SHOWLOG
Show Event Logger Filter Settings

Abbreviation:

None

Syntax:

SHOWLOG destination

Arguments:

Description:

This directive displays a list of event logger settings for the specified device or all devices.

Example:

pagename The name of the page whose layers you wish to show.

layername The name of the layer to display

destination An event destination device from the following list:

LP the event printer,

X the start-up X events page,

E1 the SAMMI events page EVENTS1,

E2 the SAMMI events page EVENTS2,

E3 the SAMMI events page EVENTS3,

E4 the SAMMI events page EVENTS4.

Additionally, ALL may be used to specify all destinations, and HELP may be used to display lists of all the
available levels, classes, and subsystems.
ASIST Users Guide–Version 9.6 A-83

APPENDIX A
SHOWLOG LP
SHOWLOG ALL
SHOWLOG HELP

SNAP
Print Hardcopy of Telemetry Page

Abbreviation:

None

Syntax:

SNAP pagename [printer] [title]

Arguments:

Description:

This directive prints the specified page, in hardcopy form, on either a laser printer or the event printer. Any page may
be printed. If the page is not currently displayed, it will be raised, snapped, and then removed. Snaps to the laser printer
print with the indicated title (or “Page Snap” if none is given) in the left hand corner, the page name in the center, and
the time of the snap request in the right hand corner.

Example:
SNAP STOLSTAT
SNAP MYPAGE,LP
SNAP YOURPAGE,EP
SNAP OURPAGE LP "This is a very nice page"
SNAP THEIRPAGE "Theirs is not as nice as ours"

SNAP_CUSTOM
Generate a custom SNAP template for a given page

Abbreviation:

None

Syntax:

SNAP_CUSTOM pagename

Arguments:

Description:

pagename The name of the page to print.

printer The name of the printer to print the page on, either EP for the event printer or LP for the laser printer.
If this argument is not given, the default device for the hardcopy is contained in the STOL global vari-
able DEFAULT_SNAP_DEVICE, which is initialized to the string “LP” at start-up. If this variable
contains “LP”, output goes to the laser printer. If this variable contains “EP”, output goes to the
event printer. All other values display an error message.

title An optional title which is printed on the top of snaps to the laser printer.

pagename The name of the page needing a custom SNAP (report) template. You must specify pagename with
exact case and no quotes.
A-84 ASIST Users Guide–Version 9.6

Directives
This directive will put a default report template in the $WORK/sam/app directory. Then the report page will open.
Choose “Read File” to get a list of reports and select your page from the list. Make changes to the report to portrait
mode, for instance–and then choose “Save File”. Thereafter, when you SNAP the named page to LP, the revised tem-
plate will be used.

Example:
SNAP_CUSTOM STOLSTAT

SNAP_REMOTE
Print Hardcopy of Telemetry Page and open it on an X-terminal, not on the console

Abbreviation:

None

Syntax:

SNAP_REMOTE pagename [printer] [title]

Arguments:

Description:

This directive prints the specified page, in hardcopy form, on either a laser printer or the event printer. Any page may
be printed. If the page is not currently displayed, it will be raised on the X-terminal indicated by the
XTERM_LOOKUP ANY_DOWN directive, snapped, and then removed. Snaps to the laser printer print with the indi-
cated title (or “Page Snap” if none is given) in the left hand corner, the page name in the center, and the time of the
snap request in the right hand corner.

Note:

SNAP_REMOTE will open a page on an Xterm using the XTERM_LOOKUP ANY_DOWN directive, pause for a
timed-wait, SNAP the page, wait again, and then CLEAR the page. If the waits are unacceptable, you should use
something like this instead:

XTERM_LOOKUP ANY ; or by NAME
xid=%status
PAGE_REMOTE yourpage (xid)
SNAP yourpage

; as long as yourpage is left open on an Xterm, even if it is
; minimized, the SNAP will not open a copy of the page on the
; hosting workstation.

Example
SNAP_REMOTE “_APE_paletter” LP “observe the quotes”
SNAP_REMOTE STOLSTAT LP “Goes to open console w/highest number”

START_XTERM
Start an X-terminal console session on the named display (read the notes below)

pagename The name of the page to print.

printer The name of the printer to print the page on, either EP for the event printer or LP for the laser printer.
If this argument is not given, the default device for the hardcopy is contained in the STOL global vari-
able DEFAULT_SNAP_DEVICE, which is initialized to the string “LP” at start-up. If this variable
contains “LP”, output goes to the laser printer. If this variable contains “EP”, output goes to the
event printer. All other values display an error message.

title An optional title which is printed on the top of snaps to the laser printer.
ASIST Users Guide–Version 9.6 A-85

APPENDIX A
Abbreviation:

SX

Syntax:

START_XTERM name [-e] [-f filter_filename]

Arguments:

Description:

This directive starts an X-terminal console session on the named display.

ASIST can run up to 7 extra displays (consoles) on X-terminals attached to a workstation. The workstation can be a
primary or an associate workstation.

After entering the SX directive, the _console_summary page opens automatically. This page summarizes display
server (DPD) activity on each console. Console 1 is always the host console. Consoles 2-7 identify X-terminal console
connections. For each console ID (cid) these items are listed: display name, number of pages open, number of DDOs
open, and the status of the connection. The status can be:

The totals show all pages and DDOs being served by the host's display server (DPD).

Remote consoles have their own status window and an optional event window, but no STOL window. When a console
is running, you can open and close pages on the X-terminal from the X-terminal or from the host machine.

The X-terminal console status window is identical to the familiar one on the host except for these things:

a) The top menu bar is light blue text on dark blue ground (lightsteelblue3 on midnightblue) and in a larger font.

b) There's an extra choice in the menu bar to quit the X-terminal console session. It's labeled “QUIT-Session” and
raises a page that asks you to confirm that you want to quit.

Other than these differences, the X-terminal status window is equivalent to the main one of the host. However, if the
host has disabled STOL access for the console, any buttons that send STOL commands by way of stol_server will not
function -- those in the STOL Keypad page, for instance.

Important Notes:

•The arguments -e and -f must be in lower case.

•The remote X-terminal must be in the workstations’s /etc/hosts file. ASIST doesn’t support connection by IP
address. Verify access to the X-terminal at the workstation’s prompt by typing:
ping name

•The screen-saver on the remote X-term must be disabled to guarantee a connection. To do this:

a)From the X-Terminal, log into the workstation.

b)When you see the window that asks “…start the ground system?”, choose cancel. A unix window will open.

c)Disable the screen saver by typing:
xset s off

d)Now, you may issue the START_XTERM directive from the host workstation.

name The name of the X-Terminal on which to start the console.

-e Causes start-up without an events window.

-f filter_filename Allows you to name your own event filter file when not using the -e option. The filter file describes
which events to display and what color to display them (see Color event log filters in Chapter 7 for
more details).

“available” OK to start an X-terminal session

“connected” currently running an X-term session

“retiring” shutting down the console session
A-86 ASIST Users Guide–Version 9.6

Directives
•If too many pages are opened on an X-terminal or too many consoles are started on the same X-terminal, you may
run out of local X-window memory. A window on your X-terminal will pop up to warn you. If this happens you
must close some pages on the console immediately. ASIST cannot detect these local memory failures. Continuing
with insufficient local memory may lead to problems in ASIST and may require that the console be shutdown.

Example:
START_XTERM my_xterm; Open a normal X-term on my_xterm
SX your_xterm -e; You won’t have the events window
SX other_xterm -f other_filter_file

See also:

STOP_XTERM (page A-87), PAGE (page A-64), PAGE_REMOTE (page A-65), CLEAR (page A-12), CLEARALL
(page A-13), CONS_DISABLE (page A-19), and CONS_ENABLE (page A-19).

STATARC
Display Statistics on a Telemetry Archive

Abbreviation:

None

Syntax:
STATARC [-x] archive-name

Arguments:

Description:

This directive displays brief statistics about the specified telemetry archive. The statistics include: the total number of
packets in the archive, the total from each physical channel, the total from each virtual channel, and the total for each
APID present in the archive. The beginning and ending sequence number is also displayed.

STOP_BULK
Stops collection of data in the IDL bulk file.

Abbreviation:

stop_b

Syntax:

STOP_BULK

Arguments:

None

Description:

This directive stops IDL bulk data collection.

Example:
stop_bulk

STOP_XTERM
Stops the X-terminal console session running on the named display

Abbreviation:

-x displays extended statistics on each physical channel, virtual channel, and telemetry packet in the
archive.

archive-name The name of the archive (from the LISTARC report).
ASIST Users Guide–Version 9.6 A-87

APPENDIX A
None

Syntax:

STOP_XTERM [name | console-number]

Arguments:

Description:

This directive stops an X-terminal console session identified by its console ID or by display name. Console IDs are
listed in the page _console_summary; just click the console button under the ASIST logo.

Example:
STOP_XTERM my_xterm; End that session
STOP_XTERM 2 ; End session 2

See also:
START_XTERM

SVERIFY
Verify that a string-valued telemetry point is equal to a given value

Abbreviation:

None

Syntax:

VERIFY telemetry-point value [error] [time-out]

Arguments:

Description:

This directive verifies that telemetry-point is equal to value

This directive keeps looping until:

a) The comparison succeeds (telemetry-point = value)

b) time-out seconds (if specified) are exceeded OR

c) The user sets the STOL variable XIT to 1.

When verify ends because of a success (case a), it returns TRUE in the STOL variable %status.

When verify ends because of a failure (case b or c), it then examines the STOL variable DieOnBadVerify. If it is
set to TRUE, then STOL enters an error state, stopping any procedure it was called from. If DieOnBadVerify is set
to FALSE, however, then verify sets the STOL variable %status to FALSE and returns, allowing procedures to con-
tinue.

Example
SVERIFY P@HAIRDAY “GOOD”; Make sure it is a good hair day
SVERIFY P@MYHAIR “STRAIGHT” 0 5; Check only for 5 seconds

name The name of the X-Terminal to stop.

console-number A number from 2 to 4 identifying which console to stop.

telemetry-point The telemetry point to verify. It must evaluate to a string (i.e. P@ of a discrete or a CHAR array); for
numeric values, use the directive VERIFY.

value The desired value of telemetry-point. This must be a string.

error This value, if set, must be 0. It is kept to be compatible with VERIFY. .

time-out How many seconds to keep attempting the comparison before giving up (default is forever).
A-88 ASIST Users Guide–Version 9.6

Directives
TDQ
Opens a window containing a TDQ (Telemetry Database Query) session

Abbreviation:

none

Syntax:

TDQ

Arguments:

none

Description:

This directive opens a window containing a session with the Database Query Tool (TDQ). For more information, see
CHAPTER 17: “Database Query Tool” .

TelemetryByApid
Generate a report of telemetry sorted by apid

Abbreviation:

TLMBYAPID

Syntax:

TelemetryByApid [apid-number]

Arguments:

Description:

This directive generates a report of telemetry by apid from the running database. If no apid is entered, a report of the
entire database is generated. If an apid is entered, then the report consists of all telemetry points within the packet with
the given APID. In either case, the report is sorted by apid/position within the packet.

TelemetryByName
Generates a report of telemetry sorted by name

Abbreviation:

TLMBYNAME

Syntax:

TelemetryByName [telemetry-search-string]

Arguments:

Description:

This directive generates a report of telemetry sorted by name from the running database. If no name is entered, the
report is for the entire database. If a name is entered, then the report consists of items starting with the given string.
This name is a regular expression; which is anchored to the beginning of the name. Thus, SNO matches SNOOPCMD or
SNOWBALL while '.*ABC' matches any name with ABC anywhere in it (i.e. ABCdefg or bABCock).

TLM_HANDOVER

apid-number The apid number of all telemetry points that appear in this report.

telemetry-search-
string

The telemetry search string is a string that appears in the telemetry name.
ASIST Users Guide–Version 9.6 A-89

APPENDIX A
Change the source of telemetry to the given ground station

Abbreviation:

none

Syntax:

TLM_HANDOVER station-name

Arguments:

Description:

This directive changes the source of telemetry to be the connection from ground station station-name. This is only
used if you are connected to the spacecraft through groundstations rather than through hardline.

Example:
TLM_HANDOVER WGS1 ; change to wallops ground station, string 1

TLM_SOURCE
Enable or disable receipt of telemetry over a given ethernet port.

Abbreviation:

none

Syntax:

TLM_SOURCE channel state

Arguments:

Description:

This directive turns on or off receipt of telemetry over the given ethernet telemetry port. The default for all ports is
ON. This is not acquire, which turns on and off receipt of data received over a given spacecraft channel. Instead, it
allows a system to switch between different ethernet ports sending telemetry data from the same spacecraft channel.
This has been implemented to accommodate the Digital History Data Store (DHDS), and to allow ASIST to switch
between receipt of I and Q channel telemetry from the FEDS and the DHDS.

Example:
TLM_SOURCE D OFF;; Turn off receipt of DHDS tlm
TLM_SOURCE I ON;; Turn on receipt of FEDS tlm
TLM_SOURCE Q ON;; . . .

TVER
Controls telemetry verification of commands.

Abbreviation:

none

Syntax:

TVER

TVER [ON | OFF]

station-name The ground station to make the source of your telemetry. This name must match an entry into the
FEDS /etc/hosts file.

channel A channel designator, A, B, C, … Z. Only a single real-time channel may be started at a time.

state ON or OFF
A-90 ASIST Users Guide–Version 9.6

Directives
TVER TIMEOUT seconds

TVER EXIT

TVER ABORT

TVER MODE [SYNC | ASYNC]

TVER VERIFY

TVER PENDING

TVER CLEAR

Arguments:

Description:

This directive controls telemetry verification of commands. For more information, see “Controlling Telemetry Verifi-
cation” on page 9-11.

Example:
TVER ON ;; Turn on telemetry verification of commands
TVER ASYNC;;enter asynchronous mode for verification
/cmd_1 ... /cmd_2 ... /cmd_3 ... ;; a bunch of command are sent
TVER VERIFY ;;; Check now to see that all of these commands worked

TWO_STEP
Control ASIST’s two-step command buffer

Abbreviation:

None

Syntax:

TWO_STEP [ON | OFF | SEND | CLEAR | SHOW | PAGE]

none displays the current state of telemetry verification

ON enables telemetry verification of commands

OFF disables telemetry verification of commands

TIMEOUT seconds set the number of seconds before telemetry verification returns an error to seconds

EXIT causes your procedure to terminate the current verification and continue immediately

ABORT halts the current telemetry verification with an error

MODE SYNC switch to synchronous telemetry verification mode (which is the default mode). In this
mode, each command must verify successfully before proceeding to the next.

MODE ASYNC switch to asynchronous telemetry verification mode. In asynchronous mode, command verifica-
tions (up to a maximum of 100 commands) are stored until you determine that your proce-
dure must wait for all outstanding commands to be verified (by entering the directive
TVER VERIFY).

VERIFY causes all outstanding commands to be verified (when in asynchronous mode)

PENDING displays the names of all commands which are currently awaiting verification

CLEAR clear all pending telemetry verifications
ASIST Users Guide–Version 9.6 A-91

APPENDIX A
Arguments:

Description:

Entering two-step mode causes all commands sent from your workstation or any associates attached to your worksta-
tion to be buffered. You can then either send or release the buffered commands using the two-step directives SEND or
CLEAR.

Example:
TWO_STEP ON
TWO_STEP SHOW
TWO_STEP SEND
TWO_STEP OFF

UPLINK BYPASS
Enable/Disable Command Processor CCSDS Bypass Bit Mode

Abbreviation:

UPL BYPASS

Syntax:

UPLINK BYPASS bypass-flag

Arguments:

Description:

This directive signals the command processor to enable or disable bypass bit mode. If bypass bit mode is enabled, the
bypass bit in the CCSDS transfer frame is set each time a transfer frame is built from a packet. If bypass bit mode is
disabled, the bypass bit remains clear in the transfer frame.

Example:
UPLINK BYPASS ON

UPLINK CONTROL
Enable/Disable Command Processor CCSDS Control Bit Mode

Abbreviation:

UPL CONTROL

Syntax:

ON Turns on two-step commanding, causing commands to be buffered, and command synchronization to
be set to manual.

OFF This exits two-step mode, also doing a SYNC NOW (to ensure no commands are pending) and
changes command synchronization back to AUTO. This only works when no commands are in the
two-step buffer.

SEND Sends the currently buffered commands. When this directive is issued, STOL does a SYNC NOW,
causing procedures to halt until responses are received for all pending commands.

CLEAR Cancels all commands in the command buffer. When this directive is issued, STOL does a SYNC
NOW, causing procedures to halt until responses are received for all pending commands.

SHOW Prints the commands currently in the two-step buffer to the event log.

PAGE Opens the page CMDQUE, which displays the commands currently in the buffer (and has push-buttons
which allow you to control two step commanding)

bypass-flag Either ON or OFF.
A-92 ASIST Users Guide–Version 9.6

Directives
UPLINK CONTROL control-flag

Arguments:

Description:

This directive signals the command processor to enable or disable control bit mode. If control bit mode is enabled, the
control bit in the CCSDS transfer frame is set each time a transfer frame is built from a packet. If control bit mode is
disabled, the control bit remains clear in the transfer frame.

Example:
UPLINK CONTROL ON

UPLINK COP1
Enable/Disable Command Processor CCSDS COP-1 Mode

Abbreviation:

UPL COP1

Syntax:

UPLINK COP1 cop1-flag

Arguments:

Description:

This directive signals the command processor to enable or disable COP-1 mode. If COP-1 mode is enabled, the com-
mand processor retransmits commands as necessary based on feedback from the spacecraft telemetry stream. If COP-
1 mode is disabled, the command processor transmits each command once and ignores any feedback from the space-
craft.

Example:
UPLINK COP1 ON

UPLINK FRAME
Set the frame counter in the FEDS command software

Abbreviation:

UPL FRAME

Syntax:

UPLINK FRAME next-frame-counter

Arguments:

Description:

This directive changes the Transmitter_frame_sequence_number (the CCSDS’s designation) to next-frame-counter.
This changes the Ground Frame Number, which is the number that will be assigned to the next command to the space-
craft.

Example:
UPLINK FRAME 2A ;; The counter is now 42 decimal or 2A hex or 054 octal

control-flag Either ON or OFF.

cop1-flag Either ON or OFF.

next-frame-counter The counter (in hexadecimal) to use on the next command sent to the spacecraft.
ASIST Users Guide–Version 9.6 A-93

APPENDIX A
UPLINK FRAME 10 ;; The counter is now 16 decimal or 10 hex or 020 octal

UPLINK RETRIES
Set Command Processor Command Retransmission Count

Abbreviation:

UPL RETRIES

Syntax:

UPLINK RETRIES retry-count

Arguments:

Description:

This directive signals the command processor to set its internal Retries flag to the specified value (refer to the section
labeled Command Processor Operational Modes inside the chapter covering Front End Data System Command
Logic).

Example:
UPLINK RETRIES 3

UPLINK RETRY
Retransmit Last Command

Abbreviation:

UPL RETRY

Syntax:

UPLINK RETRY

Arguments:

None

Description:

This directive signals the command processor to retransmit the last rejected command and all following commands
from the point of failure. This directive is valid only if COP-1 mode is enabled.

Example:
UPLINK RETRY

UPLINK TIMEOUT
Set the timeout value for the FEDS command software

Abbreviation:

UPL TIMEOUT

Syntax:

UPLINK TIMEOUT timeout-in-secs

Arguments:

Description:

retry-count An integer, in the range 0-9, specifying the maximum number of command retransmissions.

timeout-in-secs The number of seconds the FEDS command software should wait for a response from the spacecraft
before declaring the command lost.
A-94 ASIST Users Guide–Version 9.6

Directives
This directive sets the timeout value used by the FEDS COP-1 command software. It tells this software how long the
spacecraft has to respond to a command before the ground system assumes the command is lost.

Example:
UPLINK TIMEOUT 2 ;; No way that spacecraft can go this fast. HaHaHa!!!
UPLINK TIMEOUT 234 ;; This is an old, really sllllloooowwww spacecraft.

VALIDATION
Enable/Disable Command Validation Mode

Abbreviation:

VAL

Syntax:

VALIDATION validation-flag

Arguments:

Description:

This directive signals the Mandate Handler to enable or disable validation of commands and/or the hazardous and crit-
ical screening of commands.

Example:
VALIDATION OFF

VERIFY
Verify that a telemetry point is within a specified range

Abbreviation:

None

Syntax:

VERIFY telemetry-point value [error] [time-out]

validation-flag One of the options from the table below.

Does it do validation/screening:

validation-flag vs. DB vs. Hazardous vs. Critical

ON Yes Yes Yes

HAZONLY No Yes No

CRITONLY No No Yes

VALONLY Yes No No

HAZ_CRIT No Yes Yes

VAL_HAZ Yes Yes No

VAL_CRIT Yes No Yes

OFF No No No
ASIST Users Guide–Version 9.6 A-95

APPENDIX A
Arguments:

Description:

This directive verifies that telemetry-point is approximately equal to value (telemetry-point = value ± error). If no
error is specified, it is assumed to be approximately 0 (1.0 E -7).

This directive keeps looping until:

a) The comparison succeeds (telemetry-point = value ± error)

b) time-out seconds (if specified) are exceeded OR

c) The user sets the STOL variable XIT to 1.

When verify ends because of a success (case a), it returns TRUE in the STOL variable %status.

When verify ends because of a failure (case b or c), it then examines the STOL variable DieOnBadVerify. If it is
set to TRUE, then STOL enters an error state, stopping any procedure it was called from. If DieOnBadVerify is set
to FALSE, however, then verify sets the STOL variable %status to FALSE and returns, allowing procedures to con-
tinue.

Example
VERIFY P@MYTEMP 98.6 .4; 98.2 < MyTemp < 99.0
VERIFY P@MYEARS 2 0.2 5; Check only for 5 seconds

VIEWRDLFILE
Opens a text browser (less) to view the RDL file that defines a telemetry point

Abbreviation:

None

Syntax:

VIEWRDLFILE telemetry-point [console-name]

Arguments:

Description:

This directive opens a text browser, the program less, to view the RDL file that defines a given telemetry-point. If you
want the browser opened on an X-terminal console, you must provide the hostname for the console.

Example:
VIEWRDLFILE ramp

; This will open the file /s/opr/system/rdl/gse_tlm.rdl
; to view the definition of ramp on the host workstation.

VIEWRDLFILE ramp riverun
; This will do the same on the X-console named riverun.

See Also:

telemetry-point The telemetry point to verify. Note: The point selected must be a numeric value; P@ of discretes,
which return a string, will not work with this directive (try SVERIFY instead).

value The desired value of telemetry-point.

error The amount telemetry-point may be different from value and still be considered within the range (i.e.
telemetry-point = value ± error). The default is 1.0 E -7.

time-out How many seconds to keep attempting the comparison before giving up (default is forever).

telemetry-point Name of a telemetry-point.

console-name Name of an attached X-terminal console.
A-96 ASIST Users Guide–Version 9.6

Directives
Start_Xterm (page A-85), Stop_Xterm (page A-87)

XTERM_LOOKUP
Gets the console number for an attached X-terminal

Abbreviation:

None

Syntax:

XTERM_LOOKUP method [“xterm-nodename”]

Arguments:

Description:

This directive looks up the console number for an attached x-terminal according to the method defined. The console
number is then written to the variable %status. If the search fails, %status is set to 1. You must use the %status value
before calling any other directive, as shown in the example. You must also use the Xterm ID variable in parentheses as
it is shown in the examples.

Example:
XTERM_LOOKUP NAME “riverun”
xid=%status
PAGE_REMOTE STOLSTAT (xid)

; () around xid cause the value of the variable xid to
; be passed to PAGE_REMOTE

XTERM_LOOKUP ANY
xid=%status
PAGE STOLSTAT 0 (xid)

See Also:

Page_Remote (page A-65), Page (page A-64), Clear (page A-12), Start_Xterm (page A-85), Stop_Xterm (page A-87)

method Determines how to lookup the x-terminal. Valid methods are:
NAME – finds an x-terminal by name
ANY – finds the first x-terminal console in 2,3,4 order
ANY_DOWN – finds the first x-terminal console in 4,3,2 order
ASIST Users Guide–Version 9.6 A-97

APPENDIX A
A-98 ASIST Users Guide–Version 9.6

AS
APPENDIX B Editing Files with EMACS
Emacs is supplied with ASIST. It is a versatile, programmable editor with an extensive list of built in capabilities. Because
of its versatility, it can be intimidating at first. Thus, the version delivered with ASIST is customized to simplify the pro-
cess of learning its capabilities.

Emacs commands are invoked by pressing a sequence of keys and control characters. A simple notation is used in this
section for all key sequences. All keypad and key sequences are shown in bold characters. “ESC” matches the escape key
(usually located at the upper left hand side of the keyboard). The prefix “C-” signifies the use of a control character. The
control key is always held down at the same time as the next key. For example, “C-x” means press the control key and the
“x” key simultaneously. Escape is always pressed and released before pressing the next key in the sequence.

The EMACS Window

Emacs is a multi-window editor. Several files can be edited or displayed at the same time. Each window in the display is
bounded on the bottom by a status bar which shows the file buffer name, the editing mode (for example, “STOL Proce-
dure”), the line number of the text cursor, and the percentage of the file before the current window position in the file
buffer. If the file has been modified, the left side of the status bar will show “**” to the left of the file buffer name.

:

TABLE 19-1. STOL Procedure Editing Key Sequencesa

Key Sequence Function

TAB Indent current line

C-j Go to next line, indent to current nesting level

C-c C-n Go to the beginning of the next non-comment STOL statement

C-c C-p Go to the beginning of the previous non-comment STOL statement

C-c C-r Temporarily insert a column ruler into the procedure

C-c C-w Create a temporary window to the right of the procedure, setting the current window
width to 72 columns

C-c c Comment each line in the selected region

ESC C-q Indent the whole STOL procedure
IST Users Guide–Version 9.6 B-1

APPENDIX B
X windows mouse actions

Emacs also provides a set of mouse actions for use in X windows. The mouse actions are different in various regions of
the screen and can be modified with the control key.

The mouse can be used to cut (or copy) text from one place in the file and paste it to another. Using the mouse, place the
mouse cursor at the beginning of the region to cut or copy and press the left mouse button. The text cursor will move to
the mouse cursor position. Move the mouse cursor to the end of the region you want to cut or copy. Press the right mouse
button once to copy the selected region or twice to cut the selected region. Move the mouse cursor to the place where you
want to insert the text from the selected region. Press the middle mouse button to paste the text back into the file. This
last step can be performed as many times as you like to paste the region in several places.

The mouse is used in conjunction with the status bar in order to implement some other simple functions. When the mouse
cursor is placed over the status bar of a window, the left mouse button removes all other windows except for the one
selected. SHIFT-center mouse button splits the window horizontally at the mouse cursor position. The right mouse but-
ton removes the window selected.

The mouse can also be used to “drag” the scroll bar by placing the mouse cursor over the scroll bar, then pressing and
holding the center mouse button. The left mouse button scrolls the window down and the right mouse button scrolls
the window up.

ESC C-j Split the current line at the cursor position and indent the continued part of the line to
the correct column for further input

ESC ; Create a properly indented comment line for comment text

ESC s Syntax check the STOL procedure

ESC n Nest whole procedure

ESC o Continue syntax checking from current cursor position

ESC p Collect all labels and subsequent comments to the top of the procedure. Use only after
syntax checking the whole procedure.

a. These key sequences facilitate the common STOL procedure editing functions.

TABLE 19-2. Using the mouse in EMACS

Mouse button Function

Left mouse button Move the text cursor to the mouse cursor position

Middle mouse button Paste a cut or copied region at the mouse cursor position

Right mouse button Select a region of text and copies it into the paste buffer. The text is cut
into the paste buffer if the button is pressed twice at the same character
location.

Ctrl left mouse button Raise a popup menu to select a different buffer for the window containing
the mouse cursor

Ctrl middle mouse button Raise a popup menu for various emacs help and tutorial functions

Ctrl right mouse button Raise a popup menu for font selection

TABLE 19-1. STOL Procedure Editing Key Sequencesa (Continued)

Key Sequence Function
B-2 ASIST Users Guide–Version 9.6

Editing Files with EMACS
The emacs X window provides a set of pull down menus for each editing mode. Place the mouse cursor over the menu bar
and depress the left mouse button. A menu will appear. Drag the mouse down until the preferred selection is highlighted
and release the button. If dialog is required, the minibuffer is used to prompt the user for further information.

TABLE 19-3. How to get help in EMACS

Key Sequence Function

C-h ? Give user help on the help functions

C-h ? ? Bring up alternate window with help function

C-h a Provide short help on emacs functions which match a regular expression string

C-h b Provide all currently active keystroke bindings and their associated emacs function
names

C-h c Display the emacs function called for a particular keystroke

C-h d Display help text on built-in emacs functions

C-h f Display help text on built-in emacs functions

C-h i Run the emacs “info” help utility

C-h k Describe the emacs function called for a particular keystroke

C-h l Show the last 100 keystrokes

C-h m Describe the mode (for example, “STOL Procedure” mode)

C-h p Show emacs source code files with particular functions

C-h s Describe the syntax of symbols in the current major mode

C-h t Run the emacs “tutorial” help utility

C-h v Describe an internal emacs variable and its current value

C-h w Show the keystroke sequence to invoke a particular emacs built in function

C-h C-c Describe copying the emacs source code

C-h C-d Describe the emacs source code distribution

C-h C-f Enter emacs “info” utility and goes to the section which can provide help on a particu-
lar built in emacs function

C-h C-h Help on using emacs “help”

TABLE 19-4. Moving the text cursor in EMACS

Key Sequence Function

up arrow Move the text cursor up one line, maintaining the same column if possible

down arrow Move the text cursor down one line, maintaining the same column if possible

left arrow Move the text cursor one character to the left

right arrow Move the text cursor one character to the right

home Move the text cursor to the top of the visible window without scrolling

Alt left arrow Move the text cursor backward one word

Alt right arrow Move the text cursor forward one word

insert key Toggle emacs between “insert” and “overwrite” mode

end key Move the text cursor to the end of the buffer

C-a Go to beginning of current line
ASIST Users Guide–Version 9.6 B-3

APPENDIX B
C-b Go backward one character

C-e Go to the end of the current line

C-f Go forward one character

C-l Scroll line containing text cursor to middle of window

C-n Move cursor down one line

C-p Move cursor up one line

C-r Perform incremental search in backward direction

C-s Perform incremental search in forward direction

C-v Move the cursor down in the file by one window width

C-x C-x Exchange the text cursor position with the last marked region position

C-x = Display cursor position

C-x [Scroll view of the file one page up

C-x] Scroll view of the file one page down

ESC C-r Search backward for a regular expression

ESC C-s Search forward for a regular expression

ESC C-v Scroll the other window down

ESC < Move text cursor to the beginning of the buffer

ESC > Move text cursor to the end of the buffer

ESC a Move text cursor backward one sentence

ESC b Move text cursor backward one word

ESC e Move text cursor forward one sentence

ESC f Move text cursor forward one word

ESC m Move the text cursor to the current indentation level

ESC r Move the text cursor to the middle line of the window

ESC v Scroll the window down

ESC { Move text cursor backward one paragraph

ESC } Move text cursor forward one paragraph

TABLE 19-5. Common editing command sequences in EMACS

Key Sequence Function

delete key Delete a character

Return New line

Backspace Delete previous character

C-@ Sets a marker for the beginning of the region

C-d Delete current character

C-g Cancel any pending emacs extended command (built in function)

C-k Delete to end of line

TABLE 19-4. Moving the text cursor in EMACS (Continued)

Key Sequence Function
B-4 ASIST Users Guide–Version 9.6

Editing Files with EMACS
C-o Open a line

C-q Allow next character or control character to be inserted into file

C-t Transpose the current character with the previous character

C-w Cut selected region into the kill buffer

C-y Paste the kill buffer

C-\ Allow next character or control character to be inserted into file

C-_ Undo previous editing operation - may be repeated until all editing operations have been
undone

C-Spacebar Set a marker for the beginning of the region

C-/ Undo

C-x TAB Tab a region to the right one space

C-x C-l Change the selected region to all lower case letters

C-x C-o Delete blank lines before and after the current text cursor position

C-x C-p Mark the current page as a region

C-x C-t Transpose the current text cursor line with the previous line

C-x C-u Change the selected region to all lower case letters

C-x ' Expand abbreviations in some editor modes

C-x h Mark the whole buffer for editing operations

C-x l Count the lines on the page containing the text cursor

C-x u Undo previous editing commands

C-x Delete Cut to the beginning of the current sentence

ESC ! Send one shell command

ESC # Start the emacs calculator

ESC $ Spell check the word at the current text cursor position

ESC % Replace text with new text, querying all matches to the end of the file

ESC = Count the lines in a selected region

ESC \ Delete spaces backward from current text cursor position

ESC c Capitalize the next word

ESC d Delete the next word

ESC h Place a region mark at the beginning of the current paragraph

ESC i Tab to next tab stop column

ESC j Create a new comment line at the current text cursor position and indent to the comment
column

ESC k Cut to the beginning of the current sentence

ESC t Transpose the current text cursor word with the next word

ESC u Uppercase the current text cursor word

ESC x Execute an emacs extended command (built in function)

ESC Delete Cut the word prior to the current text cursor position

TABLE 19-5. Common editing command sequences in EMACS (Continued)

Key Sequence Function
ASIST Users Guide–Version 9.6 B-5

APPENDIX B
Issuing a Command Multiple Times

To automatically repeat a command multiple times, precede the command by a number entered using the numbers at the
top of the keyboard, combined with the control key. For example, if you wish to scroll the text cursor down 72 lines, press
and hold the control key while typing “7” and then “2”. The mini buffer window (the single status line at the bottom of
the emacs window”) will now show the string “C-7 C-2-”. Now release the control key and press the down arrow key. The
cursor will be 72 lines further in the file. Negative multipliers can be used in the same manner by using the minus sign.
For example, entering “-72” instead of the “72” would have moved the cursor 72 lines up.

TABLE 19-6. Window and File Management Command Sequences in EMACS

Key Sequence Function

C-x C-b Open another window and show all current emacs buffers

C-x C-c Shut down emacs after providing the option to save any changed buffers

C-x C-d Open another window and list a directory in short form

C-x C-f Create a new buffer and insert a selected file into the buffer

C-x C-q Toggle the buffer between read only and editable

C-x C-r Create a new buffer and insert a selected file into the buffer in read-only mode

C-x C-s Save the current buffer to the disk

C-x C-v Insert a new file into the current buffer, losing the contents of the current buffer

C-x C-w Write the current buffer to a selected file

C-x C-z Minimize emacs if using an emacs X window frame (i.e. convert the display to an icon)

C-x + Set all emacs windows to the same height

C-x - Shrink the window to the size of the buffer

C-x 0 Delete the current text cursor window if more than one window is being displayed

C-x 1 Delete all windows which do not contain the text cursor

C-x 2 Split the window vertically with a horizontal buffer display line between the windows

C-x 3 Split the window horizontally with a vertical scroll bar between the windows

C-x ^ Enlarge the window vertically when multiple windows are displayed

C-x b Switch to another buffer in the text cursor window

C-x d Invoke the directory editor

C-x i Insert a file at the current text cursor position

C-x k Delete the current text cursor buffer

C-x o Move the text cursor to the next window when multiple windows are displayed

C-x s Query the user to save any changed buffers

C-x < Scroll view of the file left if the whole line is not displayed or wrapped

C-x > Scroll view of the file right if the whole line is not displayed or wrapped

C-x { Shrink current text cursor window horizontally when side-by-side windows are displayed

C-x } Enlarge current text cursor window horizontally when side-by-side windows are displayed

C-z Minimize emacs X window or restore iconized window
B-6 ASIST Users Guide–Version 9.6

Editing Files with EMACS
The key sequence C-u “number” provides an alternate way to specify a count for the next key sequence. For example, C-
u 40 kp-0 moves to the left column, 40 lines away.

TABLE 19-7. Column-oriented command sequencesa in EMACS

a. Column-oriented command sequences simplify common text editing functions, such as word wrapping
and indentation.

Key Sequence Function

C-x C-n Set the “goal column” to the current text cursor column. All motions to new lines
now place the text cursor into that column.

C-x . Set the “fill prefix” to the current line contents up to the position of the text cursor.
When using “auto fill” mode (toggle auto fill on and off with “ctrl-x auto-fill-
mode”), emacs automatically inserts the “fill prefix” when wrapping to the next line.

C-x ; Set the column to which comments are moved when nesting the procedure to the
current text cursor position

C-x f Set the fill column for word wrapping

ESC C-\ Indent a selected region of the file

ESC ; Create a comment line and indent cursor to the comment expression

ESC q Word fill the current paragraph to the fill column set by C-x f

TABLE 19-8. Other useful emacs modes

Info Mode C-h i Provides information on all emacs functions

Tutorial Mode C-h t Provides a helpful interactive tutorial on all emacs functions

Calc Mode ESC # c Provides an advanced calculator within emacs, including symbolic differen-
tiation, curve fitting, and other useful information

Calc Info Mode ESC # i Provides information on Calc mode

Calc Tutorial Mode ESC # t Provides a helpful interactive tutorial on the emacs Calc Mode

Directory Edit All directories Useful for manipulating files, maneuvering around directories, and editing
multiple files. Help on directory edit is available by typing C-h m when edit-
ing a directory
ASIST Users Guide–Version 9.6 B-7

APPENDIX B
B-8 ASIST Users Guide–Version 9.6

AS
APPENDIX C Decommutated Telemetry
Stream Interface Control
Document
ASIST's Decommutated Telemetry Stream
Interface Control Document (ICD)

VERSION 001

Introduction

This Interface Control Document (ICD) describes the interface between an ASIST workstation and a client system receiv-
ing a decommutated telemetry stream, including the protocols used for the exchange of messages, as well as the physical
interface between the two systems.

Physical Interface

The physical interface uses Ethernet with TCP/IP as the transport medium. A single, two-way socket is used to communi-
cate between the two systems over the TCP/IP port number 4202.

Sessions

Upon startup, ASIST's Decommutated Telemetry Stream Server opens TCP/IP port 4202 and awaits connections from cli-
ents. This server is able to handle up to 32 clients at any given time. It is closed, as are all sessions with it, when ASIST is
shut down.

Protocol

Communication between the two systems is accomplished by means of messages. The receipt of each message transmit-
ted by the client is confirmed by the Server using an ACCEPT/REJECT message.

The State Transition Diagram for both the ASIST system and the client system is shown below:
IST Users Guide–Version 9.6 C-1

APPENDIX C
Clients are initially in the READY State. They are not yet connected to any telemetry stream nor are they ready to receive
any data. To prepare to receive data, a client must send a CONNECT message. When this message is successfully
received, the client enters the CONNECTED State. Block definitions are specified in this state but no telemetry data can
be received. A Block is a collection of telemetry items printed when specific apid(s) are received in the telemetry stream.
A DISCONNECT command in this state takes the client back to the READY state. Issuing a START command in CON-
NECTED state brings the client to the RECEIVING state. The client receives all requested telemetry data in this state.
Issuing a STOP command returns the client to the CONNECTED state. Once back in the CONNECTED state, block def-
initions can be added or removed. A DISCONNECT command in the RECEIVING state returns the client to the READY
state.

Application Interface

The following section describes the format of all messages transmitted and received by the client. Messages fall into three
categories : Command messages, Response messages and Data messages.

Command messages are sent by a client requesting a service. Each command message receives a reply in the form of a
response message.

Response messages indicate the reception of the previous command message and the completion status of the command.
C-2 ASIST Users Guide–Version 9.6

Decommutated Telemetry Stream Interface Control Document
Finally, data messages contain the formatted telemetry data requested by the user. No response message is required from
the client after receiving a data message.

In general, all messages are comprised of a sync pattern, followed by a decimal length specification, followed by data:

where UUUU : sync pattern (four U's in a row)
Length : 4 bytes in ASCII containing the size of Data.
Data : Length bytes of printable ASCII data

CONNECT Message: to initiate a transaction by the telemetry stream client

where stream-name is the name of the client's stream (maximum of 16 characters long) and the optional flags are:

DISCONNECT Message: disconnects a transaction (may be issued by a client or ASIST)

where stream-name is the name of the client's stream (maximum of 16 characters long) and is followed by optional Text
describing the reason for the disconnect.

RESPONSE Message: sent by ASIST in response to every message received from the client. Possible responses are:

if a command is accepted, where ICD-Version-Number is 001, or

if a command is rejected, where ICD-Version-Number is 001, Reject Code is an integer and the optional Text field may
contain a description of the reason for rejection.

BLOCKBEGIN Message: begins a block definition

where Block-Name is the first ASCII string after keyword BLOCKBEGIN representing the name of this block and Trig-
gers, if present, has the following format:

 WHEN trigger1 trigger2 ... triggern

where, trigger1, trigger2, ..., triggern are events which will trigger the receipt of this block.

BLOCKEND Message: ends a block definition

UUUU Length Data

CONNECT stream-name [flags]

-Schar The char is used as a field separator in the blocks of data generated. If none is given, a space is used. Note:
the character after -S is used. There is no space between -S and char.

-T This tells ASIST to format the time in the data blocks in the format "YY-DDD-HH:MM.SSS"

DISCONNECT stream-name [Text]

ACCEPT ICD-Version-Number

REJECT ICD-Version-Number Reject Code [Text]

BLOCKBEGIN Block-Name [Triggers]

BLOCKEND Block Name Items
ASIST Users Guide–Version 9.6 C-3

APPENDIX C
where Block Name is the first ASCII string after keyword BLOCKEND representing the name of this block and Items is
an integer representing the total number of items in this block.

Notes:

• If one or more triggers were specified within this block, you will receive a DATA message for this block whenever a
packet with the apid of any of the triggers in the WHEN statement are received. If no triggers were specified, you will
receive a DATA message for this block whenever a packet with any one of the requested telemetry points trigger apid
is received.

• Telemetry point's trigger apids are:

1.For event-driven pseudo-telemetry points, the first item defined in the list of trigger apids for the equation (in
the telemetry RDL),

2.For periodic pseudo-telemetry points, the "PERIODIC PULSE" apid, 0xfff, which is delivered each time the
periodic pseudo-telemetry processor completes one cycle, OR

3.For anything else, the apid in which the requested telemetry point is contained.

ITEM Message: defines an ITEM within a block

where Mnemonic is an ASCII string representing the name of this ITEM and can include the modifiers P@ or R@ as
defined in STOL, and the optional Format gives the C format in which this item is to be received.

Note: Mnemonic can include any scalar item in STOL. It may also be a UNION, RECORD, or PACKET name. These
aggregate items are sent as a collection of bytes (i.e. P001 would dump all raw bytes of packet 1).

Notes:

• Mnemonic can include any scalar item in STOL. It may also be a UNION, RECORD, or PACKET name. These aggre-
gate items are sent as a collection of bytes (i.e. P001 would dump all raw bytes of packet 1).

• If an entire array (without element numbers) is requested, you will get a comma-delimited field with entries for each
element of the array. If an entire array is requested with the R@ modifier, a hex string will be returned containing the
raw data bytes.

ATTR Message: requests a telemetry attribute of the given mnemonic be delivered

where Mnemonic is the telemetry point whose attribute is being requested, Attribute is the telemetry attribute requested
(See "Access to Database Attributes" on page F-1. for a list of valid attributes) and the optional Format gives the C format
in which this item is to be received.

For example: ATTR TLM_POINT TIME_MEASURED

TRIGGERS Message: defines trigger(s) for a block

where Triggers are in the format trigger1 trigger2 ... triggern indicating the apids of packets, the receipt of which will
trigger the sending of this block.

ITEM Mnemonic [Format]

ATTR Mnemonic Attribute [Format]

TRIGGERS [Triggers]
C-4 ASIST Users Guide–Version 9.6

Decommutated Telemetry Stream Interface Control Document
START Message: signals that the client is ready to receive telemetry data

where Stream-Name is the stream name to which this client is attached.

STOP Message: signals that the client is no longer ready to receive any telemetry data

where Stream-Name is the stream name to which this client is attached.

DELETE Block Message: deletes a previously defined BLOCK definition

where Block-Name is the name of the block to be deleted.

Note: When in BLOCK DEFINITION state, deleting the block currently being defined will put you back into READY
state.

DATA Message : signals receipt of telemetry data

where:

Sequence is the number of the data messages sent on this stream so far,
Ground Time is the time ASIST received the trigger packet,
Packet Time is the spacecraft time from the trigger packet,
Blockname is the name of the block received,
Trigger is the event that triggered this data message, and
Data is the requested data in ASCII.

Two formats are available for Ground Packet Times:

• Default: This is Sec.Subseconds since an Epoch.

•For Ground Time, the epoch is Jan 1, 1970 (Standard UNIX epoch). For example: 780605435.443 is a typical ground
time, referring to the afternoon of Sept. 26, 1994.

•For Packet Time, the epoch is unique for each mission. For XTE, it is Jan. 1, 1993. For example: 1.000 would be one
second after Midnight of Jan 1,1993.

• String Format (-T option): This format is YY-DDD-HH:MM:SS.MIL.(for example: 94-265-19:55:56.282 is Septem-
ber 26,1994 at 7:55 GMT)

Trigger is sent in the format PXXX, where XXX=trigger apid in hexadecimal.

DROPPED Message: This signals that messages have been lost by ASIST due to a backup on the socket.

where number indicates how many messages were lost.

START Stream-Name

STOP Stream-Name

DELETE Block-Name

Sequence Ground Time Packet Time Blockname Trigger Data

Dropped number
ASIST Users Guide–Version 9.6 C-5

APPENDIX C
C-6 ASIST Users Guide–Version 9.6

AS
APPENDIX D Tools and Utilities
Limit Viewer

How to access it

Choose “Tools” from the main ASIST Status Window and then choose “Limit Viewer” from the
list.

Overview

When Limit Viewer opens you may see “can’t stat file...” messages in the three paned black win-
dows or they may be blank. This is normal. Follow the numbers on the page to start monitoring
limits.

1. Set: Choose from the set of nine
radio buttons, Value through Descrip-
tion, the items you wish to see. .

2. Rate: Enter an update rate or accept
the default of once a second. Right
mouse in the field to pop up a menu of
rate choices. A rate of zero (manual)
will only be updated when you press
the green button.

3. Start/Restart: press the green button
to start monitoring or whenever you
change parameters.

4. Limits On? If you don’t see what
you expected, verify that you have set
limits correctly (see the checklist near
the end of chapter 6).
IST Users Guide–Version 9.6 D-1

APPENDIX D
Window to JPEG

How to access it

Choose “Tools” from the main ASIST Status Window and then choose “Window to JPEG” from the
list.

Overview

Window to JPEG lets you capture any window to a JPEG image file.

First, enter a file name for your image; “.jpg” will be
appended to the name. Or, right-click the field to get
quick names.

You may enter a directory name, accept the default
($WORK/sam/image), or right-click for a short list.

By default, you get a five-second delay in which to
uncover your window before ASIST captures the
image. You may change the delay if you wish. If
you do change the delay, you must also enter a direc-
tory name.

Press the green button to start the capture. After the
delay, your cursor turns into a crosshair; click the
window you want captured.

Telemetry Database Browser

How to access it

Choose “Tools” from the main ASIST Status Window and then choose “TLM db Browser” from the
list.
D-2 ASIST Users Guide–Version 9.6

Tools and Utilities
Overview

TLM Browse browses the
telemetry database and
enables you to view raw
packet data, lookup full data-
base information, or inspect
a telemetry point’s runtime
value. An options button
allows you to filter and sort
the browse list.

At start-up TLM Browse dis-
plays packet APIDs in the
APID panel and packet 0
names in the Telemetry
Points panel. Each click on
an APID changes the Telem-
etry Points panel (TP panel)
to show the contents of the
selected packet.

As an alternative, you may
chose to group telemetry
points alphabetically by
selecting the APID button
above the packet list. In this
case, the "APIDs Panel" will
become the "Alphabetical
Panel", containing a list of
letters. Each click on a letter
changes the TP panel to show
a list of all telemetry points
beginning with that letter.

In the example here, the
SINE is in a red limit zone
(more at the options panel
below).

These are the buttons in the main panel:

Button What it does

Dismiss Closes the browser.

View Packet Select an APID and press the button to view incoming raw packet data for that packet. This is only
available when telemetry points are grouped by APID.

Database Lookup Select a telemetry point and press the button to see full information for that telemetry point.

Inspect Value Select a telemetry point and press the button to monitor the value of the telemetry point as it arrives.
ASIST Users Guide–Version 9.6 D-3

APPENDIX D
At the bottom of the main panel is a set of radio-buttons which set the field size for displaying names in the Telemetry
Points panel, from 16 to 40 characters in increments of 8.

Text Field Adjustment

To adjust the size of a text field, left click on the vertical bar at the end of
the field label and drag it left to shorten, right to lengthen the field.

TLM Browse Options Panel

The Options panel determines what is displayed in the Telemetry Points
panel. It is divided into four sections described next: Things to Show,
Selectors, APID Format, and Sort Order.

Things to Show

Options This button opens the option panel to set what is to be displayed and to filter, sort, and merge the list.

Refresh This button reloads the Telemetry Points panel and repositions it to the top of the list. It is only use-
ful when you are watching for limit violators and want to re-check all limits (see Options panel
next).

Label What it does Default

Name toggles display of telemetry point namesa.

a. If Names are off, you can't inspect values or do lookups.

�

expanded toggles to show/hide expanded names
(more below).

�

Data types toggles display of the data type of each
telemetry point.

�

defined toggles to show/hide user-defined
datatypes (more below).

�

Descriptions toggles display of the description of each
telemetry point.

�

Limit Setting shows RL, YL, YH, and RH in that order

for each telemetry pointb.

b. Telemetry points limits are read only when they are loaded into the TP
panel and when you click the Refresh button. If you change limits on
an item you are displaying, click the Refresh button to see the changes.

Limit Violators
(in color)

shows all selected telemetry points that are

in red or yellow exceptionc in the appropri-
ate color.

c. Telemetry points are limit-checked only when they are loaded into the
TP panel and when you click the Refresh button. They are not moni-
tored continually as they are in ASIST page displays.

Analog/Discrete labels telemetry as analog or discrete type.

Button What it does
D-4 ASIST Users Guide–Version 9.6

Tools and Utilities
Names and Expanded Names.
There are two modifier buttons under Things To Show: expanded and defined. These are paired with buttons Names and
Datatypes, to which they refer. When both Names and expanded are selected you’ll see fully-qualified names displayed in
the Telemetry Points Panel. Here are some examples:

When you click Inspect Value for an array you will see the value of the high-bound, or last, element in the array. In the
example above, you would see the value for MATRIX_A, 9th row, 2nd column -- 9 and 2 are the high bounds for their
dimensions. Also, now when character arrays are inspected with the browser, you will see the last character, not the entire
string.

Notice with aggregates that if you are not displaying expanded names, you may see several telemetry points that appear to
be the same; however, they are not. If you Inspect Value for the item, the name will be expanded before sending it to the
display server (DPD) for value display. If you click the Database Lookup button only the structure member-names will
be displayed by DPD; for example, COUNTS in the example above.

Datatypes and Used-defined Datatypes

When Datatypes and defined are selected you'll see any user-defined type names that were specified in an RDL file either
by the TYPE statement or by the #define pre-processor directive. For example, if you used

TYPE
SLI HEADR

END_TYPES
...
HEADR ICABOD

Datatypes alone would display SLI; with defined you'd see HEADR.

Selectors

Names only Names +expanded

Arrays: DPD_SLI_ARR DPD_SLI_ARR[50] The high bound of arrays is
indicated.MATRIX_A MATRIX_A[9,2]

Aggregates: COUNTS PHLOGISTON.COUNTS Full names are shown, not
just members.COUNTS CALORIC.COUNTS

COUNTS AETHER.COUNTS

Label What it does Default

User APIDs Show/hide packets with APIDs numbered 0 through 2047 (decimal). This is the
range of valid CCSDS APIDs.

�

System APIDs Show/hide packets with APIDs numbered 2048 through 4096. These are packets
used by ASIST for storing ground-system internal data.

Only TLM w/Limits When this is selected, only those telemetry points with defined limit(s) will be
shown.

Aggregates also When selected, this will list database aggregate types like UNIONS and
RECORD HEADERS along with regular telemetry. (Aggregates have no value
and so cannot be inspected. You may lookup info for them, however.)
ASIST Users Guide–Version 9.6 D-5

APPENDIX D
APID Format

 You may display APIDs in Decimal or in Hexadecimal or both (or not at all1).

Sort Order

Dismiss

This button closes the Options panel only.

Command Database Browser

How to access it

Choose Tools from the main ASIST Status Window and then choose CMD db
Browser from the list.

Overview

CMD Browse browses the com-
mand database and interfaces with
the off-line command report util-
ity to view summaries of com-
mands. An options button allows
you to sort and merge the list of
database commands.

At start-up CMD Browse displays
user command APIDs in the
APIDs panel and command packet
names in the Commands panel.
Each click on an APID changes
the Commands panel to show all
the commands with the selected APID. The single line above the larger panel displays the labels for the display, usually
“Command”, “Function Code”, and “Description”.

1. If you turn them both off, you can't view a raw packet.

Label What it does Default

RDL Ordera

a. The two sort order buttons (RDL and Alpha Order) are radio buttons. Selecting one causes the other to be
“unselected”. Thus, you are always sorting in either RDL order or Alphabetical Order.

Sort telemetry points in the order they appear in the RDL file (and in the packet). �

Alpha Ordera Sort telemetry points alphabetically.
D-6 ASIST Users Guide–Version 9.6

Tools and Utilities
Alternatively, you can group your commands alphabetically by selecting the APID button.
This switches to the Alphabetical list, containing a list of beginning letters. Each click on a
letter changes the Command panel to show a list of all commands beginning with that let-
ter.

The single line above the larger panel contains labels for the display, usually "Command", "Function Code" for function-
code, and "Description".The buttons in the main panel are:

Pressing the Build Command button opens
the Visual Commander, a window which
allows you to enter spacecraft commands
interactively through a set of popup win-
dows and a menu tree.

For Unions, click the plus (+) button to
open the tree of options. Select an option
and a checkmark will appear beside it.
When items higher in the tree are com-
plete, they get a checkmark as well. If you
select a dynamic value or a record/bitfield
for the value of a union, another sub-win-
dow will open, the Command Parameter
Data Entry window.

In the Parameter window
enter a value and click the
OK button. In the example,
the Visual Commander
indicates that all data fields
are set when it activates the
Send button, formerly
ghosted. Simply press Send
the send the command to
STOL.

CMD Report Panel

The report is 132-column wide text summary of the command (in, I believe, the classic SAMPEX style). The on-screen
panel is re-used for each report and report files are discarded. Should you wish to keep text copies of the reports, define
the environment variable CMDBROWSE_ROOT to point to your directory before starting ASIST. For example:

Button What it does

Dismiss Closes the browser.

Report CMD Select a command and press the button to view a summary of the command.

Build CMD Enter the selected command’s parameters using ASIST’s Visual Commander.

Options This button opens the option panel to set what is to be displayed and to filter, sort, and merge the list.

Union

Dynamic Parameter

Options for Union

Click + and - to
open and close the
options tree.
ASIST Users Guide–Version 9.6 D-7

APPENDIX D
export CMDBROWSE_ROOT="~/private/my_reports/"

CMD Options Panel

The Options panel determines what is displayed in the Commands panel.

 Things to Show

APID Format

 You may display APIDs in Decimal or in Hexadecimal or both.

Sort Order

Dismiss

This button closes the Options panel only.

Label What it does Default

Names toggles display of command namesa.

a. If Names are off, you can't get a report.

�

Function Code toggles display of function codes. �

Descriptions toggles display of each telemetry points
description.

�

User APIDs Show/hide packets with APIDs numbered 0
through 2047 (decimal). This is the range of
valid CCSDS APIDs.

�

System APIDs Show/hide packets with APIDs numbered
2048 through 4096. These are used by
ASIST for its own directives.

Label What it does Default

Function code

Ordera

a. The two sort order buttons (RDL and Alpha Order) are radio buttons. Selecting one causes the
other to be “unselected”. Thus, you are always sorting in either RDL order or Alphabetical Order.

Sort commands by ascending function-code order. �

Alpha Ordera Sort commands alphabetically.
D-8 ASIST Users Guide–Version 9.6

Tools and Utilities
Easy Plot

Choose “Tools” from the main
ASIST Status Window and then
select “Easy Plot” from the drop-
down menu.

The Easy Plot selection of the
Tools menu opens the page
named _ezplot to give you a
simple interface to the PLOT
directive. The page contains
instruction for its use. Nothing is
plotted until you press the big
green button to send a PLOT
directive to STOL. Refer to the
PLOT directive for more infor-
mation.

Easy Archive

Choose “Tools” from the main ASIST Status Win-
dow and then select “Easy Archive” from the drop-
down menu.

The Easy Archive selection of the Tools menu
opens the page named ARCHIVE to give you a
simple interface to the ARCHIVE directive. The
page contains instruction for its use. The Archive
On and Off buttons will send an ARCHIVE direc-
tive to STOL. Refer to the ARCHIVE directive for
more information.
ASIST Users Guide–Version 9.6 D-9

APPENDIX D
Easy Playback

Choose “Tools” from the main ASIST Status
Window and then select “Easy Playback” from
the drop-down menu.

The Easy Playback selection of the Tools menu
opens the page named PLAYBACK to give you a
simple interface to the ACQUIRE PLBK form of
the ACQUIRE directive for acquiring telemetry
from a local archive file. The page contains
instruction for its use. The Playback On and Off
buttons will send an ACQUIRE PLBK directive
to STOL. Refer to the ACQUIRE directive for
more information.

Page Crank

Choose “Tools” from the main ASIST Status
Window and then select “Page Crank” from the
drop-down menu.

This tool allows you to create display pages
quickly for every telemetry point in a packet. Use
the sliders to set Apid, page Height and Width.
Then press the green button.
D-10 ASIST Users Guide–Version 9.6

Tools and Utilities
Local Time Clock

Choose “Tools” from the main ASIST Status Window and then select “Local
Time Clock” from the drop-down menu.

The Local Time Clock selection of the Tools menu opens a tiny, borderless page named _local_time that shows you the
day-of-the-week, date, and time in AM/PM format. The clock appears in the top right border of the ASIST status window,
always on top. The unmarked button to the right of the time closes the clock page.

Procedure listing utilities

The proc program (available at the UNIX prompt) allows you to generate listings and summary information about your
procedures. Options for this program are:

Environment Monitor (OGSE)

Overview

Click the Disk button on the main ASIST Status Window to open the Disk Space and Memory Monitor page.

The Disk and Memory Monitor, also known as OGSE or as the Environment Monitor in previous versions of this docu-
ment, runs in the background, waking up at defined intervals to check the status of various system resources, including
disk space and virtual memory usage, warning you when critical levels have been reached. You can control how often the
monitor checks, which file systems it checks, and at what levels you should be warned by ASIST. The page OGSESTAT,
accessed from the DISK button in the GSE Status portion of the ASIST Status Window, is the control page for the Moni-
tor.

TABLE 19-9. PROC program options

Proc Options What this option does

proc explode procedure-file-name This option generates an “exploded” listing of procedure-file-name, printing the
contents of this file and of any procedures started within procedure-file-name (they
are printed at the point within procedure-file-name that they were invoked).

proc pages procedure-file-name This option generates a list of all pages opened by procedure-file-name, or any pro-
cedures started by procedure-file-name.

proc tree procedure-file-name This option generates a tree of procedures started by procedure-file-name.

proc list [directory-name] This option generates a list of the description lines in your procedures. A description
line is a comment starting with ;@ (i.e. ;@ This is a description
line). The procedures either come from directory directory-name, or from
$WORK/prc if none is specified.

proc print procedure-file-name This option prints procedure-file-name to the PostScript laser printer in two-column
format.
ASIST Users Guide–Version 9.6 D-11

APPENDIX D
When OGSE detects a that limit is reached, it sends an event message. It is up to you to fix the problem -- e.g., delete files
if disk space is low -- so that problems do not become critical.

Operation

Each time the Monitor checks resources, it does these things

1. Reads what resources to check and the thresholds to check them against from the Current Value Table (CVT);

2. Obtains the system resource values from the operating system and places them in the CVT;

3. Compares the current disk space used to the alarm thresholds, reporting any file systems whose disk usage percentage
is above its percent-used threshold, or whose free space is below its free space threshold;

4. Compares the current virtual memory used to the alarm threshold, reporting if it the threshold is exceeded.

5. Reads from the CVT the number of seconds to sleep before checking again.

Because the disk and memory
usage values are placed in the
CVT you can access them via
STOL display statements (such
as DISPLAY or WRITE) or on
page displays.

In addition to putting the moni-
tored data points into the CVT,
OGSE also does limit checking,
so that an event message will be
sent and the display on the page
OGSESTAT will change color
when a monitored data point
exceeds a critical values.

Remember that the Monitor only
reports low disk and memory
conditions, it does not rectify
them. You must take active steps to alleviate problems.

You can control OGSE directly from the OGSESTAT page. To open this page, select the Disk button from the ASIST Sta-
tus Window. Once you open this page, you may enter values in any of the dark-gray fields. Changes you make will take
place on the next update. Thus, even if the change you make should cause a limit violation, the field will not turn red or
yellow until the next update, even though you may see a green “ok” indicating that limits are enabled for the item.

You have a number of options for controlling what errors are reported and how they are reported:

• OGSE can send alarm messages to the event log. You can turn these off and on with the Log alarms? buttons. This has
no effect on red and yellow limit checking; it affects only the private OGSE alarm messages. Observe that the shadow
of the DISK button on the ASIST Status Window turns yellow whenever a disk or memory alarm condition is true,
whether you are logging alarms or not.

• The values can be limit checked, causing parameters exceeding the thresholds to turn yellow or red on the OGSESTAT
page. You can enable/disable red/yellow limit checking for the entire OGSE packet by pressing the Limits are ON/
OFF button. This sends the LIMIT ON/OFF directive to STOL.
D-12 ASIST Users Guide–Version 9.6

Tools and Utilities
• You can enable and disable limit checking for a given file system using the column of buttons on the far right of the
page. A STOL directive is sent on each button press.

Changing the Monitor’s Defaults

ASIST provides a default setup for the monitor which you may never need to change. If you do, here are three kinds of
configuration changes you can make to affect the Disk and Memory Monitor:

• If you just want to make quick, temporary changes to the warning levels or toggle alarms or limits off and on, you may
enter new values directly into the OGSESTAT page.

• If you want to add a file system temporarily, you may enter the ogse_set_filesys directive in the STOL window.
The syntax is shown below.

ogse_set_filesys name sequence KB-RL KB-YL Pct-YH Pct-RH

The arguments are: name is the name of the file-system, sequence is the sequence number in OGSESTAT, “01” to
“10”, Kb-RL and Kb-YL are the free kilobytes red- and yellow-low thresholds, and Pct-YH and Pct-RH are the percent-
used yellow- and red-high thresholds.

; "name" "nn" Kb-RL Kb-YL Pct-YH Pct-RH

ogse_set_filesys "$HOME" "07" 5 2000 97 99

• If you want to make changes that are in effect each time you run ASIST, follow this procedure, typing from the UNIX
prompt:

➔ copy /s/opr/system/prc/ogse_user_defaults.prc $WORK/prc

Edit the file $WORK/prc/ogse_user_defaults.prc (read the instructions at the top of the file to define your
own set of thresholds).

➔ stol_compiler $WORK/prc/ogse_user_defaults

If the procedure compiles, your version of the Monitor’s defaults will be installed the next time ASIST starts up.

CVT Variables Used by the Environment Monitor

The Environment Monitor uses the following variables in the Current Value Table:

Point being monitored Threshold What it is

OGSE_CURR_FREE_KB01…
OGSE_CURR_FREE_KB10

OGSE_crit_free_KB[1…10] The free space on file system #1…#10 (respectively)

OGSE_CURR_USED_PCT01…
OGSE_CURR_USED_PCT10

OGSE_crit_used_pct[1…10] The percent of the disk space used on file system
#1…#10 (respectively)

OGSE_VMEM_USED_PCT OGSE_crit_page_usage The percent of virtual memory used
ASIST Users Guide–Version 9.6 D-13

APPENDIX D
Other values used are:

CVT Variables What’s in them

OGSE_FS_NAME01…
OGSE_FS_NAME10

OGSE reads this variable to determine which file systems to monitor (#1…#10)

OGSE_CHECK_INTVL OGSE reads this variable to determine how long to wait between updates.

OGSE_SLEEPTIME How long it is until OGSE’s next update.
D-14 ASIST Users Guide–Version 9.6

AS
APPENDIX E Printf
Why is this here?

ASIST uses the C print-formatting control string in a number of places, including the STOL printf directive, format codes
for telemetry items on pages, formatting sequential prints with the USING clause, and database query report formatting.
Thus, we have included this text on how to use the printf command and its format string. It is geared toward C-program-
mers, so the syntax will vary slightly, but the control strings should work the same throughout ASIST.

The following text is reprinted with the author's permission from Steve Summitt's C Programming Notes (©1996). The
entire text of his notes are available at http://www.eskimo.com/~scs/cclass.

printf for Beginners

printf's name comes from print formatted. It generates output under the control of a format string (its first argument)
which consists of literal characters to be printed and also special character sequences--format specifiers--which request
that other arguments be fetched and formatted and inserted into the string. Our very first program was nothing more than
a call to printf, printing a constant string:

printf("Hello, world!\n");
Our second program also featured a call to printf:

printf("i is %d\n", i);
In that case, whenever printf printed the string "i is %d", it replaced the characters %d with the value of the variable i.

There are quite a number of format specifiers for printf. Here are the basic ones:

Format What it prints

%d print an int argument in decimal

%ld print a long int argument in decimal

%c print a character

%s print a string

%f print a float or double argument

%e same as %f, but use exponential notation
IST Users Guide–Version 9.6 E-1

APPENDIX E
It is also possible to specify the width and precision of numbers and strings as they are inserted (somewhat like FOR-
TRAN format statements); we'll present those details in a later chapter. (Very briefly, for those who are curious: a notation
like %3d means to print an int in a field at least 3 spaces wide; a notation like %5.2f means to print a float or double in a
field at least 5 spaces wide, with two places to the right of the decimal.)

To illustrate with a few more examples: the call

printf("%c %d %f %e %s %d%%\n", '1', 2, 3.14, 56000000., "eight", 9);
would print

1 2 3.140000 5.600000e+07 eight 9%
The call

printf("%d %o %x\n", 100, 100, 100);
would print

100 144 64
Successive calls to printf just build up the output a piece at a time, so the calls

printf("Hello, ");

printf("world!\n");
would also print Hello, world! (on one line of output).

Earlier we learned that C represents characters internally as small integers corresponding to the characters' values in the
machine's character set (typically ASCII). This means that there isn't really much difference between a character and an
integer in C; most of the difference is in whether we choose to interpret an integer as an integer or a character. printf is one
place where we get to make that choice: %d prints an integer value as a string of digits representing its decimal value,
while %c prints the character corresponding to a character set value. So the lines

char c = 'A';

int i = 97;

printf("c = %c, i = %d\n", c, i);
would print c as the character A and i as the number 97. But if, on the other hand, we called

printf("c = %d, i = %c\n", c, i);
we'd see the decimal value (printed by %d) of the character 'A', followed by the character (whatever it is) which happens
to have the decimal value 97.

You have to be careful when calling printf. It has no way of knowing how many arguments you've passed it or what their
types are other than by looking for the format specifiers in the format string. If there are more format specifiers (that is,
more % signs) than there are arguments, or if the arguments have the wrong types for the format specifiers, printf can mis-
behave badly, often printing nonsense numbers or (even worse) numbers which mislead you into thinking that some other
part of your program is broken.

Because of some automatic conversion rules which we haven't covered yet, you have a small amount of latitude. The
argument for %c may be of type char or int, and the argument for %d may be of type char or int. The string argument for
%s may be a string constant, an array of characters, or a pointer to some characters (though we haven't really covered
strings or pointers yet). Finally, the arguments corresponding to %e, %f, and %g may be of types float or double. But

%g use %e or %f, whichever is better

%o print an int argument in octal (base 8)

%x print an int argument in hexadecimal (base 16)

%% print a single %

Format What it prints
E-2 ASIST Users Guide–Version 9.6

Printf
other combinations do not work reliably: %d will not print a long int or a float or a double; %ld will not print an int; %e,
%f, and %g will not print an int.

printf for the Inquisitive

C's venerable printf statement, which we've been using since day one, prints or writes formatted output to the standard
output. As we've seen (by example, if not formally), printf's operation is controlled by its first, format argument, which is
either a single string to be printed or a string containing percent signs and other characters which cause the formatted val-
ues of printf's other arguments to be interspersed with the other text (if any) of the format string.

So far, we've been using simple format specifiers such as %d, %f, and %s. But format specifiers can actually consist of
several parts; the complete framework looks like

% flags width . precision modifier character

where all of the parts except the % and the final character are optional.

The width gives the minimum overall width of the output (the field) generated by this format specifier. If the output (the
number of digits or characters) would be less than the width, it will be padded on the right (or left, if the - flag is present),
usually with spaces.

The precision is either:

• The number of digits printed after the decimal point, for the floating-point formats %e, %f, and %g; or

• The maximum number of characters to be printed, for %s; or

• The minimum number of digits to be printed, for the integer formats %d, %o, %x, and %u.

Either the width or the precision (or both) can be specified as *, which indicates that the next int argument from the argu-
ment list should be used as the field width or precision.

The flags are a few optional characters which modify the conversion in some way. They are:

The modifier specifies the size of the corresponding argument: l for long int, h for short int, L for long double.

flag How it modifies the conversion

- Force left adjustment, by padding (out to the field width) on the right.

0 Use 0 as the padding character, instead of a space.

space For numeric formats, if the converted number is positive, leave an extra space
before it (so that it will line up with negative numbers if printed in columns).

+ Print positive numbers with a leading + sign.

Use an "alternate form" of the conversion. (The details of the "alternate forms"
are described below, under the individual format characters.)
ASIST Users Guide–Version 9.6 E-3

APPENDIX E
Finally, the format character controls the overall appearance of the conversion (and, along with the modifier, specifies the
type of the corresponding argument). The complete list of format characters is:

Char What it does

c Print a single character. The corresponding argument is an int (or, by the default argument promotions, a
char or short int).

d Print a decimal integer. The corresponding argument is an int, or a long int if the l modifier appears, or a
short int if the h modifier appears. If the number is negative, it is preceded by a -. If the space flag appears
and the number is positive, it is preceded by a space. If the + flag appears and the number is positive, it is
preceded by a +.

e Print a floating-point number in scientific notation: [-]m.nnnnnne[-]nn . The corresponding argument is
either a float or a double or, if the L modifier appears, a long double. The precision gives the number of
places after the decimal point; the default is 6. If the # flag appears, a decimal point will be printed even if
the precision is 0.

E Like e, but use a capital E to set off the exponent.

f Print a floating-point decimal number (mmm.nnnnnn). The corresponding argument is either a float or a
double or, if the L modifier appears, a long double. The precision gives the number of places after the deci-
mal point; the default is 6. If the # flag appears, a decimal point will be printed even if the precision is 0.

g Use either e or f, whichever works best given the range and precision of the number. If the # flag appears,
don't strip trailing 0's.

G Like g, but use E instead of e.

i Just like d.

n The corresponding argument is an int *. Rather than printing anything, %n stores the number of characters
printed so far (by this call to printf) into the integer pointed to by the corresponding argument.

o Print an unsigned integer, in octal (base 8). The corresponding argument is an unsigned int, or an unsigned
long int if the l modifier appears, or an unsigned short int if the h modifier appears. If the # flag appears, and
the number is nonzero, it will be preceded by an extra 0, to make it look like a C octal constant.

p Print a pointer value (the pointer, not what it points to), in some implementation-defined format. The corre-
sponding argument is a void *.

s Print a string. The corresponding argument is a char * (which may result from an array of char). If the
optional precision is present, at most that many characters of the string will be printed (if the \0 isn't encoun-
tered first).

u Print an unsigned decimal integer. The corresponding argument is an unsigned int, or an unsigned long int if
the l modifier appears, or an unsigned short int if the h modifier appears.

x Print an unsigned integer, in hexadecimal (base 16). The corresponding argument is an unsigned int, or an
unsigned long int if the l modifier appears, or an unsigned short int if the h modifier appears. If the # flag
appears, and the number is nonzero, it will be preceded by the characters 0x, to make it look like a C hexa-
decimal constant.

X Like x, except that the capital letters A, B, C, D, E, and F are used for the hexadecimal digits 10-15. (Also,
the # flag leads to a leading 0X.)

%% Print a single % sign. There is no corresponding argument.
E-4 ASIST Users Guide–Version 9.6

AS
APPENDIX F Access to Database
Attributes
Introduction

ASIST's telemetry database is structured as a series of packets, with each packet containing one or more telemetry points.

ASIST's command database is structured as a series of commands. Associated with each command is a list of parameters.
The parameter list is empty if the command accepts no parameters.

Every object in these databases (packets, telemetry points, commands, and parameters) has with it a set of attributes. Gen-
erally, anything entered in the RDL definitions of the database is available as an attribute. In addition, some attributes pro-
vide run-time information (e.g. when was this point's value last measured?).
IST Users Guide–Version 9.6 F-1

APPENDIX F
How to Access Database Object Attributes

Functions are available from STOL, page displays, and pseudo-telemetry to access attributes of objects in the command
and telemetry databases.

Telemetry Attribute Access

The TELEMETRY_ATTR function provides access to many attributes of telemetry points in the telemetry database. It
is of the form:

TELEMETRY_ATTR(“name”, “attribute”)

where:

• name is the telemetry point whose attributes you wish to access, and

• attribute is a string containing one of the following values:

TABLE 19-10. Attributes of telemetry field available from the TELEMETRY_ATTR function

attr-expr What it returns

ABS_TIME? a flag indicating whether this point is an absolute time (1) or not (0).

ACTUAL_LENGTH the actual length (in bytes) of this point the last time the packet was received in telemetry. This is
most useful for arrays of data at the end of variable-length packets.

APID the APID of the point.

ARRAY_DIM_STRING Shows the dimension of an array (i.e 3,2 or 0..5)

ASIST_TYPE_NAME shows the ASIST base data type of this telemetry point (this is either "INT", "FLOAT",
"STRING", or "CUC" (time)).

BIT_MASK the bit mask used to mask this point.

COEFF0, COEFF1,
COEFF2, ...,COEFF7

polynomial coefficient 0,... coefficient 7.

CORRELATED? a flag indicating whether this point is a correlated time.

CURVE_EQ returns text showing the conversion performed for this telemetry point, including numeric values
(where appropriate). For example: 3x^0 + 5x^1+2.1x^2

CURVE_NAME returns what kind of engineering conversion is performed for this telemetry point. For example:
Poly or Spline.

CURVE_TYPE a numerical representation of the curve.

DEFINED_TYPE_NAME shows the data type of this telemetry point (it reports user-defined types, as opposed to
TYPE_NAME and ASIST_TYPE_NAME).

DEFINED_RH? a flag indicating whether this point has a defined RED HIGH limit.

DEFINED_RL? a flag indicating whether this point has a defined RED LOW limit.

DEFINED_YH? a flag indicating whether this point has a defined YELLOW HIGH limit.

DEFINED_YL? a flag indicating whether this point has a defined YELLOW LOW limit.

DELTA yellow limit exceptions are only reported if the change in the telemetry point’s value is greater
than this DELTA value.

DESCRIPTION the description field.
F-2 ASIST Users Guide–Version 9.6

Access to Database Attributes
DIMENSION the number of array elements in the first dimension of an array. This is the same as
ARRAY_DIM1.

DISCRETE? a flag indicating whether this point is discrete.

EPOCH the base date and time if this point is an absolute time.

EXCLUSIVE? a flag indicating whether this point has an exclusive limit.

EXP_NAME expanded name of this telemetry point (including structures and array elements).

FIRST_BIT the number of the first bit in the bit mask of this point.

HIGH_NAME returns the highest numbered element within telemetry point (i.e. SIX_ELEM_ARR[6]).

IDENTITY? a flag indicating whether this point’s polynomial is the identity (meaning that no conversion is
performed).

INVERTED? a flag indicating whether this point is bit-inverted.

LAST_BIT the number of the last bit in the bit mask of this point.

LENGTH the total size in bytes of this telemetry point.

LEVEL an indication of how deeply this telemetry point is nested within record, union, and packet struc-
tures.

LIMCHK? a flag indicating whether this point is currently enabled for limit checking.

LIMIT_COUNT the number of limit-sets defined for this telemetry point.

LIMIT_ERRORS the number of consecutive telemetry points received which have had the current Yellow or Red
exception level.

LIMIT_SWITCH the mnemonic used to determine which limit-set to use when to perform limit checking

LIMTYPE what type of limits does this point have (either RANGE or DELTA).

LOW_NAME returns the lowest numbered element within telemetry point (i.e. SIX_ELEM_ARR[1] or
A_REC[1].SIX_ELEM[1]).

MAX_COUNTS the maximum value (in counts) that this telemetry point can be.

MIN_COUNTS the minimum value (in counts) that this telemetry point can be.

NAME the name of this telemetry field as defined in its RDL definition. For example, A.B.C would
return C for NAME, but A.B.C for EXP_NAME.

NUM_CONVS The number of x,y pairs in a spline/lookup table.

NUM_DIMS The number of dimensions of an array.

NUM_FIELDS the number of fields in a record or union.

OPEN? a flag indicating whether this point has an open limit.

PACKET_NAME the name of the packet containing this telemetry point.

PACKET_OFFSET the number of bytes this field is offset from the beginning of the packet.

PSEUDO? a flag indicating whether this point is a pseudo-telemetry point.

PSEUDO_ENABLED? a flag indicating whether this pseudo-telemetry point is currently being evaluated.

QUALITY a numerical representation of the quality of this telemetry point.

QUALITY_STRING a string indicating the quality of this telemetry point. It is the same form as the quality strings on
telemetry pages (see Table 6-1 on page 6-23).

READ_ONLY? a flag indicating whether this point can (0) or can't (1) be written to. Read only points are useful
as constants.

TABLE 19-10. Attributes of telemetry field available from the TELEMETRY_ATTR function (Continued)

attr-expr What it returns
ASIST Users Guide–Version 9.6 F-3

APPENDIX F
REC_OFFSET the byte offset of this telemetry point from the beginning of its nearest enclosing record or union.

RED_DISPLAY_FREQ indicates how many consecutive red limit exceptions occur between error messages.

REPORT_NAME this telemetry points name as it would appear on a report (with array bounds shown, as in
ABC[1..5]).

REPRESENTATION returns a number indicating this point's data representation.

REVERSED? a flag indicating whether this point is bit-reversed.

RH the current RED HIGH limit setting.

RL the current RED LOW limit setting.

SCALAR? true if this point is a scalar (false if it is an array).

SHIFT the number of bits to shift when masking this point.

SOURCE_FILE the source file containing the definition of this point.

SOURCE_LINE the source line containing the definition of this point.

STRUCTURED_NAME this telemetry points name including structure information (but excluding any array bounds).

SUB_SIZE the number of bytes in the subseconds portion of a time.

SUPERCOM_APID the apid to which this telemetry field should be supercommed.

SWAP_ORDER how the raw bytes are swapped to convert them to counts. Each nibble of the number returned
represents one byte, so 0x21000000 would swap two bytes, 0x12340000 would leave four bytes
unswapped, and 0x78563412 would swap a double floating point like it was done on XTE and
TRMM.

TREND? a flag indicating whether this point is enabled for trending.

TIME_BETWEEN_ELE
MENTS

the time offset between each element of an array. This is used for supercommed data.

TIME_OFFSET the difference in time between this points packet time and when it is measured.

TIME_MEASURED when this telemetry point was measured (usually PACKET_TIME + TIME_OFFSET).

TREND? a flag indicating whether this point is currently being trended.

TRIGGER_APID the apid whose receipt causes this telemetry point to be changed. This is the apid used by default
by sequential print.

TYPE_NAME shows the base data type of this telemetry point (i.e. UI, UB, SLI, ...).

UNITS the units field.

UNIT_LENGTH the size in bytes of a single unit. This is different from LENGTH only if the telemetry point is an
array.

VARYING? a flag indicating if a packet can be of varying length (1) or not (0).

YH the current YELLOW HIGH limit setting.

YL the current YELLOW LOW limit setting.

TABLE 19-10. Attributes of telemetry field available from the TELEMETRY_ATTR function (Continued)

attr-expr What it returns
F-4 ASIST Users Guide–Version 9.6

Access to Database Attributes
The TELEMETRY_ATTR(“packet-name”,”attribute”) function also provides access to many attributes of packets in
the telemetry database. To obtain a packet name from an apid, use PACKET_NAME(apid). The attribute argument must
evaluate to a string containing one of the following values:

TABLE 19-11. Attributes of packets available from TELEMETRY_ATTR function

attr-expr What it returns

APID_OF_NEXT_PKT the apid of the next packet in apid order (useful for listing all packets).

BANDWIDTH1 -
BANDWIDTH16

the number of bytes per second for this packet in filter settings 1-16.

CONTAINS_SUPERCOM
?

a flag indicating if any points in the packet are supercommed.

DESCRIPTION the description field.

FREQ1 - FREQ16 the frequency for this packet (in Hz) in filter settings 1-16.

GREEN_PTS a count of the number of points within this packet which are currently being limit checked, and
within the Green region.

GROUND_TIME when this packet was last received on the ground (by a FEDS/Simulator).

GROUND_TIME_FIELD what telemetry point to read when determining this packet’s ground receipt time.

IS_PKT_STALE? a flag indicating whether this packet is stale.

IS_QUALITY_GOOD? a flag indicating whether this packet is of good quality.

IS_TRENDING_ON? a flag indicating if any of the telemetry points within this packet are currently being trended.

NAME the name of this packet.

PHYSICAL CHANNEL the physical channel this packet arrived on.

QUALITY a numerical representation of the quality of this packet.

RECEIPT_TIME? when the ground system received this packet.

RED_EXCEPTIONS a count of the number of points within this packet which are currently either RED HIGH or RED
LOW

SC_TIME_FIELD what telemetry point ASIST reads to determine the packet time.

SEQ_COUNT the current sequence count for this packet

SEQ_COUNT_FIELD what telemetry point to read when determining this packets sequence counter.

SIZE the total size in bytes of this telemetry packet.

SOURCE_APID what packet “generated” this packet. This will tell you the source of subcommed or supercom-
med packets.

STALE_TIME the time in seconds that it takes for the packet's data to become stale

TIME the time the spacecraft assigned to this packet.

YELLOW_EXCEPTIONS a count of the number of points within this packet which are currently either YELLOW HIGH or
YELLOW LOW
ASIST Users Guide–Version 9.6 F-5

APPENDIX F
Additionally, you can use the STOL function TELEMETRY_TABLE_ATTR to access telemetry point attributes that
are stored in tables: limit sets, discrete values and labels. Attributes available using this function are:

Command Attribute Access

The COMMAND_ATTR(“command”,”attribute”) function provides access to many attributes of commands in the
command database. The attribute argument must evaluate to a string containing one of the following values:

TABLE 19-12. Attributes of telemetry field available from the TELEMETRY_TABLE_ATTR function

Index attr-expr What it returns

Limit Set Number DEFINED_RH? a flag indicating if this set has a defined RED HIGH limit.

DEFINED_RL? a flag indicating if this set has a defined RED LOW limit.

DEFINED_YH? a flag indicating if this set has a defined YELLOW HIGH limit.

DEFINED_YL? a flag indicating if this set has a defined YELLOW LOW limit.

EXCLUSIVE? a flag indicating if this set has an exclusive limit.

LIMTYPE what type of limits does this set have (either RANGE or DELTA).

OPEN? a flag indicating if this set has an open limit.

RH the RED HIGH limit setting.

RL the RED LOW limit setting.

YH the YELLOW HIGH limit setting.

YL the YELLOW LOW limit setting.

Discrete “Bin” Number DLABEL the label for this discrete bin

DRANGE the upper limit if this discrete bin

Conversions CONV_X x-point in spine, lookup tables; order for polynomials

CONV_Y y-point in spine, lookup tables; coefficient for polynomials

TABLE 19-13. Attributes available from the COMMAND_ATTR function

Command Attribute Description

Apid This command's apid.

CCSDS_String An ASCII representation of this CCSDS command’s data structure (if it is a CCSDS com-
mand)

Critical? Is this a critical command?

DDID What is the Data Description ID field of the SFDU this command will create.

Description Description of this command.

Dest_Machine Name of the machine to which this command is sent (if blank, then to the default machine).

Dest_Task Name of the task to which this command is sent.

FC This command's function code.

File Shorter version of Source_File - e.g. "fdscmd.rdl" instead of "/s/opr/accounts/global/rdl/
fdscmd.rdl".

Hazardous? Is this a hazardous command?

Header What packet should this command be built into.

Length Total length of parameter data.
F-6 ASIST Users Guide–Version 9.6

Access to Database Attributes
The COMMAND_PARM_ATTR(“command”,”parameter”,”attribute”) function provides access to many attributes of
command parameters in the command database. The attribute argument must evaluate to a string containing one of the
following values:

Mandate_Type "CMD", "CMDS", "DIR", or "DIRS".

Min_Length The minimum length this command can produce. Should be the same as length, except for
variable length commands.

Name Name of this command.

Not_Validatable? When set, it means that this SFDU is not to be used to determine if a command/sfdu is valid.
Mostly so that all commands don't backsolve to RAW, and thus be accepted.

Num_Fields The number of fields within this command. This is equal to the number of parameters+the
number of Unions and Records.

Prefix_SFDU What SFDU(s) will be placed prior to this one in the CCSD 0001 mail-bag SFDU. These usu-
ally contain information about how to respond to this command (i.e. command labels)

Response? 1 if this is a response SFDU (i.e. LRES, ERES, AKNK, ...) 0 means it isn't, and therefore
causes a local response to be sent back when received by the mandate handler.

Routing_SFDU What SFDU(s) will be placed prior to this one AND to the prefix sfdu(s) in the CCSD 0001
mail-bag SFDU. This info usually contains information about where to send this command.
The difference between this & the prefix sfdu is that the routing sfdu is included only once per
CCSD 0001 mailbag, while the prefix sfdu occurs before each occurrence of this command.

SC_Command? 1 if it is a spacecraft command, 0 if not. Means that this command/SFDU can be hazardous,
and can't be sent during LHAZ, and that when it is the solution of backsolving, it gets reported.

SFDU What kind of SFDU should this command be put into.

SFDU_length The length of SFDU (max) created by this command.

SFDU_Min_Length The minimum length of SFDU created by this command. Normally =SFDU_LENGTH, except
for variable commands.

Source_File Name of the file containing this command.

Source_Line Line number containing this command.

Stand_Alone? When set, it means that this SFDU is acceptable in validation, and that it can be sent without
entering a command based upon it. (I know, it sounds confusing). For example, CMSG is not a
stand alone SFDU, but an SFDU which can be entered from STOL would be (i.e. the front end
directive which goes into its own SFDU DFRM can be entered at STOL using /DFRM
d="what to do" so it is standalone.

Tver Telemetry verification (a string)

Var_Length? Is this command's length variable?

Verify_Apid_FC_Only? Should command backsolving consider only the Apid and function code? (and ignore applica-
tion data)

TABLE 19-14. Attributes from the COMMAND_PARM_ATTR function

Parameter Attribute What it returns

Abs_Time? Is this parameter an Absolute Time?

Aggregate? Is this parameter an aggregate (either a union, a bitfield, or a record)?

Array_Length the number of elements in an array parameter.

TABLE 19-13. Attributes available from the COMMAND_ATTR function (Continued)

Command Attribute Description
ASIST Users Guide–Version 9.6 F-7

APPENDIX F
Asist_Type_Name "CHAR", "INT", "FLOAT", "CUC", "UNIO", or "BITF".

Bit_Mask Shows which bits this parameter is stuffed into. Tip: If printing this field from TDQ, use %8x
format.

Cmd_Apid Apid of the command.

Cmd_FC Function code of the command.

Cmd_Name Name of the command.

Coeff0 ... Coeff7 Coefficients for polynomial conversion.

Correlated? Is this a correlated Time type? (does it use an epoch?)

Curve_Type Conversion type for this parameter. 1=polynomial. (currently, always = 1)

Description Description of this parameter.

Default_Value Default value for this parameter.

Epoch Numerical value of the epoch (or -1).

File Shorter version of Source_File -- e.g. "fdscmd.rdl" instead of "/s/opr/accounts/global/rdl/
fdscmd.rdl".

First_Bit Least-significant bit.

Inverted? Is this value one's complemented before it is placed into the command packet?

Last_Bit Most-significant bit.

Last_Length What was its length the last time this command was sent.

Last_Value What was its value the last time this command was sent. Please note that array’s don’t get
filled in, and strings are truncated

Length Total length of this parameter's data.

Level An indicator of how deeply nested within records and unions this parameter is (the higher the
number, the deeper).

Max_Value The maximum value that this parameter may take.

Min_Value The minimum value that this parameter may take.

Name Name of this parameter.

Negated? Is this value two's complemented (negated) before it is placed into the command packet?

Num_Dims Number of array dimensions.

Offset Offset of this parameter within the command

Present? Was this parm typed in the last time this cmd was sent?

Representation "UNSIGNED", "TWOS_COMPLEMENT", ..., "IEEE", etc.

Reversed? Should the bits of this parameter be reversed before they are placed into the command packet?

Shift How many bits to left-shift the user's entry.

Source_File Name of the file containing this parameter.

Source_Line Line number containing this parameter.

Static? 1 means this parameter takes its value from the DEFAULT field defined for this parameter. 0
means the user must supply the value for this parameter each time he enters the command.

Sub_Size Number of bytes used to hold sub-seconds.

Swap_Order Byte order. Tip: Use %8x format.

TABLE 19-14. Attributes from the COMMAND_PARM_ATTR function (Continued)

Parameter Attribute What it returns
F-8 ASIST Users Guide–Version 9.6

Access to Database Attributes
Type_Definition? Is this parameter of a user-defined data type?

Type_Name "UB", "UI", "ULI", etc.

Unit_Length Length of each array element for this parameter's data.

Units A string representing the engineering units (e.g. "Ft")

Var_Length? Is this parameter's length variable?

Visible? 1 means the user must type this parameter when entering the command. 0, when combined
with a 1 value for the STATIC field, means that the user doesn't specify this parameter, but its
default value will be inserted into the command packet.

TABLE 19-14. Attributes from the COMMAND_PARM_ATTR function (Continued)

Parameter Attribute What it returns
ASIST Users Guide–Version 9.6 F-9

APPENDIX F
F-10 ASIST Users Guide–Version 9.6

AS
APPENDIX G C-Preprocessor
Why is this here?

ASIST uses the C-preprocessor prior to compiling STOL procedures and Command and Telemetry RDL files. Thus, we
have included this text on how to use the preprocessor features. It is geared toward C-programmers, so the syntax will
vary slightly, but the directives and macros should work the same throughout ASIST.

The following text is reprinted with the author's permission from Steve Summitt's C Programming Notes (©1996). The
entire text of his notes, as well as a well-written introduction to the C language, is available at http://
www.eskimo.com/~scs/cclass.

Introduction

Conceptually, the “preprocessor” is a translation phase that is applied to your source code before the compiler proper gets
its hands on it. (Once upon a time, the preprocessor was a separate program, much as the compiler and linker may still be
separate programs today.) Generally, the preprocessor performs textual substitutions on your source code, in three sorts of
ways:

 The next three sections will introduce these three preprocessing functions.

The syntax of the preprocessor is different from the syntax of the rest of C in several respects. First of all, the preprocessor
is “line based.” Each of the preprocessor directives we're going to learn about (all of which begin with the # character)
must begin at the beginning of a line, and each ends at the end of the line. (The rest of C treats line ends as just another
whitespace character, and doesn't care how your program text is arranged into lines.) Secondly, the preprocessor does not
know about the structure of C–about functions, statements, or expressions. It is possible to play strange tricks with the
preprocessor to turn something which does not look like C into C (or vice versa). It's also possible to run into problems
when a preprocessor substitution does not do what you expected it to, because the preprocessor does not respect the struc-
ture of C statements and expressions (but you expected it to). For the simple uses of the preprocessor we'll be discussing,

File inclusion inserting the contents of another file into your source file, as if you had typed it
all in there.

Macro substitution replacing instances of one piece of text with another.

Conditional compilation Arranging that, depending on various circumstances, certain parts of your source
code are seen or not seen by the compiler at all.
IST Users Guide–Version 9.6 G-1

APPENDIX G
you shouldn't have any of these problems, but you'll want to be careful before doing anything tricky or outrageous with
the preprocessor. (As it happens, playing tricky and outrageous games with the preprocessor is considered sporting in
some circles, but it rapidly gets out of hand, and can lead to bewilderingly impenetrable programs.)
G-2 ASIST Users Guide–Version 9.6

C-Preprocessor
File Inclusion

[This section corresponds to K&R Sec. 4.11.1]

A line of the form

#include <filename.h>

or

#include "filename.h"

causes the contents of the file filename.h to be read, parsed, and compiled at that point. (After filename.h is processed,
compilation continues on the line following the #include line.) For example, suppose you got tired of retyping external
function prototypes such as

extern int getline(char [], int);

at the top of each source file. You could instead place the prototype in a header file, perhaps getline.h, and then sim-
ply place

#include "getline.h"

at the top of each source file where you called getline. (You might not find it worthwhile to create an entire header file
for a single function, but if you had a package of several related function, it might be very useful to place all of their dec-
larations in one header file.) As we may have mentioned, that's exactly what the Standard header files such as stdio.h are-
-collections of declarations (including external function prototype declarations) having to do with various sets of Standard
library functions. When you use #include to read in a header file, you automatically get the prototypes and other declara-
tions it contains, and you should use header files, precisely so that you will get the prototypes and other declarations they
contain.

The difference between the <> and “” forms is where the preprocessor searches for filename.h. As a general rule, it
searches for files enclosed in <> in central, standard directories, and it searches for files enclosed in "" in the ``current
directory,'' or the directory containing the source file that's doing the including. Therefore, "" is usually used for header
files you've written, and <> is usually used for headers which are provided for you (which someone else has written).

The extension “.h”, by the way, simply stands for “header,” and reflects the fact that #include directives usually sit at the
top (head) of your source files, and contain global declarations and definitions which you would otherwise put there. (That
extension is not mandatory--you can theoretically name your own header files anything you wish–but .h is traditional, and
recommended.)

As we've already begun to see, the reason for putting something in a header file, and then using #include to pull that
header file into several different source files, is when the something (whatever it is) must be declared or defined consis-
tently in all of the source files. If, instead of using a header file, you typed the something in to each of the source files
directly, and the something ever changed, you'd have to edit all those source files, and if you missed one, your program
could fail in subtle (or serious) ways due to the mismatched declarations (i.e. due to the incompatibility between the new
declaration in one source file and the old one in a source file you forgot to change). Placing common declarations and def-
initions into header files means that if they ever change, they only have to be changed in one place, which is a much more
workable system.

What should you put in header files?
ASIST Users Guide–Version 9.6 G-3

APPENDIX G
• External declarations of global variables and functions. We said that a global variable must have exactly one defining
instance, but that it can have external declarations in many places. We said that it was a grave error to issue an external
declaration in one place saying that a variable or function has one type, when the defining instance in some other place
actually defines it with another type. (If the two places are two source files, separately compiled, the compiler will
probably not even catch the discrepancy.) If you put the external declarations in a header file, however, and include the
header wherever it's needed, the declarations are virtually guaranteed to be consistent. It's a good idea to include the
header in the source file where the defining instance appears, too, so that the compiler can check that the declaration
and definition match. (That is, if you ever change the type, you do still have to change it in two places: in the source
file where the defining instance occurs, and in the header file where the external declaration appears. But at least you
don't have to change it in an arbitrary number of places, and, if you've set things up correctly, the compiler can catch
any remaining mistakes.)

• Preprocessor macro definitions (which we'll meet in the next section).

• Structure definitions (which we haven't seen yet).

• Typedef declarations (which we haven't seen yet).

However, there are a few things not to put in header files:

• Defining instances of global variables. If you put these in a header file, and include the header file in more than one
source file, the variable will end up multiply defined.

• Function bodies (which are also defining instances). You don't want to put these in headers for the same reason--it's
likely that you'll end up with multiple copies of the function and hence “multiply defined” errors. People sometimes
put commonly-used functions in header files and then use #include to bring them (once) into each program where they
use that function, or use #include to bring together the several source files making up a program, but both of these are
poor ideas. It's much better to learn how to use your compiler or linker to combine together separately-compiled object
files.

Since header files typically contain only external declarations, and should not contain function bodies, you have to under-
stand just what does and doesn't happen when you #include a header file. The header file may provide the declarations for
some functions, so that the compiler can generate correct code when you call them (and so that it can make sure that
you're calling them correctly), but the header file does not give the compiler the functions themselves. The actual func-
tions will be combined into your program at the end of compilation, by the part of the compiler called the linker. The
linker may have to get the functions out of libraries, or you may have to tell the compiler/linker where to find them. In par-
ticular, if you are trying to use a third-party library containing some useful functions, the library will often come with a
header file describing those functions. Using the library is therefore a two-step process: you must #include the header in
the files where you call the library functions, and you must tell the linker to read in the functions from the library itself.
G-4 ASIST Users Guide–Version 9.6

C-Preprocessor
Macro Definition and Substitution

[This section corresponds to K&R Sec. 4.11.2]

A preprocessor line of the form

#define name text

defines a macro with the given name, having as its value the given replacement text. After that (for the rest of the current
source file), wherever the preprocessor sees that name, it will replace it with the replacement text. The name follows the
same rules as ordinary identifiers (it can contain only letters, digits, and underscores, and may not begin with a digit).
Since macros behave quite differently from normal variables (or functions), it is customary to give them names which are
all capital letters (or at least which begin with a capital letter). The replacement text can be absolutely anything--it's not
restricted to numbers, or simple strings, or anything.

The most common use for macros is to propagate various constants around and to make them more self-documenting.
We've been saying things like

char line[100];
...
getline(line, 100);

but this is neither readable nor reliable; it's not necessarily obvious what all those 100's scattered around the program are,
and if we ever decide that 100 is too small for the size of the array to hold lines, we'll have to remember to change the
number in two (or more) places. A much better solution is to use a macro:

#define MAXLINE 100
char line[MAXLINE];
…
getline(line, MAXLINE);

Now, if we ever want to change the size, we only have to do it in one place, and it's more obvious what the words MAX-
LINE sprinkled through the program mean than the magic numbers 100 did.

Since the replacement text of a preprocessor macro can be anything, it can also be an expression, although you have to
realize that, as always, the text is substituted (and perhaps evaluated) later. No evaluation is performed when the macro is
defined. For example, suppose that you write something like

#define A 2
#define B 3
#define C A + B

(this is a pretty meaningless example, but the situation does come up in practice). Then, later, suppose that you write

int x = C * 2;

If A, B, and C were ordinary variables, you'd expect x to end up with the value 10. But let's see what happens.

The preprocessor always substitutes text for macros exactly as you have written it. So it first substitutes the replacement
text for the macro C, resulting in

int x = A + B * 2;

Then it substitutes the macros A and B, resulting in
ASIST Users Guide–Version 9.6 G-5

APPENDIX G
int x = 2 + 3 * 2;

Only when the preprocessor is done doing all this substituting does the compiler get into the act. But when it evaluates
that expression (using the normal precedence of multiplication over addition), it ends up initializing x with the value 8!

To guard against this sort of problem, it is always a good idea to include explicit parentheses in the definitions of macros
which contain expressions. If we were to define the macro C as

#define C (A + B)

then the declaration of x would ultimately expand to

int x = (2 + 3) * 2;

and x would be initialized to 10, as we probably expected.

Notice that there does not have to be (and in fact there usually is not) a semicolon at the end of a #define line. (This is just
one of the ways that the syntax of the preprocessor is different from the rest of C.) If you accidentally type

#define MAXLINE 100; /* WRONG */

then when you later declare

char line[MAXLINE];

the preprocessor will expand it to

char line[100;]; /* WRONG */

which is a syntax error. This is what we mean when we say that the preprocessor doesn't know much of anything about the
syntax of C–in this last example, the value or replacement text for the macro MAXLINE was the 4 characters “100;” , and
that's exactly what the preprocessor substituted (even though it didn't make any sense).

Simple macros like MAXLINE act sort of like little variables, whose values are constant (or constant expressions). It's also
possible to have macros which look like little functions (that is, you invoke them with what looks like function call syntax,
and they expand to replacement text which is a function of the actual arguments they are invoked with) but we won't be
looking at these yet.
G-6 ASIST Users Guide–Version 9.6

C-Preprocessor
Conditional Compilation

[This section corresponds to K&R Sec. 4.11.3]

The last preprocessor directive we're going to look at is #ifdef. If you have the sequence

#ifdef name
program text

#else
more program text

#endif

in your program, the code that gets compiled depends on whether a preprocessor macro by that name is defined or not. If
it is (that is, if there has been a #define line for a macro called name), then “program text” is compiled and “more program
text” is ignored. If the macro is not defined, “more program text” is compiled and “program text” is ignored. This looks a
lot like an if statement, but it behaves completely differently: an if statement controls which statements of your program
are executed at run time, but controls which parts of your program actually get compiled.

Just as for the if statement, the #else in an #ifdef is optional. There is a companion directive #ifndef, which compiles code
if the macro is not defined (although the “#else clause” of an #ifndef directive will then be compiled if the macro is
defined). There is also an #if directive which compiles code depending on whether a compile-time expression is true or
false. (The expressions which are allowed in an #if directive are somewhat restricted, however, so we won't talk much
about #if here.)

Conditional compilation is useful in two general classes of situations:

• You are trying to write a portable program, but the way you do something is different depending on what compiler,
operating system, or computer you're using. You place different versions of your code, one for each situation, between
suitable #ifdef directives, and when you compile the program in a particular environment, you arrange to have the
macro names defined which select the variants you need in that environment. (For this reason, compilers usually have
ways of letting you define macros from the invocation command line or in a configuration file, and many also pre-
define certain macro names related to the operating system, processor, or compiler in use. That way, you don't have to
change the code to change the #define lines each time you compile it in a different environment.)

For example, in ANSI C, the function to delete a file is remove. On older Unix systems, however, the function was
called unlink. So if filename is a variable containing the name of a file you want to delete, and if you want to be able to
compile the program under these older Unix systems, you might write

#ifdef unix
 unlink(filename);

#else
remove(filename);

#endif

Then, you could place the line
#define unix

at the top of the file when compiling under an old Unix system. (Since all you're using the macro unix for is to control
the #ifdef, you don't need to give it any replacement text at all. Any definition for a macro, even if the replacement text
is empty, causes an #ifdef to succeed.)

(In fact, in this example, you wouldn't even need to define the macro unix at all, because C compilers on old Unix sys-
tems tend to predefine it for you, precisely so you can make tests like these.)
ASIST Users Guide–Version 9.6 G-7

APPENDIX G
• You want to compile several different versions of your program, with different features present in the different ver-
sions. You bracket the code for each feature with #ifdef directives, and (as for the previous case) arrange to have the
right macros defined or not to build the version you want to build at any given time. This way, you can build the sev-
eral different versions from the same source code. (One common example is whether you turn debugging statements
on or off. You can bracket each debugging printout with #ifdef DEBUG and #endif, and then turn on debugging
only when you need it.)

For example, you might use lines like this:
#ifdef DEBUG

printf("x is %d\n", x);
#endif

to print out the value of the variable x at some point in your program to see if it's what you expect. To enable debug-
ging printouts, you insert the line

#define DEBUG

at the top of the file, and to turn them off, you delete that line, but the debugging printouts quietly remain in your code,
temporarily deactivated, but ready to reactivate if you find yourself needing them again later. (Also, instead of insert-
ing and deleting the #define line, you might use a compiler flag such as -DDEBUG to define the macro DEBUG from
the compiler invocation line.)

Conditional compilation can be very handy, but it can also get out of hand. When large chunks of the program are com-
pletely different depending on, say, what operating system the program is being compiled for, it's often better to place the
different versions in separate source files, and then only use one of the files (corresponding to one of the versions) to build
the program on any given system. Also, if you are using an ANSI Standard compiler and you are writing ANSI-compati-
ble code, you usually won't need so much conditional compilation, because the Standard specifies exactly how the com-
piler must do certain things, and exactly which library functions it much provide, so you don't have to work so hard to
accommodate the old variations among compilers and libraries.
G-8 ASIST Users Guide–Version 9.6

AS
APPENDIX H Load and Dump Files
ASIST Standard Load File Format

This section describes the load file format supported by ASIST.

Generally, the load file contains a sequence of ASCII records terminated by a carriage-return/line-feed. The fields in each
record are of fixed width and are terminated by a comma (except the last field). For example:

SCPRI ,00001000,LOAD,MEMORY, , , ,00000020, , 1, 1,

The load file contains four different variable length record types. There are three header records: abstract, identification,
and data description. A valid load file may contain only a single occurrence of each header record type. Data records com-
prise the remainder of the file. Each data record contains a start address and the data to be loaded at that address. The start
addresses of consecutive data records must be ascending. It is illegal for two data records to specify a value for the same
byte or word.

In addition, the load file may contain one or more comment records. A comment record must begin with a semicolon (;),
end with a carriage-return/line-feed, and it must not be longer than 80 characters including the semicolon and carriage-
return/line-feed. The contents of a comment may include any textual information desired.

The following paragraphs describe each of the four record types in detail. Where fields are interrelated, the "Field
Description" column will specify the relationship.

The abstract record describes the purpose of the load file. Its format is:

TABLE H-1. Abstract Record Format for FTF (load) File

Field # Name Width Description

1 ABSTRACT 60 Specifies the functional purpose of the load file (example: "This is an ATS for
MAP...")
IST Users Guide–Version 9.6 H-1

APPENDIX H
The identification record contains basic information that uniquely identifies the load file. Its format is:

The data description record describes the type of data contained in this file. Its format is:

TABLE H-2. Identification Record Format for FTF (load) File

Field # Name Width Description

1 Mission 8 The name of the mission, left-justified (for example:”MAP “)

2 Creation Date 17 The date the file was created, in the format YYYY-DDD-HH:MM:SS (for exam-
ple: 1998-231-14:58:37

3 Version Number 3 Identifies the version number of the file format in decimal. All applications
which create a file that conforms to this standard must place “003” in this field.

4 Source 10 Identifies the originator of the file, left-justified (for example: “FDF ”)

5 Comments 80 Additional commentary for this file, left-justified (for example: “Created
using GCC...”)

TABLE H-3. Data Description Record Format for FTF (load) File

Field # Name Width Description

1 Processor 8 Identifies the processor that this file is intended for, left-justified (for example:
“SCPRI “

2 Load Size 8 Total number of data units (words or bytes) in the file. This field is the sum of
the Data Size fields in all data records in the file, in ASCII hexadecimal. Note
that the units for this field is specified by the Size Units field.(for example:
000000FA)

3 File Type 4 Defines the file type, left-justified. Usually this field contains either "LOAD"
for a full memory or table load or "PART" for a partial one.

4 Load Type 6 Defines the type of load, left-justified. Usually this field contains either
“MEMORY” or “TABLE “.

5 Table ID 4 The table identification number in decimal. This field is used for table loads;
otherwise the field contains blanks (for example: 12).

6 Table Source 6 Defines the table source for a table load, left-justified. This field is used for
table loads; otherwise the field contains blanks.(example: "EEPROM")

7 Table Dest 6 Defines the table destination area for the table commit, left-justified. It is used
for table loads; otherwise it should contain blanks. (for example: "RAM ")

8 Base Address 8 Defines the base address for memory loads or the base offset for table loads.
The value is encoded in ASCII hexadecimal. Note that the units for this field is
specified by the Address Units field. (example: 80E0E115)

9 Memory Type 6 Defines the memory type for memory loads left-justified. For table loads, this
field is blank. (example: "BPROM ")

10 Address Units 2 Defines the number of bytes in an address unit. This field applies to the Base
Address field in this record as well as the Data Address field in the data
record.(example: 2)

11 Size Units 2 Defines the number of bytes in a size unit. This field applies to the Load Size
field in this record as well as the Data Size field in the data record. (example:
1)

12 Spacecraft ID 3 Defines the spacecraft ID of the spacecraft that this file is intended for.
H-2 ASIST Users Guide–Version 9.6

Load and Dump Files
The data record contains the actual data to be loaded. Its format is:

TABLE H-4. Data Record Format for FTF (load) File

Field # Name Width Description

1 Data Address 8 Indicates the starting location for data units in this record. This value is
encoded in ASCII hexadecimal. This field provides an address when Load
Type is MEMORY and an offset when Load Type is TABLE. Note that the
units for this field is specified by the Address Units field. (example: FEF0)

2 DataSize 4 Provides the number of data units in this record. This value is encoded in
ASCII hexadecimal. The product of Data Size and Size Units must not exceed
200. Note that the units for this field is specified by the Size Units field.(exam-
ple: 4A)

3 Data 400 Provides the data units to load in ascending memory location order. This field
should be zero-filled if the field is not completely filled. Note that the units for
this field is specified by the Size Units field. (example:
001278561290FF...0000)
ASIST Users Guide–Version 9.6 H-3

APPENDIX H
ASIST Standard Dump File Format

This sections defines the format of dump files created by ASIST.

The dump file format is a sequence of ASCII records terminated by a carriage-return/line-feed. Each field is fixed in width
and is terminated by a comma (except the last field in a record).

Dump files contain four different variable length record types. There are three header records: abstract, identification, and
data description. A dump file must contain a single occurrence of each header record and the header records must appear
in the order above. The rest of the load file contains data records.

In addition, the dump file may contain one or more comment records. A comment record must begin with a semicolon (;),
end with a carriage-return/line-feed, and it must not be longer than 80 characters including the semicolon and carriage-
return/line-feed. The contents of a comment may include any textual information desired.

The following paragraphs describe each of the four record types in detail. Where fields are interrelated, the "Field
Description" column will specify the relationship.

The abstract record describes the purpose of the dump file. Its format is:

The identification record contains basic information that uniquely identifies the dump file. Its format is:

TABLE H-5. Abstract Record Format for DTF (dump) File

Field # Name Width Description

1 ABSTRACT 60 Specifies the functional purpose of the dump file(example: "MAP memory
dump...")

TABLE H-6. Identification Record Format for DTF (dump) File

Field # Name Width Description

1 Mission 8 The name of the mission, left-justified (for example:”MAP “)

2 Creation Date 17 The date the file was created, in the format YYYY-DDD-HH:MM:SS (for exam-
ple: 1998-231-14:58:37

3 Version Number 3 Identifies the version number of the file format in decimal. All applications
which create a file that conforms to this standard must place “003” in this field.

4 Source 10 Identifies the originator of the file, left-justified (for example: “FOT ”)

5 Comments 80 Additional commentary for this file, left-justified (for example: “Operator
commanded dump...”)
H-4 ASIST Users Guide–Version 9.6

Load and Dump Files
The data description record describes the type of data contained in this file. Its format is:

The data record contains the actual data that was dumped. Its format is:

TABLE H-7. Data Description Record Format for DTF (dump) File

Field # Name Width Description

1 Processor 8 Identifies the processor that this file is intended for, left-justified (for example:
“SCPRI “

2 Dump Size 8 Total number of data units (words or bytes) in the file. This field is the sum of
the Data Size fields in all data records in the file, in ASCII hexadecimal. Note
that the units for this field is specified by the Size Units field.(for example:
000000FA)

3 File Type 4 Defines the file type, left-justified. Usually this field contains either "DUMP"
for a full memory or table dump or "PART" for a partial one.

4 Dump Type 6 Defines the type of dump, left-justified. Usually this field contains either
“MEMORY” or “TABLE “.

5 Table ID 4 The table identification number in decimal. This field is used for table dumps;
otherwise the field contains blanks (for example: 12).

6 Table Source 6 Defines the source for a table dump, left-justified. This field is used for table
dumps specified with a load file; otherwise the field contains blanks.(example:
"EEPROM")

7 Table Dest 6 Defines the table destination area for the table commit, left-justified. It is used
for table dumps specified with a load file; otherwise the field contain blanks.
(for example: "RAM ")

8 Base Address 8 Defines the base address for memory dumps or the base offset for table dumps.
The value is encoded in ASCII hexadecimal. Note that the units for this field is
specified by the Address Units field. (example: 80E0E115)

9 Memory Type 6 Defines the memory type for memory dumps left-justified. For table loads, this
field is blank. (example: "BPROM ")

10 Address Units 2 Defines the number of bytes in an address unit. This field applies to the Base
Address field in this record as well as the Data Address field in the data
record.(example: 2)

11 Size Units 2 Defines the number of bytes in a size unit. This field applies to the Dump Size
field in this record as well as the Data Size field in the data record. (example:
1)

12 Spacecraft ID 3 Defines the spacecraft ID of the spacecraft that created this file.

TABLE H-8. Data Record Format for DTF (dump) File

Field # Name Width Description

1 Data Ident 4 Contains the processor id if a memory dump or the table id if a table dump.
This value is encoded in ASCII hexadecimal.

2 Data Copy 4 Specifies which dump in a multi-copy dump that this record belongs to. This
value is encoded in ASCII decimal.

3 Data Address 8 Indicates the starting location for data units in this record. This value is
encoded in ASCII hexadecimal. This field provides an address when Dump
Type is MEMORY and an offset when Dump Type is TABLE. Note that the
units for this field is specified by the Address Units field. (example: FEF0)
ASIST Users Guide–Version 9.6 H-5

APPENDIX H
4 DataSize 4 Provides the number of data units in this record. This value is encoded in
ASCII hexadecimal. The product of Data Size and Size Units must not exceed
200. Note that the units for this field is specified by the Size Units field.(exam-
ple: 4A)

5 Data Source 4 Contains the memory type if a memory dump or the table source type if a table
dump. This value is encoded in ASCII hexadecimal.

6 Data 400 Provides the data units dumped, in ascending memory location order. This field
should be zero-filled if the field is not completely filled. Note that the units for
this field is specified by the Size Units field. (example:
001278561290FF...0000)

TABLE H-8. Data Record Format for DTF (dump) File

Field # Name Width Description
H-6 ASIST Users Guide–Version 9.6

AS
APPENDIX I ASIST Y2k Contingency Plan
Introduction

The ASIST system was tested and found to be Y2k compliant. All mission critical functions were determined to operate
properly as specified in the "NASA Year 2000 Agency Test and Certification Guidelines and Requirements". However,
there remains a small but non-zero probability that, when used operationally beyond the year 2000, some Y2k problems
may still remain which adversely impact mission critical functions. This appendix describes the procedure for working
around problems caused by dates during and beyond the year 2000.
IST Users Guide–Version 9.6 I-1

APPENDIX I
Background

The dates and times used by the flight data systems are based on a monotonically increasing, unsegmented clock counter
from a particular epoch. If the ASIST has problems with data collected after the year 2000, the reference epoch used in the
time calculations can be superseded in ASIST by an artificial epoch which, when used in conjunction with the flight data
system clock counter, results in ASIST processing times which appear (to ASIST) to be before 2000. 1992 or 1996 would
be used for leap years (such as the years 2000 and 2004). Note that the flight data system does not need to use the same
epoch time as the ASIST, since all times are converted to clock counter units for both commands and telemetry. Users
would be required to use the fake year when interacting with the ASIST system, however.

The science processing, attitude and orbit calculations, which are not part of ASIST functionality, would use the original
epoch time as defined by the respective projects and as used by the flight data system. ASIST does not modify any telem-
etry values and the data would be directly usable by external processing systems.
I-2 ASIST Users Guide–Version 9.6

ASIST Y2k Contingency Plan
Procedure

1. If Y2k problems are associated with the system clocks, contact the system administrator and have the system clocks
reset to 1996.

2. Modify ground system receipt times for all archived data files to archive time minus four years

3. Reset the ASIST epoch time to the original epoch minus four years.

4. Start the system and run normally. All ASIST products will now be four years off

5. Notify users of the change.

These procedures may not necessarily perform as intended for certain products that span the 1999-2000 date boundary.
Products that cross the 1999-2000 date boundary and perform incorrectly may therefore be produced in two segments:
prior to 1999 midnight and after.
ASIST Users Guide–Version 9.6 I-3

APPENDIX I
I-4 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
APPENDIX J Front End Data System/
Digital History Data Store

Introduction

The Front End Data System and the Digital History Data Store (FEDS/DHDS) provide an interface to the satellite
throughout the life of its mission–from the development phases in the lab through the integration and test (I&T) cycle to
on-orbit operations in the Mission Operations Control Center. Its major functions are:

• To receive, process, and store CCSDS telemetry data either directly from the satellite or over a network;

• To distribute requested portions of this telemetry to one or more clients (either ASIST workstations or IGSEs) via
TCP/IP;

• To receive, process, and manage satellite commands received from the ASIST workstation.

The FEDS/DHDS system consists of both hardware and software. The major hardware components include an IBM PC-
compatible running LINUX, and optionally, a RAID system to allow archival of large amounts of data. Additionally, at
the I&T sites there will be a bit sync. The PC may contain RS-422 interface cards for hard-line command and telemetry
interfaces to the satellite. TCP/IP socket connections to the appropriate network are utilized for the Mission Operations
systems.

The FEDS is largely table driven. It reads a set of configuration files which describe how to handle telemetry and
command data. These files are set up by the installer to provide a desired default configuration. A number of parameters
can also be changed while the FEDS is running, either through directives from ASIST (the recommended way) or through
menus provided on the FEDS. In this way, the downlink processing can be started from the default configuration file (and
then left on), or changed through the menu.

The major software components of the FEDS include:

• the frame synchronization process,

• various error decoding processes (including Reed-Solomon, Convolutional (Rate 1/2, Rate 1/4), CRC, and PN),

• the frame level processor/router,
ASIST Users Guide–Version 9.6 J-1

APPENDIX J
• the telemetry depacketization/distribution process (which can also perform some data decompression).

• uplink software corresponding to each of the CCSDS layers, including Codeblock, Segmentation, Transfer, and Phys-
ical layers.

The major software components of the DHDS consist of a FEDS plus an archiving system (including Level 0 processing).
The added functionality includes both the archive of telemetry at the VCDU level, and the playback of packets from this
archived data. Playback of telemetry is controlled by from the FEDS/DHDS User Interface Window.

For more information on controlling FEDS command processing and the FEDS Ground Station interface, see CHAPTER
10: “Front End Data System” .
J-2 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
Running the FEDS

The FEDS/DHDS is simple to start and operate. These simple steps allow you to start, stop, and monitor the FEDS:

Logging on to the System

1. Login as FEDS. Type:
User Name: feds
Password: ****** (See System Administrator)

Starting the FEDS/DHDS

To start the FEDS, open a window containing a shell and type the following command at the prompt:

➔ FEDS_START

Note: After 2 minutes or so (and a lot of startup messages), the message “All tasks initiated successfully”
will appear, and one or more gsetup windows will appear.

Stopping FEDS/DHDS

At the Unix prompt in a window, issue the command

➔ FEDS_STOP

Note: After a few minutes, FEDS will be stopped, and the message “Initialization Monitor terminating”
will appear.
ASIST Users Guide–Version 9.6 J-3

APPENDIX J
Interacting with the Digital History Data Store (DHDS)

How to connect to the DHDS (for ASIST Users)

To open a DHDS Control window:

1. Go to the STOL Operator_Input window, and type dhds_window1.

2. In the new x-term window, enter your account name (indicated at the top of the window) and password to log in.

3. The FEDS/DHDS main menu will appear, at which point you may select the option desired (see “FEDS/DHDS Main
User Interface Window” on page J-5).

Note: The FEDS/DHDS main menu is described on page 7.

To stop the selected FEDS/DHDS processing option:

1. Type q (for quit) which will close the FEDS/DHDS main menu window.

2. To continue realtime processing, type realtime at the STOL Operator_Input window.

How to connect to the FEDS/DHDS (for non-ASIST based IGSE Users)

Use of the FEDS/DHDS requires three steps in the following order:

1. The user’s program connecting to the Housekeeping and Science ports.

2. User logging on to the FEDS/DHDS system.

3. The FEDS/DHDS main menu will appear, at which point you may select the option desired (see “FEDS/DHDS Main
User Interface Window” on page J-5).

Connecting to the telemetry ports

If you don’t have ASIST, you must write a program which connects to the FEDS/DHDS housekeeping and science telem-
etry sockets using TCP/IP on ports 2001 and port 20x1 (where x depends upon you project and experiment ID). Commu-
nication over this port is described in an interface control document (ICD) which can be provided by your project.

The socket connections must be made before you log on to the FEDS/DHDS to initiate playback (i.e., the receiving pro-
gram should be running). If you initiate playback before your program is connected, data will be discarded prior to your
connection.

Logging on to the system

To access the FEDS/DHDS, telnet to the system and then log on to the appropriate experimenter or ASIST account with
the correct password.

1. In certain configurations, you may use a DHDS that is a different machine than the one defined as TLMI in your configuration file
(which is assumed to be the default DHDS). If this is the case, then enter dhds_window dhds-machine-name in the STOL window.
J-4 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
FEDS/DHDS Main User Interface Window

When you log into a FEDS/DHDS user account, you will be presented with the following menu

Enter the respective number or first letter to accomplish the desired function.

Quitting the FEDS/DHDS

To quit the FEDS/DHDS, enter q, and you will be logged out. Alternatively, entering control-c will terminate any process-
ing currently being done and return you to the main menu. Entering control-c from the main menu will cause you to exit
the DHDS.

Playback of telemetry data from the FEDS/DHDS

To initiate playback, enter p at the command prompt.You will then be prompted to specify a time range for your playback1

Display only newly arrived data ? [No]

If you select yes, only new telemetry will be delivered (and you will not have to answer any more questions). If your
select no, then old (and possibly new) AOS frames will be replayed within the requested time period.

Start time - year (>1990) : [1998]
Start time - julian day (1-365) : [1]
Start time - hour (0-23) : [0]
Start time - minute (0-59) : [0]
Continue displaying data forever ? [No]

If you select yes, then telemetry starting at the specified date and time will be delivered. When the data catches up to the
current time, it will deliver new telemetry as it is received. This is the equivalent to catching-up and then processing in
real-time data.

If you select no, you will be asked to specify a stop time:

Possible Commands (enter number or command name):
 # NAME DESCRIPTION
 1 Quit quit this program and log out
 2 Edit edit distribution file using an editor
 3 Playback play data using current distribution file
 4 View view distribution file
 5 Current play current data
 6 Decoupled play decoupled current data (i.e. HK
 and SCI data delivered independently)
 7 Runs prints a listing of all runs and times when
 data was received
 8 Index prints an index of telemetry data files
 9 Off turns off realtime (FEDS) data delivery
 10 On turns on realtime (FEDS) data delivery
Command:

1. For all prompts in this interface, user defaults are displayed in [brackets]. To enter the default, just press return.
ASIST Users Guide–Version 9.6 J-5

APPENDIX J
Stop time - year (>1990) : [1998]
Stop time - julian day (1-365) : [ddd]
Stop time - hour (0-23) : [hh]
Stop time - minute (0-59) : [mm]

where ddd, hh, and mm default to the start time entered above.

Next, you are prompted for a speed factor

Playback speed factor (>=0.0) : [100.000000]

where the speed factor indicates how fast to play back the data (in multiples of real time. For example: 1.0 will play
back at the downlink rate, while 10.0 will play back at 10 times the downlink rate, and 0.1 will play back at one-tenth
the playback rate. A special case is 100.0, which will play back at “full rate,” meaning as fast as the data can be processed.
Full-rate processing skips over periods when no data was being received (all of the other modes play back lack of data at
the same rate that they play back data).

What type of data do you want to receive (HK/SCI/Both)? [Both]

For playback of either housekeeping or science data, or both.

Deliver Science & Housekeeping data independently (decoupled)? [No]

For example: Periodically, during playback at some rates on the Q-channel, science data may be dumped from the space-
craft at a much higher rate. If the experimenter is receiving data in the coupled mode, then the experimenter workstation
will receive all of the high-rate science data before Housekeeping data is received. If the experimenter is running in
decoupled mode, the Housekeeping data is received as it is downlinked.

Continuously repeat the playback ? [No]

Example One–A closed interval playback

In the following example, the experimenter will initiate playback of all AOS frames within the requested ground times.
This will result in sending of packets with apids listed in the current distribution file for the experimenter, and with ground
times within the requested time range.

TABLE J-1. Coupled vs. Decoupled Telemetry Playback

Coupling method What it means

Coupled (= dependently) Application packets are delivered in the order in which they are received by the ground
system (regardless of differences in data rates between the channels).

Decoupled (= independently) Application packets are delivered in the order in which they are received on each
channel (even if one channel has a much higher data rate)
J-6 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
The user is prompted as follows (user responses are in bold type):

The following (or similar) informational messages is displayed during playback:

Example two (‘now and forever’ playback):

In the following example, the experimenter will initiate playback of all AOS frames with the current ground time (‘now’)
and an open stop time (run ‘forever’). This will result in continuously sending the application packets with apids listed in
the current distribution file for the experimenter from the current time or until the DHDS session is stopped.

Note: To halt the playback, the user can enter control c at anytime. At this point you will be returned to the main menu.

Command: p
Initiating playback
Display only newly arrived data ? [No] no or simply <return>
Start time - year (>1990) : [1998] <return>
Start time - julian day (1-365) : [1] 244 <return>
Start time - hour (0-23) : [0] 15 <return>
Start time - minute (0-59) : [0] 30 <return>
Continue displaying data forever ? [No] <return>
Stop time - year (>1990) : [1998] <return>
Stop time - julian day (1-365) : [244] <return>
Stop time - hour (0-23) : [15] <return>
Stop time - minute (0-59) : [30] 41 <return>
Playback speed factor (>=0.0) : [100.000000]
What type of data do you want to receive (HK/SCI/Both)? [Both] <return>
Deliver Science & Housekeeping data independently? [No] <return>
Continuously repeat the playback ? [No] <return>

Experimenter id is xx
Start time is xxxxxxxxx - 1998-244-15:30
End time is xxxxxxxxx - 1998-244-15:41
AOS frame ground time is 1998-244-15:30HK downlink rate unknown
HK downlink rate = 32Kbit
AOS frame ground time is 1998-244-15:35
AOS frame ground time is 1998-244-15:40
Channel 0 (I00) ended
Timed out waiting for data on remaining channels

Command: p
Initiating playback
Display only newly arrived data ? [No] yes <return>
Continue displaying data forever ? [Yes] <return>
Playback speed factor (>=0.0) : [100.000000] <return>
What type of data do you want to receive (HK/SCI/Both)? [Both] <return>
Deliver Science & Housekeeping data independently? [No] <return>
ASIST Users Guide–Version 9.6 J-7

APPENDIX J
The following (or similar) informational messages are then displayed:

Note: This is equivalent to the c command from the main menu.

Viewing the Current Distribution File

To view your current distribution file for the experiment, enter v. Your distribution file defines which apids you will
receive in telemetry. Separate (and usually different) distribution files exist for each experiment id. (V)iew displays the
distribution appropriate to who you logged in as.

Entries in the file consist of the physical/virtual channels and application ids in hexadecimal.

For example, the distribution file displayed might contain:

In this example for spacecraft 224, physical channel I, virtual channel 0, only apids [000-02F 040-07A 07C-0D5 0D8-
0DB 0DE-0E1 0E4-0FF] are distributed to the experimenter workstation.

For channels Q00 and Q01, the user has elected the same distribution as on I00.

For the remaining physical/virtual channels except for Q03, apids between 000 and00C inclusive will be sent to the
experimenter workstation. For Q03, only apids 050 and 056 will be sent.

Editing the Distribution File

To modify the current distribution file, enter e. You will then be presented with a choice of editors:

Use “emacs” editor? [Yes] n
Editor choices are:

1 - emacs
2 - vi
3 - ed
4 - other

experimenter id is xx
AOS frame ground time is
-244-15:30
HK downlink rate = 32Kbit

Sample Distribution File:
SC_ID 224
I00 HK 000-02F 040-07A 07C-0D5 0D8-0DB 0DE-0E1 0E4-0FF
Q00 SCI 000-02F 040-07A 07C-0D5 0D8-0DB 0DE-0E1 0E4-0FF
Q01 SCI 000-02F 040-07A 07C-0D5 0D8-0DB 0DE-0E1 0E4-0FF
Q02 SCI 000-00C
Q02 SCI 000-00C
Q03 SCI 050 056
Q04 SCI 000-00C
Q05 SCI 000-00C
Q06 SCI 000-00C
J-8 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
Use which editor: [1] 2

Once you select an editor, you may begin editing the distribution file for your workstation. The apids in this file are in
HEX, and are entered as three characters (00A for example). When you save your file, the new list of Channels/apids will
be take effect.

If you choose emacs, the following key sequences may be useful:

• To save the file in emacs: control-x followed by control-s

• To exit emacs: control-x followed by control-c. If you changed your file since you last saved, you will be
asked if you want to save your file. Answer yes or no.

Playing current data from the S/C

To start processing data from the S/C, enter c.

This causes telemetry to be sent to you as it is received. It has the same effect as playback ‘now and forever’ processing,
while saving two keystrokes (cf. example two). Note that the current distribution file is used.

Playing decoupled current data from the S/C

To start receiving telemetry data where Housekeeping and Science data are delivered independently, enter d.

Example: Periodically, during playback at a certain rate on the Q-channel, high-rate science data at a much greater rate
will be dumped from the S/C. If the experimenter is receiving data in the coupled mode, then the experimenter worksta-
tion will receive all of the high-rate science data before Housekeeping data is received. If the experimenter is running in
decoupled mode, the Housekeeping data is received as it is downlinked.

Index of telemetry data files

To display an index of telemetry data files, enter i at the command prompt. You will then be prompted to specify the time
range for which you want to see the index.

Note: The index is displayed in a 90 column format, so setting the window width to 90 is recommended.

Which channels would you like an index for ? Q01 (Enter the Physical/Virtual Channel)

Produce an index for all files on those channels ? [No] <Enter>

Initiating Playback of Current Data
Start time is 0 - 70001000000
End time is 0 - 70001000000
Waiting for more data to arrive
All channels ended

Initiating Decoupled Playback of Current Data
Start time is 0 - 70001000000
End time is 0 - 70001000000
Waiting for more data to arrive
All channels ended
ASIST Users Guide–Version 9.6 J-9

APPENDIX J
If yes, an index for the specified channels will be displayed. If no, you will be prompted for a time range as follows:

Start time - year (>1990) : [1999]
Start time - julian day (1-365) : [121]
Start time - hour (0-23) : [17]
Start time - minute (0-59) : [0]
Continue indexing until current time ? [Yes]

If no, then user will be prompted for a stop time as follows:

Stop time - year (>1990) : [1999]
Stop time - julian day (1-365) : [ddd]
Stop time - hour (0-23) : [hh]
Stop time - minute (0-59) : [mm]

where ddd, hh, and mm default to the start time.
J-10 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
FEDS Internals

This section describes where to find the FEDS configuration files, and how to view more information about the FEDS. It
is put here only for reference; if you need to change these configuration files, you should discuss the changes with a FEDS
developer.

FEDS Telemetry Processing Displays

Most of the data you need to diagnose the FEDS telemetry processing status should be available from ASIST. But you can
also look at the telemetry processing displays on the FEDS to see an overview of telemetry processing. When you start the
FEDS, the Setup (gsetup) display, the Reed-Solomon Decoding display, the AOS Use display, the AOS Activity display,
and the Housekeeping, Science, and Stats Exp displays open.

If telemetry is being received, these displays chug merrily along, incrementing the frame counts, and number of packets
sent. However, if there is a problem with telemetry receipt, and an ASIST or IGSE is not receiving packets, these displays
may provide insight into the problem.

AOS Activity Display

The AOS Activity display tells you how many AOS frames have been received for each physical/virtual channel, the
number of sequence breaks, and when the last sequence break occurred.
ASIST Users Guide–Version 9.6 J-11

APPENDIX J
where:

AOS Use Display

The AOS Use display tells you how many bytes of data and fill have been received for each physical/virtual channel, the
number of frames received, and the percentage of bandwidth used by the data.

Heading What it means

CHANNEL The Physical/Virtual Channel

AOS VCDUs The number of AOS frames received for the given channel

UPDATE TIME When this line was last updated

SEQUENCE
BREAK

The number of sequence breaks on this channel.

LAST BREAK
TIME

When the last sequence break occurred on this channel

END SEQUENCE
NUMBER

The VCDU counter of the frame preceding the last VCDU sequence break.

START
SEQUENCE
NUMBER

The VCDU counter of the frame following the last VCDU sequence break
J-12 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
where:

Reed-Solomon Display

The Reed-Solomon Use display tells you how may Reed-Solomon errors have occurred.

where:

Heading What it means

CHANNEL The Physical/Virtual Channel

DATA BYTES The number of data bytes received on this channel

FILL BYTES The number of fill bytes received on this channel

TOTAL FRAMES The number of AOS frames received on this channel.

USAGE (%) The percentage of the total downlink (DATA_BYTES + FILL_BYTES) that was actual data:
 = DATA_BYTES / (DATA_BYTES + FILL_BYTES)

UPDATE TIME When this display was last updated.

Heading What it means

CHANNEL The Physical/Virtual Channel

CORRECTABLE FRAMES The number of AOS frames that had correctable Reed-Solomon (RS) errors.

CORRECTABLE BYTES The number of bytes that had to be corrected due to RS errors.
ASIST Users Guide–Version 9.6 J-13

APPENDIX J
Exp(erimenter) Activity Displays

The Experimenter Activity (exp_activity) displays show what experimenter is connected to a given channel, when it con-
nected (or disconnected) and how many SFDUs and packets it has received. There are three exp_activity screens:

UNCORRECTABLE FRAMES The number of AOS frames that had uncorrectable Reed-Solomon (RS) errors.

UNCORRECTABLE INTER-
LEAVES

The number of interleaves that had uncorrectable Reed-Solomon (RS) errors. In the
example above, all interleaves had errors, since the interleave factor was five.

TOTAL FRAMES The number of AOS frames received on this channel.

UPDATE TIME) When this display was last updated.

Display What it shows

HOUSEKEEPING connections for housekeeping data (called the I channel on ASIST)

SCIENCE connections for science data (called the Q channel on ASIST)

STATS connections for FEDS status data (called the F channel on ASIST)

Heading What it means
J-14 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
where:

Menu Item What it means

EXP The experimenter ID (also called the SFID).

ALIAS The two letter alias for the experimenter ID

SFDU The number of SFDUs sent over this channel.

PKTS The number of packets sent over this channel

UPDATE TIME The time that this entry was updated.

HOST The host making this connection.

MODE TIME The time the host connected or disconnect.ed

MODE Either blank (no connection yet made), C (connected), or D (disconnected).

SECS The number of seconds the last connection was active (it is only present when disconnected).
ASIST Users Guide–Version 9.6 J-15

APPENDIX J
Telemetry Frame Processing Display

The telemetry frame processing display reports the current state (and configuration) of telemetry frame processing. To see
this display, select the Display tab on the Setup (gsetup) window.

Troubleshooting

The vast majority of problems that occur are usually configuration problems such as a mismatch of encoding/decoding
schemes, or an incorrect data rate selection. Thus, when a disruption in the telemetry stream occurs, checking your current
encoding scheme setup and data rate against the mode the spacecraft should be sending will often reveal the cause.
J-16 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
To gain insight into telemetry problems, work forward in the data stream:

1. Verify good bit sync lock (at the bit sync)

2. Verify good frame lock (look at the Telemetry Frame Processing display)

3. Verify good clean frames (look at either the Reed-Solomon display or the AOS Use display)

If all these are OK, then the frame level processing is good.

4. Verify that packets are indeed being depacketized and sent to ASIST (or your experimenter). To do this look at the
I_EXP and Q_EXP display which should be updating every 20 seconds. Verify that SFDUs are being sent to each
experimenter by watching the display for at least a minute. (Note that the ASIST primary is EXPID 00 and ASIST
Associate #1 is EXP_ID 01, etc.)

FEDS Setup Utility

FEDS Downlink processing parameters (encoding/decoding schemes, frame length, etc.) can be changed through the
Setup tab of the Setup (gsetup) window, or the default configuration files. Note that in most cases, the system should work
correctly from startup.
ASIST Users Guide–Version 9.6 J-17

APPENDIX J
A number of combinations exist for the decoding of the telemetry data. It should be apparent that the decoding mode
needs to match the encoding mode in order to receive telemetry.

Examples of some of the most important parameters:

Changing telemetry processing parameters:

From the Setup tab, enter the parameter you wish to change (select from those in the menu), and follow the prompts.

TABLE J-2. Some important FEDS System Parameters

FEDS Function Settings

Convolution Decoding Off or On in one of the following modes:

1/2,7–one half rate with constraint length 7
1/4,15–one quarter rate with constraint length 15

Reed-Solomon Decoding Off or On.

You must specify the interleave depth, which is normally 5

Pseudo-randomization (PN) Off or On

TABLE J-3. Some parameters that are configurable through the FEDS Setup menu

Tab Header/Item What it does

Input Mode/Idle Disables all input processing

Input Mode/Serial Ingest Enables serial ingest of telemetry data

Input Mode/File Ingest Enables file ingest of some type of file (raw telemetry file or DSN DDD-headered data
file for example)

InputMode/Socket Ingest Enables the ingest of telemetry data via a socket connection from DSN, SN or another
FEDS

Input Decoding/None Selects no decoding

Input Decoding/ 1/2 Rate
Convolutional

Selects 1/2 rate convolutional decoding

Input Decoding/ 1/4 Rate
Convolutional

Selects 1/4 rate convolutional decoding

Input Decoding/TDRSS
Block

Selects decoding of SN (TDRSS) telemetry blocks

Input Decoding/SN SFDU Selects decoding of SN (TDRSS) SFDU-formatted telemetry blocks

Input Decoding/DSN DDD Selects decoding of DSN telemetry blocks

Input Decoding/GN SMEX Selects decoding of GN telemetry blocks

Input Procesing/Set Frame
Length

Sets the CCSDS/AOS telemetry frame length (including R-S symbols)

Input Processing/PN Decod-
ing

Enabes decoding of pseudo-random noise

Input Processing/Reed-
Solomon Decoding

Enables Reed-Solomon decoding

Input Processing/Reed-
Solomon Interleave

Sets the Reed-Solomon interleave factor
J-18 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
Using Default Configuration Files:

The FEDS configuration is read from a set of configuration files stored in the $MULTIMISSION_config_data and
$MISSION_config_data directories when the FEDS is started. The $MULTIMISSION_config_data directory
contains the feds.xml file which controls the startup and configuration of the highest levels of command and telemetry
processing for one or more missions. The $MISSION_config_data directory contains files which control the
operation of the lower levels of command and telemetry processing for a single mission. For a complete list of the lower
level files, change directory to the $MISSION_config_data directory (cd $MISSION_config_data) and list
the files with the extension config (ls *.config). If there are no configuration files, copy the configuration file you’d
like to change from the $FEDS_config_data directory. To change the FEDS startup configuration, edit one of these
files using either emacs or vi. The following table shows a partial list of the configuration files.

Input Processing/CRC
Decoding

Enables CRC polynomial checking

Input Processing/NRZ-M to
L Conversion

Enables conversion from NRZ-M line code to NRZ-L

Output Mode/Raw Data Cap-
ture

Selects the capture of raw data to a file

Output Mode/Decoded Data
Capture

Selects the capture of decoded data to a file (before frame sync)

Output Mode/File Output Selects the capture of decoded and frame synced data to a file

Output Mode/Socket Output Selects the output of all processed (decoded and frame synced) VCDU's to a specified
socket

Output Encoding/DSN DDD Enables the building of a DSN DDD header on output VCDU's

Output Encoding/Reed-
Solomon Encoding

Enables the encoding of output VCDU's with Reed-Solomon symbols

Output Encoding/PN Encod-
ing

Enables the pseudo-random encoding of output VCDU's

Miscellaneous/Select Station Selects the ground station to receive telemetry from

Miscellanaeous/Capture
Timing Data

Enables capture of timing information

Miscellanaeous/LZP Start Start the Level Zero Processor

Miscellanaeous/LZP Stop Stop the Level Zero Processor

Miscellanaeous/Reset Dis-
play

Resets counts in the Display tab

Miscellanaeous/Exit Exits the Setup program

TABLE J-4. FEDS Configuration Files

File What it sets up

rsd.config Reed Solomon Decoding

fs.config Frame Sync

TABLE J-3. Some parameters that are configurable through the FEDS Setup menu

Tab Header/Item What it does
ASIST Users Guide–Version 9.6 J-19

APPENDIX J
The parameters in these file should be largely self-explanatory, or beyond the scope of this document (in which case you
should not be changing them anyway).

Configuring the FEDS at the higher levels requires creation or modification of a feds.xml file. This XML file, which is
usually found in $MULTIMISSION_config_data, contains a description of each mission the FEDS is to support and
the structure of the telemetry for each one. The file is subdivided into three major sections: system section, outputs
section, and inputs section. Note that a generic XML file, feds.xml.proto, is provided in the directory
$FEDS_config_data. As an aid to understanding the elements and attributes presented below, an example
feds.xml is provided at the end of this chapter.

The system section contains a system elements and a utility element. The system element describes the
components that need to be started, the host name of the primary ASIST workstation, and the CCSDS version number of
VCDUs that will be received. The following table describes each system attribute:

The utility element defines a separate executable that should be started at the same time as other components of the FEDS.
The following table describes each attribute:

input.config The source of telemetry input

output.config Output and storage of telemetry data

TABLE 19-15.

Attribute Name Value Description

primary hostname The name of the ASIST primary workstation

machineType “FEDS” or “DHDS” or “FEDS DHDS” Whether this machine will deliver realtime data
only, archive data only, or both.

ciuType “INTERNAL” or “EXTERNAL” Whether this machine contains an internal Com-
mand Interfac Unit or an external one.

timeSource “LOCAL” or “REMOTE” Whether this machine distributes time informatrion
from a local source or from a remote source.

autoStartArchive “true” or “false” Whether to automatically start the DHDS archive
software

traditionaSFDUs “true” or “false” Whether to distribute older style telemetry SFDUs
or not

spacecraftTimeIndex “true” or “false” Whether to perform spacecraft time indexing on
startup

vcduVersion “0” or “1” The CCSDS version of the telemetry VCDUs that
will be received

TABLE J-4. FEDS Configuration Files

File What it sets up
J-20 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
The outputs section contains a stream element, a connection element, a packetApids element, and a
physicalChannelSFDU element. Each of these elements defines the telemetry flow transmitted by the FEDS to the
ASIST and instrument worlkstations.

The stream element gives a name and output port number to a FEDS telemetry stream. The following table describes
each attribute:

The connection element describes the valid SFIDs that can be used when attaching to the FEDS to receive telemetry.
The following table describes each attribute:.

The packetApids element lists the valid packets that can be processed and output by the FEDS. The following table
describes each attribute:

TABLE 19-16.

Attribute Name Value Description

command executable-or-script-name The name of the executable or shell script to exe-
cute

TABLE 19-17.

Attribute Name Value Description

ID single-character A single unique character that names the telemetry
stream

outputPort integer The integer TCP port number to transmit on

description text-string A description of the stream

TABLE 19-18.

Attribute Name Value Description

validSFIDRange sfid-list

e.g.“0x01” or “0x10:EV” or “0x01-0x05”

A single SFID, a single SFID followed by a two
character alias or an SFID range

description text-string A description of the SFID usage
ASIST Users Guide–Version 9.6 J-21

APPENDIX J
Finally, the physicalChannelSFDU element defines a channel that provides SFDU encapsulated data to the FEDS.
The following table describes each attribute:

The inputs section contains a mission element, a spacecraft element nested within mission, a
physicalChannelAOS element nested within spacecraft, and a virtualChannel element nested within
physicalChannelAOS. These elements describe one or more mission and spacecraft telemetry streams. Note that
attributes that appear within nested elements can appear in encapsulating elements and will be properly inherited (or
possibly overridden) by the nested element.

The mission element identifies the mission and describes the overall structure of the telemetry VCDU. The following
table describes each attribute:

TABLE 19-19.

Attribute Name Value Description

validApidRange apid-list

e.g. “0x21” or “0x22 0x24” or “0x00-
0x7f”

A single APID, multiple APIDS separated by
spaces, or an APID range

description text-string A description of the APID usage

TABLE 19-20.

Attribute name Value Description

ID text-string A unique name for this SFDU channel

stream single-character The telemetry stream identifier to output this data to

host hostname The name of the host to connect to

port integer The TCP port number to connect to

expid experimenter-id

e.g. “03” or “1A”

The experimenter ID that the source will provide

description text-string A description of this data stream

TABLE 19-21.

Attribute Name Value Description

ID text-string A unique string containing the name of the mission

active “true” or “false” Whether FEDS is to receive and process telemetry
for this mission

epoch absolute-time or “TAI” The date and time base for this mission

packetCompression “true” or :false” Whether received packets are compressed

vcduContainsHeaderEr-
rorControl

“true” or “false” Whether the telemetry VCDU header contains the
optional header error control field
J-22 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
The spacecraft element identifies and names the spacecraft. The following table describes each attribute:

The physicalChannelAOS element identifies and describes each physical telemetry channel transmitted by the
spacecraft. The following table describes each attribute:

vcduInsertZoneLength integer The number of byte in the VCDU insert zone

vcduContainsCRC “true” or “false” Whether the telemetry VCDU contains an optional
CRC field

vcduContainsCLCW “true” or “false” Whether the telemetry VCDU contains an optional
CLCW field

vcduAnnotationLength integer The number of bytes annotation data associated
with this VCDU

vcduDataUnitZoneCon-
tains

“M_PDU” or “B_PDU” or
“SLAP_PDU”

The type of protocol data unit (PDU) contained
within the data unit zone of this VCDU.

m_pduDataZoneLength integer The number of bytes in the M_PDU data zone.
Only appears if vcduDataUnitZoneContains is
“M_PDU”.

b_pduDataZoneLength integer The number of bytes in the B_PDU data zone. Only
appears if vcduDataUnitZoneContains is
“B_PDU”.

slap_pduDataZoneLength integer The number of bytes in the SLAP_PDU data zone.
Only appears if vcduDataUnitZoneContains is
“SLAP_PDU”.

description text-string A description of the mission

TABLE 19-22.

Attribute Name Value Description

ID integer The CCSDS spacecraft ID found in the VCDU
header

name text-string A unique string containing the name of the space-
craft

description text-string A description of the spacecraft

TABLE 19-23.

Attribute Name Value Description

ID “realtime” or “stored” The type of physical telemetry channel. It corre-
sponds to the older I or Q channel.

frameSync “true” or “false” Whether to attempt to frame sync the received
telemetry VCDUs

TABLE 19-21.

Attribute Name Value Description
ASIST Users Guide–Version 9.6 J-23

APPENDIX J
Finally, the virtualChannel element identifies the virtual channel and describes which stream to output it on. The
following table describes each attribute:

The following is an example of a simple feds.xml file:

<telemetryStreamDescription fileVersion="1.0">
 <system primary="deadjake"
 machineType="FEDS DHDS"
 ciuType="INTERNAL"
 timeSource="LOCAL"
 autoStartArchive="true"
 vcduVersion="1"/>

 <stream ID="D"
 outputPorts="2003"
 description="Time distribution stream"/>
 <stream ID="I"
 outputPorts="2001"
 description="Realtime stream"/>
 <stream ID="Q"
 outputPorts="2011 2021 2031 2041 2051"
 description="Playback stream"/>
 <stream ID="S"
 outputPorts="2005"
 description="FEDS status stream"/>

 <connection validSfidRange="0x00"

input “serial” or “gateway” Whether telemetry VCDUs will be received in a
serial bit stream or in TCP packets from a ground
station

serial device-name The name of the device receiving the serial bit
stream, Only valid if input is “serial”.

gateway integer The TCP port number to receive the TCP packets
on. Only valid if input is “gateway”

distribute “true” or “false” Whether the FEDS will distribute the received data

archive “true” or “false” Whether the FEDS will archive the received data

TABLE 19-24.

Attribute Name Value Description

ID integer or “raw” The number of the virtual channel.

stream single-character A single character that identifies which stream to
output this virtual channel on.

description text-string A description of the virtual channel.

TABLE 19-23.

Attribute Name Value Description
J-24 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
 description="ASIST primary workstation"/>
 <connection validSfidRange="0x01-0x0f"
 description="ASIST associate workstations"/>
 <connection validSfidRange="0x1f"/>
 description="LZP and old ASIST dump SFID"/>
 <connection validSfidRange="0x21-0x22"/>
 description="Internal FEDS use"/>
 <connection validSfidRange="0x31-0x33"/>
 description="Internal FEDS use"/>

 <packetApids validApidRange="0x0-0x7f0"
 description="spacecraft APIDS"/>

 <packetApids validApidRange="0x800-0x861"
 description="FEDS single s/c status APIDS"/>

 <packetApids validApidRange="0x900-0x96f"
 description="FEDS constellation status APIDS"/>

 <physicalChannelSFDU ID="status"
 stream="S"
 description="FEDS status channel"/>

 <mission ID="SDO"
 active="true"
 epoch="TAI"
 vcduContainsHeaderErrorControl="false"
 vcduInsertZoneLength="6"
 vcduContainsCRC="true"
 vcduContainsCLCW="false"
 vcduAnnotationLength="28"
 vcduDataUnitZoneContains="M_PDU"
 m_pduDataZoneLength="1084"
 description="Solar Dynamics Observer">
 <spacecraft ID="75"

 name="sdo"
 description="SDO spacecraft">
 <physicalChannelAOS ID="realtime"
 frameSync="true"
 input="serial"
 serial="/dev/pci334a0"
 distribute="true"
 archive="true">
 <virtualChannel ID="raw"
 archive="false"
 stream="I"
 description="Raw downlink frames"/>
 <virtualChannel ID="0"
 m_pduDataZoneLength="1080"

vcduContainsCLCW="true"
 stream="I"
 description="Realtime housekeeping data"/>
 <virtualChannel ID="61"
ASIST Users Guide–Version 9.6 J-25

APPENDIX J
 archive="false"
 distribute="false"
 stream="I"
 description="Downlink channel fill (padding)"/>
 <virtualChannel ID="63"
 archive="false"
 stream="I"
 description="Downlink channel fill"/>
 </physicalChannelAOS>
 </spacecraft>
 </mission>
</telemetryStreamDescription>

Changing the Commanding Configuration

The command configuration is read from another set of configuration files. Generally, you won’t need to modify these
commanding parameters. If a change is necessary, you need to edit the correct configuration file and then restart the FEDS
(using FEDS_STOP followed by FEDS_START) OR restart only the commanding software by typing CMD_START.

1. First, go to the directory which contains command configuration files.

➔ cd $FEDS_config_data

➔ more command.config

2. One of the entries in this file will indicate which directory contains your configuration files (the parameter is
CMD_CONFIG_DIR), and will normally be set to $MISSION_config_data. For example:

CMD_CONFIG_DIR=$MISSION_config_data

Go to the indicated directory:

➔ cd =$MISSION_config_data

and list the configuration files contained there:

➔ ls *.config

These generally correspond to the CCSDS command layers. The following is a partial list of the available configura-
tion files:

File What it configures

cod.config CCSDS coding layer (i.e. tail sequence and codeblock length)

ddd.config DDD protocol used to speak to DSN

nascom.config Nascom blocker

phy.config CCSDS physical layer (i.e. which PLOP version, acquire sequence length)

rs422.config RS-422 (hard-line) configuration file (i.e. data rate, format, idle_pattern, …)

seg_0.config CCSDS segmentation layer (i.e. map ID, segmentation on/off, max segment length…)

xfer_0.config CCSDS transfer layer (i.e. sliding window width, spacecraft ID, timeout info…)
J-26 ASIST Users Guide–Version 9.6

Front End Data System/Digital History Data Store
3. Edit the file(s) you wish to change. As with the telemetry processing configuration files, the fields are either self-
explanatory, or beyond the scope of this document (and therefore you should not be changing them).

4. Restart either:

a) The FEDS, by typing:

➔ FEDS_STOP

waiting for a while, then typing:

➔ FEDS_START

OR

b) The commanding portion of the FEDS only, by typing:

➔ CMD_START

which stops and restarts the commanding portion of the FEDS, leaving the rest of it running.

How to Change the APID selection for packet distribution

To change your packet distribution (for your ASIST workstation or IGSE), you need to login to FEDS/DHDS (see “How
to connect to the DHDS (for ASIST Users)” on page J-4) and edit your telemetry distribution file (see “Editing the Distri-
bution File” on page J-8).

Starting and Stopping only the Command Handling Portion of the FEDS

In normal operations, the FEDS_START will start both the command processor (CMD) and the directive handler (FMH).
Sometimes, however, if you have a commanding problem or need to change a command configuration file, you may wish
to restart only the command handling portion of the FEDS.

To verify that the command processing portion of the FEDS is running, type:

➔ CMD_WHO

To verify that the directive handler (which is responsible for delivering directives and commands from ASIST to the
different subsystems of the FEDS), type:

➔ FMH_WHO

If parts of either are not running (as indicated by the commands described above), you can start them separately with:

➔ CMD_START

or

➔ FMH_START

To stop either the CMD or FMH processes, type:
ASIST Users Guide–Version 9.6 J-27

APPENDIX J
➔ FMH_STOP

followed by

➔ CMD_STOP

To confirm that this was successful (and no processes are still running), type: CMD_WHO and/or FMH_WHO
J-28 ASIST Users Guide–Version 9.6

Index
Index

Symbols
#include 5-25
$local-cmd 6-14
%arg 3-58, 4-26
%bin 3-58
%dec 3-58, 4-27
%default 3-59
%elapsed 3-59
%env 3-59, 4-27
%eval 3-59
%float 3-59
%float_cmp 3-59, 4-27
%gmt 3-59
%hex 3-60
%int 3-60
%lex 3-28, 3-30, 3-60, 4-28
%liv 3-39, 3-60
%locate 3-60, 4-28
%lower 3-60
%match 3-60
%NAME 3-21
%name 3-60
%nargs 3-60
%NEW_PACKET 4-25
%not 3-60, 4-28
%numdims 3-60, 4-28
%nwords 3-61, 4-28
%oct 3-61
%pick 3-61
%quality 3-61, 4-28
%re 3-28
%real 3-61
%rest 3-61, 4-29
%rex 3-30, 3-61
%slice 3-62, 4-29

%status 3-62
%substring 3-62, 4-29
%time 3-63
%trim_left 3-64, 4-30
%trim_right 3-64, 4-30
%UNCHECKED 4-25
%unsigned 3-64, 4-30
%unsigned_cmp 3-64, 4-30
%upper 3-64, 4-30
%utcf 3-64, 4-30
%word 3-64, 4-30
/ALLOW 9-8, A-8
/ALLOW TOP 9-8
/ALLOW_SOURCE 9-8, A-8
/CANCEL TOP, 9-8
/CANCEL, 9-8, A-10
/CANCEL_SOURCE, 9-8, A-11
/CLTU, A-14
/GPIB_CANCEL_POLL, A-44
/GPIB_LIST_POLL_EVENTS, A-44
/GPIB_POLL, A-45
/GPIB_READ, A-46
/GPIB_SET_DEVICE_MODE, A-46,

A-47, A-48
/GPIB_WRITE, A-49
/LIST_HAZ, 9-8
/RAW, A-71
| (vertical bar) 6-25

A
about

this document About-xix
abs 3-58
ACCEPT, C-3
Accounts Directory, 13-1

acos 3-58
ACQUIRE, A-7
Aggregate structures 4-3, 5-9
alarm_limit 3-58
alarm_status 3-58
ALIAS (used with DIRECTIVE) 3-24
Allow , A-8
ANALOG 4-10, 4-15
AND 3-56
annotation data, 8-1
AOS Transfer Frames, Gloss-1
APID 4-5, 5-5, 5-6, Gloss-1
APPEND 4-5, 4-7, 4-8, 4-10
Application Interface, C-2
Archival, 8-8
Archive Files, A-56, A-57
Archive Tools, 8-11
ARCHIVE, A-9
Archive, A-33
arguments 3-8, 3-21

standard 3-24
arithmetic operators 3-5, 3-56
Arrays

Padding 5-13
ascii

half 9-3
asin 3-58
ASIST About-xix

account 13-1
Status Window 2-3

asist.def 3-55
ASIST_user_profile

defining user events 7-8
ask directive 3-65
ASK popup 3-40
assignment directive 3-6
Associate1 14-4
AT (used with START) 3-18
ASIST Users Guide–Version 9.6 Index-1

atan 3-58, 4-26
atan2 4-26
ATCW , Gloss-1
attributes 8-24, F-6
AUTO_SYNCHRONIZE 3-39
Automatic Database ID Stamping 4-43,

5-28

B
Background pictures in Pages 6-11
binary 3-2
BITFIELD, 5-21
bitwise not 3-60
BLOCKBEGIN , C-3
BLOCKEND , C-3
Blockname , C-5
boats

See Elvis
boundaries, 8-22
break 3-65
breakpoint 3-32, 3-65
broadcast A-10
buffer 7-7
Buffering Commands 9-9, A-91
built-in functions 3-58
Buttons to Add/Delete Pages 6-14
By APID A-62, A-63, A-89
By Mnemonic A-62, A-63
bypass 10-2, A-92

C
C Preprocessor Directives 4-35, 5-24
call-by-value 3-21
Cancel , A-10, A-11
Catmull-Romm 4-15, 5-10
CCSDS 9-1, 9-2, 9-3, 10-1, Gloss-1
CCSDS Command Layers 10-10
CCSDS layers J-2
CCSDS telemetry J-1
CCSDS_SEGMENTED_TIME 4-18, 5-

13
CCSDS_UNSEGMENTED_TIME 4-

14, 4-18, 5-13, 8-5
cd 3-65
CDS_TIME6 4-14, 8-5
character strings 3-2
CHECK 3-47, 8-20, 8-21
check 3-65
CHECK_SOURCE_FILE 3-39, 3-47
CHECKSUM, 5-5
checksum-name, 5-6
CITM Gloss-1

System Variables 11-4
CLASS, 5-5
classes

user-defined 7-8
class-name, 5-6
CLEAR, A-12
clear_pending 3-65
CLEARALL, A-13
Close , A-61
CLOSED 4-15, 8-22
Closing , 7-10
CLTU 10-1, 10-2, Gloss-1
CMD

(in command RDL) 5-6
Browse D-6
definitions, 5-6
Report D-7

CMD_HANDOVER 10-11
CMDBROWSE_ROOT D-7
CMDQUE 9-9
CMDS 5-6
CMH , Gloss-1
CMPFIXED, 8-13, A-17
CMPVAR 8-15
color event viewing 7-11
COMMAND

Aggregate Data Types, 5-19
Command/Directive Definitions, 5-6
Generating Command Database

Reports, 5-29
Grouping Constructs, 5-4
How to create a database, 5-27
Language Overview, 5-3
Language Reference, 5-4
Parameter Definitions, 5-9
Special Constructs, 5-24
Tools Overview, 5-2
Tools Reference, 5-27
Using the Command Compiler from

UNIX, 5-27
command 3-6, 3-22
Command & GSE Communication LAN

(CGCLAN), Gloss-1
Command Bar

SC MET 4-22
Command conversion, 9-2
command database 3-7, Gloss-1

browser D-6
command handler 3-22
command page, 9-8
command source, A-35
COMMAND_POST_VERIFIER 3-23,

3-39
Commanding

Two Step A-91
Two-Step 9-9

commands
end-item verification 9-10
pending 3-23
typographic convention About-xxi

Commands, Gloss-1
CommandsByName, A-17
Comments 3-8, 4-35, 5-24
COMPARE 11-2, A-18

comparison
floating point 3-59

compile
command definitions A-19

compiler 3-1
compiling

command definitions A-19, A-22
STOL procedures 3-17
telemetry definitions 4-42, A-22

compression of telemetry J-2
computed variable names 3-21
concatenation 3-56
conditional wait 3-15
configured 13-1, 13-4
CONNECT, C-3
CONSOLEID 3-41
Constellation

Commanding 9-17
continuation 3-8
continue 3-66
Control Bit, A-92
conventions About-xxi
Convolutional Decoding J-1
COP-1 3-22, 10-1, Gloss-1, A-93
copy

command database A-23
pages formats 6-11
telemetry database A-23

Copying pages formats? 6-13
cos 3-58
Coupled Telemetry J-6
CPKT 9-3
CRC J-1
CRITICAL, 5-5
Ctrl-C, 16-14, A-79
Current Value Table (CVT) 3-4, 3-41,

Gloss-1
current_set 3-69
CVT_TO_FILE 11-10, A-21

D
Data Access Description 6-8, 6-24
DATA Message, C-5
Data Quality 6-23
data types 3-2
DATABASE 4-4, 5-4
database

telemetry db reports 4-44
data-type 4-12
dbcm account, 13-1
DBCMPCMD, A-19, A-22
DBCMPTLM 4-43
DBCMPTLM, A-22
DBEDIT, A-23
DBLOADCMD, A-23
DBLOADTLM, A-23
DDO 3-40, 6-2, Gloss-2

types 6-2
Index-2 ASIST Users Guide–Version 9.6

Index
DDO libraries for Pages 6-19
decimal 3-2
Decoding

Convolutional J-1
decommutated 16-2, A-78
decommutated telemetry stream, C-1
decompression of telemetry J-2
Decoupled telemetry J-6
DEFAULT, 5-11
DEFAULT_SFDU_NAME 4-22
definition files 3-55
DELETE 4-34
delete

A block in a TSDS stream C-5
DELETEARC, 8-11
Delimiters 4-35, 5-24
DELTA 8-23, 8-24
depacketization J-2
DESC 4-4, 4-5, 4-7, 4-9, 4-15, 5-4, 5-5,

5-7, 5-11, 5-20
DEST 5-5
DFP 8-6
DHDS A-25, J-1

playing back telemetry J-5
telemetry distribution file J-8

DHDS_WINDOW A-26
Diagnostics Menu 2-5
Digital History Data Store A-25, A-26,

J-1
dimensions

number of 3-60
DIR 5-6
dir-definitions, 5-6
directive 3-1, 3-5, 3-8, 3-66
Directive Descriptions, A-7
directives 3-23

sending from a page 3-40
Directives, 9-1, Gloss-2
Directory Structure, 13-1
DIRS 5-6
disable 9-5, A-27
DISABLE_VC 8-1, A-28
disabling sending of commands 3-23
DISCONNECT , C-3
DISCRETE 4-10, 4-15
Dismisser Button 6-13
DISPLAY, A-29
Displays a .i.raw dump, A-80
distribution file J-8
distribution of telemetry J-1
DLABEL 4-16
DO 3-14, 3-15, 3-66
double precision 3-2
double quotes 3-2
DOWN (used with FOR…) 3-15
dpd_server 6-15
DRANGE 4-16
DROPPED , C-5
dump 11-2, 16-13, A-31, A-80

example 11-3
DUMPARC, 8-12, A-33

Dynamic 4-34
Dynamic Data Object 6-2
Dynamic Reloadable Pseudo-

Telemetry 4-34
DYNAMIC, 5-11

E
EACC 3-23
Easy Archive D-9
Easy Playback D-10
Easy Plot D-9
Edit , A-23, A-35, A-68
editing and compiling your STOL

procedures 3-45
editor keystrokes 3-9
Editors Menu 2-4
ELSE 3-14
ELSEIF 3-14
Elvis

Hunka Burnin’ Toast 6-12
needs boats 6-11

EMACS A-35
Issuing a Command Multiple

Times, B-6
Window, B-1
X windows mouse actions, B-2

Emacs, B-1
Enable 9-5, A-35
Enable/Disable Local Telemetry

Archiving, A-9
ENABLE_VC 8-1, A-37
END_TO_END_TIMEOUT 3-22, 3-39
END_TO_END_WAIT 3-23, 3-39
ENDDO 3-14, 3-15
enddo 3-66
ENDIF 3-13
end-item verification 9-10, A-90
ENDPROC 3-10, 3-16
end-to-end response time-out error 3-22
end-to-end responses

turn off waiting for them 3-23
end-to-end wait 3-22, 9-9
end-to-end, 9-2
engineering unit conversion 3-4
Enterable DDOs in Pages 6-17
Environment Monitor D-11

Operation D-12
Epoch, C-5
EQUATION 4-16, 4-22
EREJ 3-23
ERES 3-23
ERROR 3-47
error 3-66
Error Handling in TSDS Client

Programs, 16-23
errors during STOL compilation 3-17
ethernet port, A-90
ETRA 3-23

Event 4-32, Gloss-2
event directive 3-66
Event Handler 7-1
Event Log , Gloss-2
Event log viewers, 7-11
Event Logger, A-83
Event message characteristics, 7-2
event message format 7-4
Event Printer, 7-7
event.window 7-11
EVENT_CUSR0-7 7-8
EVENT_LUSR0–7 7-8
EVENT_PRINTER 7-7
EVENT_SUSR0–7 7-8
event-driven pseudo-telemetry 4-32
events

user-defined 7-8
viewing 7-11

Events Window 2-10
EVERY, 16-9, A-82
EXCLUSIVE 4-16
exec 3-67
EXEC directive 3-45
exit 3-7, 3-67

STOL A-70
exp 3-59, 4-27
EXPONENTIAL 4-16, 5-11
expression 3-5

F
FCP 10-1, Gloss-2
FCTN, 5-5
fctn-num, 5-6
FEDS Gloss-2, J-1

How to Run J-3
Login J-3
playing back telemetry J-5
status display 10-4
stopping J-3
TCP sockets J-4
telemetry distribution file J-8

FEDSMachine 14-4
FEG 6-1
File I/O functions 3-42
file_close 3-43, 3-44, 3-59
file_create 3-43, 3-59
file_exists 3-59
file_open 3-43, 3-59
file_read 3-44, 3-59
FILE_TO_CVT 11-10, A-39
file_write 3-43, 3-59
files

definition 3-55
Filter A-76, A-83
Filtering , 7-5
filters, 7-13
flags 6-24
float_cmp 3-59
ASIST Users Guide–Version 9.6 Index-3

floating point
comparison in STOL 3-59

floating point comparison
in pseudo-telemetry 4-27

FOP-1
Flowchart 10-9

FOR 3-15
for 3-67
foreign directives 3-23

definition files 3-55
FORWARD 3-25

format 6-24
Format of an event message 7-4
Format Properties panel 6-5
FORWARD 3-25
forward 3-66
frame synchronization J-1
FRAME, 10-2
Front End Data System J-1
Function Code , Gloss-2
functions

built-in 3-58

G
Gary Groundbeef 14-4
GAUSSIAN 4-16, 5-11
GENERAL_EXP 4-16, 5-11
GEVH , Gloss-2
GEVH_I_HAVE_A_PRINTER 7-7
GIF 6-2
GLOBAL 3-11
global 3-67

account 13-1, 13-4
Global STOL variables 3-3
GNU, 16-4
gnuplot 16-4, 16-10, 16-11, A-77
GO 3-15, 3-16, 3-19, 3-32, 3-67
goto 3-19, 3-68
GREEN, 8-22
Ground Station

command handover 10-11
telemetry handover 10-11, A-89

Ground Time , C-5
Groundbeef

Gary 14-4
GSE , Gloss-2

H
half-ascii 9-3
HALT_ON_BAD_QUALITY 3-39
HALT_ON_RED_LIMITS 3-39, 3-48
Hardcopy , A-84, A-85
HAZARD, 5-5
hazardous A-57

command popup A-68

Hazardous command screening, 9-7
HAZONLY, 9-5
HDF 8-47
hdf_close 8-48, A-49
hdf_flush 8-48, A-49
hdf_list 8-48, A-50
hdf_open 8-47, A-50
Help, A-1
hexadecimal 3-2
HIDELAYER, A-52
Hunka Burnin’ Toast page display 6-12

I
I class packets, 9-3
ICD Gloss-2

Decommutated Telemetry Streams C-
1

IF 3-68
multi-line format 3-13
single line format 3-13

IF-THEN-ELSE 3-13
IGNORE_WAIT 3-39
IGNORE_WAITS 3-34
IGSE Gloss-2
IGSE0 14-4
Image , A-18, A-31, A-58, A-68
IMON , Gloss-2
INCLUSIVE 4-16, 8-22
indefinite wait 3-19
Information Menu 2-4
inheritance rules, 13-3
Inheritance, 13-2, 13-4
INIT 4-16
INPUT_MAX 5-11
INPUT_MIN 5-11
INPUT_RANGE 5-11
integers 3-2

range 3-2
INTERACTIVE 16-4, 16-14
Interface Control Document, 16-14, A-

78, C-1
interface to satellite J-1
Intervals , 8-22
intervals, 8-21
INVERTED 4-16, 5-11
INVISIBLE, STATIC, 5-11
ITEM, C-4

J
Joe RDLMaster 13-4

K
Key Tab, see Read Key 6-21
keypad redefinition 3-41
KILL_FOREIGN_ON_ERROR 3-39, 3-

47
KILL_FUNCTION_ON_ERROR 3-40
KILL_STREAM 16-4
KILLPROC 3-20
killproc 3-68
Kinesix Corporation 6-1

L
label 3-8, 9-3
layer , A-52, A-83
Layers in Pages 6-11
LEAP 4-17, 5-11, 14-6
Level 0 processing J-2
levels

user-defined 7-8
LHAZ 3-23
limit 3-68

checking 8-2, 8-20
def and undef 3-69
states 8-21
STOL directive 8-20
types 8-23
violations A-73

LIMIT, 8-21
limit_checking 4-28
LIMITS 4-17
LIMTYPE 8-23
LIST, 16-4, 16-18
LIST_STREAMS 16-4
LISTARC 8-11, A-33, A-56, A-57
ln 3-60, 4-28
load

command database A-23
directive 11-2, A-58
example 11-3
telemetry database A-23

LOAD_PSEUDO 4-35
LOAD_TO_CVT A-59
LOCAL 3-10
local 3-69, 13-1
local accept, 9-9
local access type 3-40
local accounts

how to obtain 13-4
local internal variables 3-39
local STOL variables 3-3
Local Time Clock D-11
local wait 3-22
LOCAL_TIMEOUT 3-22, 3-40
LOCALHOST 3-40
Location of Configuration Files, 14-2
Index-4 ASIST Users Guide–Version 9.6

Index
lockout, 10-1
LOG_FOREIGN 3-40
LOG_FUNCTION 3-40
LOG_PROCEDURE 3-40
LOG_SUBSTITUTIONS 3-40
log10 3-60, 4-28
LOGARITHMIC 4-17, 5-12
logical operators 3-5, 3-56
logical server 6-14
Login Account(s), 13-1
LOOKUP 4-17, 5-12
looping constructs 3-14
LPAD 17-6
LRES 3-23
LSHIFT 4-17, 5-12
LTRIM 17-6
LWAI 3-23

M
mandate handler 9-2, 9-4
mandates 9-1, Gloss-2
MASK 4-17, 5-12
MAX, 5-12
maximum

STOL input 3-8
meliorism Gloss-2
menu bar 2-3
message A-60
millenium I-1
MIN, 5-12
MISSION 14-4
Mission Configuration File, 14-6
MISSION_CONFIG, 14-2
MissionType 9-17
MOD 3-56
MODIFY 4-21
MONITOR_QUALITY 3-40
monitoring procedures 3-18
Multi-Value Read Keys 6-25
MWM , Gloss-2

N
Naming Method 4-10
native 3-69
natural log 3-60, 4-28
NEGATED, 5-12
new_packet 4-25
NEWLOG 7-10, A-61
next 3-69
NEXT directive 3-32
NFS , Gloss-3
Nixon, Mojo 6-11
NONCRITICAL, 5-5
NONHAZARD, 5-5
NOT 3-56

not function 3-60
NOT STANDARD 3-25
Notify on Select 6-9
NULL_TERMINATED 5-12
numdims 3-60, 4-28
NVL 17-6

O
OCMDBYAPID, A-62
OCMDBYMNEM, A-62
octal 3-2
OGSE D-11
on error 3-70
OPEN 4-17, 8-21
operands 3-5
operators 3-5

arithmetic 3-5, 3-56
logical 3-5, 3-56
precedence 3-57
relational 3-5, 3-57
string 3-5, 3-56

options
stol_compiler 3-55

OR 3-56
ORDER 4-18, 5-12
OTLMBYAPID, A-63
OTLMBYMNEM, A-63
OTLMSIZE, A-64

P
P@ 3-4
packet 4-5, 16-4, Gloss-3
packet arrival signal 4-25
Packet Time, C-5
packet_age 3-61, 4-28
PACKET_COUNT 4-5
packet_initialized 3-61
packet_quality 3-61
packet_stale 3-61
PACKET_TIME 4-5
packet_valid 3-61, 4-28
Packet-Time, 16-5, 16-10
PADDING 5-13
Page Editing Palette 6-4
Page Editor 3-40, 6-1, Gloss-3
page local variable 6-18
Page Local Variable in Write Keys 6-16
Page Local Variables 6-15
page local variables 3-41
Page Snap , Gloss-3
PAGENAME 3-41
pages, 8-24
parameters in STOL procedures 3-13
pass by value 3-21
Paste Buffer, Gloss-3

PB5 4-13, 4-18, 5-13, 8-5
pending commands 3-23
percentage, A-69
periodic pseudo-telemetry 4-22
Physical Interface, C-1
PKT_RCVD 4-32
plagues of locusts Gloss-4
playback J-5

using DHDS A-26
Playback of telemetry J-2
Playback, 8-9
Plot DDOs 6-25
PLOT_SEQ A-66
plotting sequential print files A-66
PLV 6-15
PN J-1
POLY 3-70, 4-18, 5-13
popup_haz A-68
POSITION 3-15, 3-19
position 3-70
Postscript, Gloss-3
PRCEDIT, A-65, A-68
precedence

operators in STOL 3-57
Predefined Names 4-36, 5-24
Preparing to Modify a Configuration

File, 14-3
PRIMARY 14-4
primary.events 7-11
print 16-4, A-68, A-69, A-84, A-85
printer spooler 7-7
printf 3-34, 3-70
proc 3-9, 3-70, D-11

explode D-11
list D-11
pages D-11
print D-11
tree D-11

procedure editor 3-9
procedure file 3-8
programming languages 3-1
PROMOTE, 13-3
Protocol, C-1
PSEUDO_COMPILER 4-35
pseudo-telemetry 4-22, Gloss-3

event-driven 4-32
periodic 4-22

PSTOL
Task directive 3-72

PTCW , Gloss-3
PVERIFY, A-69

Q
QUAL 4-18
Quality

defining in RDL 4-18
quality

of telemetry point 3-61, 4-28
ASIST Users Guide–Version 9.6 Index-5

quality flag, 8-23
quirks 7-7
QUIT, 16-14, A-70, A-79

R
R@ 3-4
RANGE 8-23
RANGE, 5-13
Ranges, 8-22
ranges, 8-22
Raw Commanding, 10-2
raw dump, 16-4, A-80
raw telemetry 3-4
RAW, 10-2
RAWTOHEX 17-6
RDL , Gloss-3
RDLMaster

Joe 13-4
Read 6-8
Read-Key 6-8, Gloss-3
reals 3-2
Real-Time Acquisition, 8-8
recall 3-7
RECORD 4-7, 5-20
Record Lengths, A-64
record-name, 5-20
Recovering from commanding

problems, 10-7
red limit halts 3-39
red violations A-73
RED, 8-22
REDLINE, 13-3
Reed-Solomon J-1
regular expressions 3-28
REJECT, C-3
relational operators 3-5, 3-57
Relative times 3-2
RELOAD_PSEUDO 4-35
REM 3-56
Remove All Telemetry Pages, A-13
Remove Telemetry Page, A-13
reopen A-61
reopening , 7-10
report A-17, A-62, A-64, A-89

command A-17, A-62
telemetry A-63, A-89
telemetry db 4-44

Report , A-63, A-64
REPRESENTATION 4-18, 5-13
reset 3-45, 3-70

limit & poly states to db values A-72
limits A-72
polynomials A-72

RESETSTATE, A-72
reshow A-73
RESPONSE , C-3
retransmission , 10-2
Retransmission Count, A-94

Retransmit Last Command, A-94
RETURN 3-16
return 3-70
returnerror 3-70
REVERSED 4-18, 5-13
RHIGH 4-18
RLOW 4-18
RPAD 17-6
RS-422 J-1
RTA 6-10, 6-23
RTFM, Gloss-3
RTRIM 17-6
run 3-71
Running the FEDS J-3
runtime annotations 6-9, 8-23
runtime annotations (RTAs) 6-23
run-time monitor 3-1

S
Sammi 7-1, 7-7, Gloss-3, A-73

Command Window 2-10
Sammi Format Editor 6-5
Sammi Format Editor Guide 6-1
Sammi Toggle Button 6-13
SAMPLE_CVT, A-74
Save, Delete, Purge, Add 6-13
Save, Delete, Purge, Add ritual in Page

Editing 6-10
SAVESTATE A-74
SB 8-6
SC MET 4-22
Scalar structures 4-3, 5-9
SCP A-75

Input, 12-2
Overview, 12-1
Usage, 12-24

SCREENING, 9-7, A-76
scripts 3-1
SDS , Gloss-3
Segmented Time 4-13, 8-5
SELECT 17-7
semicolons 3-8
SEND_COMMANDS 3-23, 3-34, 3-40
sending directives from a page 3-40
SEQ , 16-3
SEQ GNU, 16-10, A-77
seq gnu, 16-11
SEQ INTERACTIVE, 16-14, A-78
SEQ KILL_STREAM 16-4
SEQ LIST, 16-18, A-79
seq list, 16-8
SEQ LIST_STREAMS 16-4
SEQ PACKET, 16-12, A-80
seq print 16-8

plotting results A-66
SEQ PRINT OFF, 16-5
SEQ PRINT, 16-4, 16-9, A-80, A-83
SEQ PRINT_TABBED A-81

SEQ TIMED, 16-9, 16-10, A-82
Sequence , C-5
sequential 16-2, A-78
sequential printing , 8-2
Sessions, C-1
SETLOG 7-5, A-76
setting breakpoints 3-33
SFDU 5-6, 8-1, 9-3, Gloss-3
SFDU_NAME 4-5

Default 4-22
SFP 8-6
sgse.config, 14-2
SHORT 4-5, 4-7, 4-9, 4-10
show 3-71
SHOW directive 3-33
show pending 3-23
SHOWLAYER, A-83
SHOWLOG 7-5, A-83
SI 8-6
SILENT_WAIT 3-40
sin 3-62, 4-29
Single-Value Read Keys 6-24
SIS , Gloss-3
SLI 8-6
SNAP, A-84, A-85, A-87
Sockets , 16-3
spacecraft

commanding protocol 10-1
commands 9-1
id 9-17
telemetry 8-1

Spacecraft MET 4-22
SPLINE 4-19, 5-13
spooler 7-7
SPTP , Gloss-3
sqrt 3-62
stale 4-5
stale-factor 4-5
STANDARD 3-24, 3-25
START 3-17, 3-20
start 3-71, C-5
START AT 3-18
START UNTIL 3-18
start_format_editor 6-3
START_XTERM 6-18
starting

and Stopping the System 2-2
the page editor 6-3

Starting up a spacecraft, 10-3
start-up procedure 3-20
STATARC, 8-11, A-87
statemachine 3-71, 3-72
Static Objects 6-2
STATIC, 5-13
step 3-71
STEP (used with FOR…) 3-15
STEP directive 3-33
STICKY_BREAKPOINTS 3-40
STOL 3-1, Gloss-4

accessing telemetry points 3-4
built-in functions 3-58

Q
QUAL 4-18
Quality

defining in RDL 4-18
quality

of telemetry point 3-61, 4-28
quality flag, 8-23
quirks 7-7
QUIT, 16-14, A-70, A-79

R
R@ 3-4
RANGE 8-23
RANGE, 5-13
Ranges, 8-22
ranges, 8-22
Raw Commanding, 10-2
raw dump, 16-4, A-80
raw telemetry 3-4
RAW, 10-2
RAWTOHEX 17-6
RDL , Gloss-3
RDLMaster

Joe 13-4
Read 6-8
Read-Key 6-8, Gloss-3
reals 3-2
Real-Time Acquisition, 8-8
recall 3-7
RECORD 4-7, 5-20
Record Lengths, A-64
record-name, 5-20
Recovering from commanding

problems, 10-7
red limit halts 3-39
red violations A-73
RED, 8-22
REDLINE, 13-3
Reed-Solomon J-1
regular expressions 3-28
REJECT, C-3
relational operators 3-5, 3-57
Relative times 3-2
RELOAD_PSEUDO 4-35
REM 3-56
Remove All Telemetry Pages, A-13
Remove Telemetry Page, A-13
reopen , A-61
reopening , 7-10
report A-17, A-62, A-64, A-89

command A-17, A-62
telemetry A-63, A-89
telemetry db 4-44

Report , A-63, A-64
REPRESENTATION 4-18, 5-13

reset 3-45, 3-70
limits A-72
polynomials A-72

Resets the limit & polynomial states to
those defined in the telemetry
database, A-72

RESETSTATE, A-72
reshow A-73
RESPONSE , C-3
retransmission , 10-2
Retransmission Count, A-94
Retransmit Last Command, A-94
RETURN 3-16
return 3-70
returnerror 3-70
REVERSED 4-18, 5-13
RHIGH 4-18
RLOW 4-18
RPAD 17-6
RS-422 J-1
RTA 6-10, 6-23
RTFM, Gloss-3
RTRIM 17-6
run 3-71
Running the FEDS J-3
runtime annotations 6-9, 8-23
runtime annotations (RTAs) 6-23
run-time monitor 3-1

S
Sammi 7-1, 7-7, Gloss-3, A-73

Command Window 2-10
Sammi Format Editor 6-5
Sammi Format Editor Guide 6-1
Sammi Toggle Button 6-13
SAMPLE_CVT, A-74
Save, Delete, Purge, Add 6-13
Save, Delete, Purge, Add ritual in Page

Editing 6-10
SAVESTATE A-74
SB 8-6
SC MET 4-22
Scalar structures 4-3, 5-9
SCP

Input, 12-2
Overview, 12-1
Usage, 12-24

SCP, A-75
SCREENING, 9-7, A-76
scripts 3-1
SDS , Gloss-3
Segmented Time 4-13, 8-5
SELECT 17-7
semicolons 3-8
SEND_COMMANDS 3-23, 3-34, 3-40
sending directives from a page 3-40
SEQ , 16-3
SEQ GNU, 16-10, A-77

seq gnu, 16-11
SEQ INTERACTIVE, 16-14, A-78
SEQ KILL_STREAM 16-4
SEQ LIST, 16-18, A-79
seq list, 16-8
SEQ LIST_STREAMS 16-4
SEQ PACKET, 16-12, A-80
seq print 16-8

plotting results A-66
SEQ PRINT OFF, 16-5
SEQ PRINT, 16-4, 16-9, A-80, A-83
SEQ PRINT_TABBED A-81
SEQ TIMED, 16-9, 16-10, A-82
Sequence , C-5
sequential 16-2, A-78
sequential printing , 8-2
Sessions, C-1
SETLOG 7-5, A-76
setting breakpoints 3-33
SFDU 5-6, 8-1, 9-3, Gloss-3
SFDU_NAME 4-5

Default 4-22
SFP 8-6
sgse.config, 14-2
SHORT 4-5, 4-7, 4-9, 4-10
show 3-71
SHOW directive 3-33
show pending 3-23
SHOWLAYER, A-83
SHOWLOG 7-5, A-83
SI 8-6
SILENT_WAIT 3-40
sin 3-62, 4-29
Single-Value Read Keys 6-24
SIS , Gloss-3
SLI 8-6
SNAP, A-84, A-85, A-87
Sockets , 16-3
spacecraft

commanding protocol 10-1
commands 9-1
telemetry 8-1

Spacecraft MET 4-22
spacecraft_id 9-17
SPLINE 4-19, 5-13
spooler 7-7
SPTP , Gloss-3
sqrt 3-62
stale 4-5
stale-factor 4-5
STANDARD 3-24, 3-25
START 3-17, 3-20
start 3-71, C-5
START AT 3-18
START UNTIL 3-18
start_format_editor 6-3
START_XTERM 6-18
starting

and Stopping the System 2-2
the page editor 6-3

Starting up a spacecraft, 10-3
Index-6 ASIST Users Guide–Version 9.6

Index
command 3-6
compiler 3-1
compiling 3-17
data types 3-2
definition files 3-55
directive 3-5
expressions 3-5
foreign directives 3-23
global variables 3-3
LANGUAGE BASICS 3-55
local internal variables 3-39
local variables 3-3
looping constructs 3-14
maximum input length 3-8
operator precedence 3-57
operators 3-5, 3-56
parameters 3-13
Procedure Gloss-4
procedures 3-8
recalling previous entries 3-7
run-time monitor 3-1
Statement Gloss-4
status variables 3-73
substitution 3-21
user start-up procedure 3-20
variables 3-3
Window 2-11

STOL button in Pages 6-17
STOL Buttons 6-15
STOL buttons in Pages 6-15
STOL Connection 6-15
STOL text input field in Pages 6-16
STOL_CHECK_SOURCE 3-73
STOL_CMD_QUE_DEPTH 3-73
STOL_COMMAND_POST_VERIFIER

3-73
stol_compiler 3-55
STOL_CONFIG, 14-2
STOL_END_TO_END_TIMEOUT 3-

73
STOL_END_TO_END_WAIT 3-73
STOL_EXEC_MODE 3-73
STOL_HALT_ON_BAD 3-73
STOL_HALT_ON_RED 3-73
STOL_IGNORE_WAIT 3-74
STOL_KILL_FOREIGN 3-74
STOL_KILL_FUNCTION 3-74
STOL_LOCAL_TIMEOUT 3-74
STOL_LOCALHOST 3-74
STOL_LOG_PROCEDURE 3-74
STOL_MISSION 3-74
STOL_MONITOR_QUALITY 3-74
STOL_PROC_LINE 3-74
STOL_PROC_NAME 3-74
STOL_SDB, 14-2
STOL_SEND_COMMANDS 3-74
stol_server 3-40, 3-41, 6-15, 6-18

cautions when using 6-18
enterable Page text 6-16

STOL_STEP_MODE 3-74
STOL_STEP_TIME 3-74

STOL_STICKY_BREAKS 3-74
STOL_TYPE 3-40
STOL_USE_ASK_POPUP 3-74
STOL_WAIT_MODE 3-74
STOL_WAIT_TIME 3-74
STOLSTAT 3-18
STOP, C-5
Stored Command Sequence

Processor, A-75
stream 16-2
streams 16-2
string operator 3-5, 3-56
Strip chart DDO 6-19
STRLEN 17-7
SUBCOM 4-7, 4-9, 4-19
substitution 3-21
SUBSTR 17-7
substring 3-62, 4-29
subsystems

user-defined 7-8
SUFFIX_SFDUS 5-8
SUPERCOM 4-7, 4-19
SYNC

TVER MODE 9-12
sync pattern, C-3
sync, C-3
synchronize manual 3-23
synchronize now 3-23
synchronous 3-71
synchronous auto 3-71
synchronous manual 3-71
synchronous now 3-72
synchronous off 3-71
System Configuration File, 14-4
System Directory, 13-1
Systems Test and Operations

Language 3-1
Syzygonodelusion Gloss-4

T
Tab-Delimited Seq Print A-81
table A-18, A-31, A-58, A-68
tan 3-62, 4-29
task 3-72
TCP sockets, 16-1
TCP/IP 9-4, C-1, J-1
TELEMETRY

Aggregate Data Types 4-7
compiling 4-42
creating a database 4-42
event driven pseudo-telemetry 4-32
generating database reports 4-44
Grouping Constructs 4-4
Language Reference 4-4
Pseudo Telemetry Definitions 4-22
Scalar Data Types 4-10
Special Constructs 4-35
syntax checking 4-42

Tools Reference 4-42
Unit Keywords Table 4-42

telemetry 8-1, Gloss-4, A-7, A-33, A-57
depacketization J-2
distribution file J-8
TCP sockets J-4

Telemetry Archive, A-87
Telemetry Attributes

indexed F-6
Telemetry Database, Gloss-4
Telemetry LAN (TLAN) , Gloss-4
telemetry packets 3-4
telemetry pages 2-12, 6-1, Gloss-4, A-64

sending commands from 3-40
telemetry points 3-4, Gloss-4

engineering unit conversion 3-4
raw 3-4

Telemetry Verification 9-10
Directives A-90

telemetry_attr 3-62, 3-63, 4-29
telemetry_defined 3-62, 4-29
TELEMETRY_TABLE_ATTR F-6
telemetry_units 3-63
TelemetryByApid, A-89
TelemetryByName, A-89
text-description 4-5, 4-7, 5-6, 5-20
text-destination 5-6
Time

Segmented 4-13, 8-5
timed wait 3-15
TIMED, 16-4
time-out error 3-22
times 3-2

format 3-2
TIO , Gloss-4
TLM Browse D-1, D-2, D-3
TLM_HANDOVER 10-11, A-89
TLM_SOURCE, A-90
TLMBYNAME, A-89
tlm-definition 4-7
TLMH , Gloss-4
tlm-points 4-5, 4-9
TO_CHAR 17-7
Transfer Frame, A-39
transition 3-72
Transmit Raw CLTU, A-14
Transmit Raw SFDU, A-71
trend 3-72
Trend DDO 6-19
Trend DDOs 6-25
trend_max 3-63
trend_mean 3-63
trend_meantime 3-63
trend_min 3-63
trend_num 3-63
trend_redfailtime 3-63
trend_sdev 3-64
trend_slope 3-64
trend_state 3-64
trend_sum 3-64
trend_sumsq 3-64
ASIST Users Guide–Version 9.6 Index-7

trend_var 3-64
trend_yelfailtime 3-64
trending , 8-2
Trigger , C-5
triggers 8-48, C-4
trigonometric functions 3-58
Trim 17-6
TRIM_LEFT 3-41
TSDS

Killing Streams 16-4
TSDS Clients, 16-4
TVER 5-8, 5-14, 9-10, 9-12, A-90
TWO_STEP A-91
two-step commanding 9-9
TYPE 17-7
Type Definitions

in commands 5-16
TYPES 5-16
typographic conventions About-xxi

U
UB 8-6
UI 8-6
ULI 8-6
uncheck cvt write 4-25
UNION 4-8, 5-20
UNIT 4-19
UNITS, 5-14
universal access type 3-40
unix

defining user events 7-8
UNIX epoch, C-5
unsigned comparison

in pseudo-telemetry 4-30
in STOL 3-64

unsigned function
in pseudo-telemetry 4-30
in STOL 3-64

unsigned integers 3-2
UNTIL 3-14

(used with GO) 3-19
(used with GOTO) 3-19
(used with START) 3-18

UPDATE 4-34
UPLINK 10-1

BYPASS A-92
CONTROL A-92
COP1 A-93
RETRIES A-94
RETRY A-94
UNLOCK A-96, A-97

UPPER 17-7
uppercasing function

in pseudo-telemetry 4-30
USE_ASK_POPUP 3-40
user profile 7-7
User Screening Database, 14-7
User Screening, A-76

user.db, 14-2
user.def 3-56
user_startup procedure 3-20
user-defined events 7-8
UTCF =, 14-6

V
VALIDATION, 9-5, A-95
validity of packet 3-61, 4-28
VALONLY, 9-5
value 9-3

call by 3-21
VARYING 4-5
VERID 4-43
verification

commands 9-10
telemetry A-90

verify A-69, A-88, A-95
vertical bar 6-25
view.old.events, 7-14
violation, 8-22
virtual channel, 8-1
Virtual Telemetry Channel, A-28, A-37

W
WAIT 3-15, 3-19, 3-32, 3-47, 3-72

conditional 3-15
end-to-end 3-22
local 3-22
timed 3-15

when 4-32, 16-4, C-3
WHILE 3-14, 3-73
words

in a string 4-28
write 3-5, 3-73
Write Key 3-41
Write Key with PLVs 6-16

X
XOR 3-56
X-windows bitmap 6-2

Y
Y2k Gloss-4, I-1
Year 2000 I-1
YELLOW, 8-22
YHIGH 4-19
YLOW 4-19

Z
Z class packet, 9-3
Index-8 ASIST Users Guide–Version 9.6

	The ASIST User’s Guide
	About This Document
	Who Should Use This Document
	Conventions

	CHAPTER 1 System Overview
	CHAPTER 2 User Interface
	Overview
	Starting and Stopping the System
	How to start ASIST:
	How to stop ASIST:

	ASIST's Permanent Windows
	ASIST Status Window Menus
	ASIST Status Window Body
	Time Section
	Spacecraft Status Section
	FOP-1 Status
	GSE Status
	ASIST Logo Section

	SAMMI Command Window
	Events Window
	STOL Window

	Terminal Windows for Command-Line Linux
	How to open a Terminal (Linux/unix shell) Window

	Telemetry Pages
	How to control telemetry pages
	How to get information about the contents of a field on a telemetry page

	CHAPTER 3 STOL
	STOL Overview
	What is it?
	Structure
	What's next

	STOL Basics
	Data types & constants
	Creating and using STOL variables
	Accessing and using telemetry points

	Interactive STOL
	Expressions
	Simple interactive directives
	WRITE
	Assignment
	Command
	EXIT

	Recalling a Previous Entry

	Compiled STOL
	Saving and Using Sequences of Directives (procedures)
	Statements
	How to write a procedure
	Using the procedure editor
	PROC/ENDPROC statements
	Creating local and global variables in a procedure
	Referencing parameters within a procedure
	Making decisions - using IF/THEN/ELSE
	Repeating a block of statements - using DO, WHILE, or FOR
	Waiting for an event
	Exiting your procedure

	How to run a procedure
	Compiling a procedure
	Using the START directive
	Monitoring procedure execution
	How to halt the current procedure
	Resuming execution of a procedure
	Repositioning inside a procedure
	Leaving a procedure

	Advanced topics
	Procedure execution during ASIST start-up
	Passing arguments to STOL Procedures
	Computing variable names
	Commands in Procedures
	Defining new directives
	Using regular expressions
	User defined functions
	Debugging STOL procedures and foreign directives
	Formatted printing
	STOL arrays
	Disposing of arrays, foreign directives, or functions in STOL
	Creating and using unusual names in STOL
	STOL internal variables
	Sending a directive from a page
	Sending a directive from the keypad
	Using files
	Getting out of trouble
	Integrated compiling and editing
	Unexpected procedure halts
	Error handling
	Defining a state machine

	Parallel STOL
	Event Logging
	Commanding
	Event-driven tasks
	Scheduling
	Task control

	STOL Reference Guide
	Compiler Options
	Preprocessing Procedure Files
	Definition Files

	Operators
	Built-In Functions
	Built-in Directives
	Status Variables

	CHAPTER 4 Telemetry Database Compiler
	Overview
	Tools Overview
	Language Overview
	Language Reference
	Grouping Constructs
	DATABASE
	PACKET

	Aggregate Data Types:
	RECORD
	UNION

	Scalar Data Types:
	Naming Method

	Type Definitions
	Modifying Telemetry Declarations or Type Definitions
	Default SFDU Name
	Pseudo-Telemetry Definitions
	Periodic Pseudo-Telemetry
	Syntax of Pseudo-Telemetry Statements
	Operators within Pseudo-telemetry Equations
	Functions Supported in Pseudo-telemetry Equations

	Periodic Pseudo-Telemetry Examples
	Event-Driven Pseudo-Telemetry
	Enabling and Disabling Pseudo-Telemetry Equations
	Execution quotas on equations
	Data quality inheritance

	Dynamic Reloadable Pseudo-Telemetry
	Special Constructs
	Comments
	Delimiters
	C Preprocessor Directives
	Predefined Names

	Telemetry RDL Examples
	Defining types based upon records and unions
	Defining and using arrays of records and unions

	Constant numeric expressions
	String concatenation

	Tools Reference
	How to syntax check telemetry definitions
	How to create a telemetry database
	Automatic Database ID Stamping
	How to generate a telemetry database report

	CHAPTER 5 Command Database Compiler
	Overview
	Tools Overview
	Language Overview
	Language Reference
	Grouping Constructs
	DATABASE
	CLASS

	Command/Directive Definitions
	CMD(S), DIR(S) and SFDUs

	Parameter Definitions
	Type Definitions
	Modifying User-defined Types
	Computed Parameters
	Command Defaults

	Aggregate Data Types
	RECORD
	UNION
	BITFIELD

	Special Constructs
	Comments
	Delimiters
	C Preprocessor Directives
	Predefined Names

	Include files

	Constant numeric expressions
	String concatenation

	Tools Reference
	How to syntax check
	How to create a database
	Automatic Database ID Stamping
	How to generate a command database report

	CHAPTER 6 Editing Telemetry Pages
	Page Concepts and Terminology
	Page Editor Quick-Start
	Starting the Page Editor

	Basic Editing Operations
	Create a new page
	Change Your Page Properties
	Save Your Page
	Add text labels to your page
	Add a telemetry DDO to your page
	Save your page and open it in the runtime ASIST
	Background pictures and layers
	Add Sammi buttons to your page
	Dismisser Button
	Sammi Toggle Button

	Connecting Pages to STOL
	STOL interface example
	Add a STOL text input field
	Add a STOL button to send Page Local Variable entries to STOL
	Cautions about stol_server

	How to read and write DDO libraries (Composite Objects)
	Add a fully-loaded Trend Composite to your page
	Add a fully-loaded Plot Composite to your page
	Create your own Composite Library

	How to Delete Pages and Exit the Editor
	Data Quality (Runtime Annotations) in Telemetry Fields
	Checklist for Displaying RTAs

	More Details About Read Keys
	Single-Value Read Keys
	Multi-Value Read Keys
	Array Display in Pages with %slice() Readkeys
	How to implement %slice() in a readkey:
	Limitations:

	Page Editor Reference
	Page Editor Menus
	File Menu
	Edit Menu
	View Menu
	Arrange Menu
	Draw Menu
	Dynamics Menu
	Libraries Menu
	Style Menu

	CHAPTER 7 Event Message Handling
	Overview
	Event message characteristics
	Format of an event message
	Where do event messages go?
	Filtering event messages
	Event Filter Pages

	Event Printer output
	Defining your own Event Types
	Closing and reopening the current event log
	Event log viewers
	Tailing the Current Event Log
	Setting Up Color Event Log Filters
	Additional Color Event Viewing Programs

	Normal (monochrome) event log filters:
	How to Tail the Event Log for Programmers

	How to Make ASIST’s Main Event Page Color

	CHAPTER 8 Telemetry Processing
	How a telemetry SFDU is processed
	How a telemetry point is interpreted
	Processed vs. Swapped vs. Raw
	Conversion to swapped
	Conversion to Processed
	Putting values back into the CVT
	Scalar Data Types
	Data Swapping
	User-Defined Data Representation

	Physical Channel Control
	Real-Time Acquisition
	Archival
	Playback

	Archive Tools
	Limit Checking
	Turning Limit Checking On
	Enabling Limits for Telemetry Points
	Is limit checking on?
	What do limits mean?
	What happens at limit boundaries?
	What order are the states in?
	Use of Intervals and Ranges
	What Types of Limits are Available?
	When Limits are Exceeded
	Assigning multiple limits to a single telemetry point
	Rail Limits
	Turning it on and off
	Indications of being "Railed"
	What is the rail?
	Changing default for rail checking
	Rail Notes
	Triggering event-driven pseudo-telemetry on RAIL states:
	Types of limit-failure messages

	Trending
	Sampling
	Time and Telemetry
	Packet Time and Sequence Count
	Telemetry Point Time

	Packet Quality
	Data Quality
	What is data quality?
	How is data quality used?
	Where is data quality used?
	How is NEUTRAL quality used?

	Telemetry Statistics
	Supercommutation
	Subcommutation
	Using Subcommutation for distributing encapsulated packets
	Why would you want to set these?

	Data Collection in HDF Files
	Telemetry from External Ground Support Equipment
	Introduction
	Step by Step Instructions
	Defining Your Own SFDU Types

	CHAPTER 9 Commanding
	Overview
	Spacecraft Commands
	Directives

	Command Sequence
	Command conversion
	Creation of an SFDU (Standard Formatted Data Unit)
	Sending the SFDU to the Command Handler
	Command Source Enable/Disable
	Command Validation
	Command Backsolving
	User Screening
	Hazardous and Critical Command Screening
	Command Handler Sends the Command to the Front End
	Two Step Commanding
	Command Pre-verification
	Telemetry Verification of Commands
	Controlling Telemetry Verification
	Blocks of Commands

	Failover of the Primary and the FEDS command link
	Changing the Primary
	Changing the Front-End Machine (for commanding)
	Changing the Front-End Machine (for telemetry)

	Overriding Directive Destinations
	Commanding Constellations
	Configuration
	Setting up the current spacecraft to command
	Overriding the current spacecraft

	Receiving STOL Directives from External Clients

	CHAPTER 10 Front End Data System
	Overview
	Spacecraft Commanding Protocol
	Raw Commanding
	Starting up a spacecraft
	Command Processor Operational Modes
	The UPLINK Directive
	Syntax
	Typical Use

	Additional FEDS Command Directives
	Recovering from Commanding Problems
	Ground Station Interface
	Setting the Current Ground Station
	Command Side of the FEDS–Ground Station Interface
	FEDS-to-FEDS Command Gateway

	Telemetry Side of the FEDS–Ground Station Interface
	Information available in telemetry and pseudo-telemetry
	Useful things you can do with ground station information
	Pages showing information about the FEDS–Ground Station interface

	CHAPTER 11 Image and Table Management
	Overview
	Description
	Load/Dump Example
	CITM System Variables
	Table Handling Directives
	What the table directives allow you to do:
	Defining Tables In Your Telemetry RDL:
	The directives:
	CREATE_LOAD
	CREATE_PARTIAL_LOAD
	DUMP_TO_CVT
	LOAD_TO_CVT

	An Example:
	CVT_TO_FILE
	FILE_TO_CVT

	View Dump Utility
	Configuring the LOAD and DUMP directives
	Configuring Load/Dump Command Options from STOL

	CHAPTER 12 Stored Command Sequence Processor
	Overview
	Introduction
	Statement Types
	Table Definitions
	Assignments
	Command constraints
	Events, triggers and activities
	File inclusion and conditional compilation
	Commands and delays

	Source File Structure
	Output
	Load file
	Reports

	Statement reference
	Absolute delay
	Activity definition
	Activity reference
	Command sequence assignment
	Command sequence constraint
	Command time delay constraint
	Command time dependency constraint
	Event
	Export
	Expression
	Global constraint assignment
	Mnemonic command
	Raw command
	Relative delay
	Table range definition (ATS)
	Table range definition (RTS)
	Table state definition
	Table start definition
	Table tail sequence definition (ATS)
	Table tail sequence definition (RTS)
	User assignment
	Trigger

	Usage
	Running the compiler

	Configuration
	Stored command packets
	Supported fields

	Utilities
	SCP to Activity Definition Utility
	UDAP to SCP Conversion Utility

	CHAPTER 13 Environment
	Login Account(s)
	Directory Structure
	Inheritance
	Promote and Redline
	Obtaining Local Directories
	Example of RDL Inheritance
	Configuration Files
	User-Configurable UNIX and X-Window Environment

	CHAPTER 14 System Configuration
	The Location of Configuration Files
	Preparing to Modify a Configuration File
	System Configuration File
	Mission Configuration File
	User Screening Database

	CHAPTER 15 General Purpose Interface Bus (GPIB)
	Overview
	GPIB Setup
	Hardware Setup
	System Level Setup
	User Setup/Login Symbols
	User Setup/Telemetry Database
	User Setup/Example STOL Procedures

	Generic GPIB Directives
	Simple example:

	Low-Level GPIB Directives
	Directives:

	CHAPTER 16 Decommutated Sequential Telemetry Streams (TSDS)
	Overview
	Description
	How do I use it?
	TSDS Clients Provided with ASIST
	SEQ PRINT
	Usage
	Description
	Format of generated data
	Warning
	Example

	SEQ TIMED
	Usage
	Description
	Example

	SEQ GNU
	Usage
	Description
	Format of generated data
	Example

	SEQ PACKET
	Usage
	Description
	Example

	SEQ INTERACTIVE
	Usage
	Description
	Format of generated data
	Example

	SEQ LIST
	Usage
	Description
	Example

	Standalone Sequential Print Generator
	Usage
	Description
	Example
	Notes:

	Error Handling in TSDS Client Programs

	CHAPTER 17 Database Query Tool
	Overview
	Database information
	Queries
	Simple Queries
	Complex Queries
	Functions in complex queries
	Ordering the results of a query

	Generating Reports
	Default output
	Adding a report header
	Adding a report footer
	Modifying the size of the page
	Changing column formatting
	More report formatting
	Computing group values for a report
	Modifying other features
	Redisplaying data
	Saving reports to a file
	Creating a data file
	Generating output in HTML

	Additional Features
	Expressions in a SELECT attribute list
	Searching more than one table with SELECT
	The SET Function
	Restrictions:

	XML Functions
	Numbering the output rows
	Executing canned procedures
	Displaying Prompts
	Executing operating system commands
	Displaying the available tables
	Displaying the attributes in a table
	Termination and help

	How to use TDQ
	Starting TDQ
	Entering queries from the TDQ command line
	Entering queries from the shell

	CHAPTER 18 Page Specification Language
	Overview
	PSL Language Reference
	Page Specification
	Object Layout and Position Expressions
	Automatic Page Layout
	Design Objects

	Using PSL
	Supported Colors
	Supported Fonts

	CHAPTER 19 EGSE Interface
	Overview
	Data Center
	Configuration Prior to Startup
	Controlling Data_Center
	Open
	Close

	What Data Center Does

	Usage/Examples
	Example 1: Reading UDP Telemetry
	Example 2: UDP Commands and Telemetry, Data_Center in server mode
	Example 3: Connect to a TCP-server providing telemetry in SFDUs, and broadcast that to multiple A...

	Glossary
	APPENDIX A Directives
	Introduction
	Using On-line Help

	List of Directives
	Directive Descriptions

	APPENDIX B Editing Files with EMACS
	The EMACS Window
	X windows mouse actions
	Issuing a Command Multiple Times

	APPENDIX C Decommutated Telemetry Stream Interface Control Document
	Introduction
	Physical Interface
	Sessions
	Protocol
	Application Interface
	CONNECT Message:
	DISCONNECT Message:
	RESPONSE Message:
	BLOCKBEGIN Message:
	BLOCKEND Message:
	ITEM Message:
	ATTR Message:
	TRIGGERS Message:
	START Message:
	STOP Message:
	DELETE Block Message:
	DATA Message :
	DROPPED Message:

	APPENDIX D Tools and Utilities
	Limit Viewer
	How to access it
	Overview

	Window to JPEG
	How to access it
	Overview

	Telemetry Database Browser
	How to access it
	Overview
	Text Field Adjustment
	To adjust the size of a text field, left click on the vertical bar at the end of the field label ...
	TLM Browse Options Panel
	Things to Show
	Names and Expanded Names.
	Datatypes and Used-defined Datatypes
	Selectors
	APID Format
	Sort Order
	Dismiss

	Command Database Browser
	How to access it
	Overview
	CMD Report Panel
	CMD Options Panel
	Things to Show
	APID Format
	Sort Order
	Dismiss

	Easy Plot
	Easy Archive
	Easy Playback
	Page Crank
	Local Time Clock
	Procedure listing utilities
	Environment Monitor (OGSE)
	Overview
	Operation
	Changing the Monitor’s Defaults
	CVT Variables Used by the Environment Monitor

	APPENDIX E Printf
	Why is this here?
	printf for Beginners
	printf for the Inquisitive

	APPENDIX F Access to Database Attributes
	Introduction
	How to Access Database Object Attributes
	Telemetry Attribute Access
	Command Attribute Access

	APPENDIX G C-Preprocessor
	Why is this here?
	Introduction
	File Inclusion
	Macro Definition and Substitution
	Conditional Compilation

	APPENDIX H Load and Dump Files
	ASIST Standard Load File Format
	ASIST Standard Dump File Format

	APPENDIX I ASIST Y2k Contingency Plan
	Introduction
	Background
	Procedure

	APPENDIX J Front End Data System/ Digital History Data Store
	Introduction
	Running the FEDS
	Logging on to the System
	Starting the FEDS/DHDS
	Stopping FEDS/DHDS

	Interacting with the Digital History Data Store (DHDS)
	How to connect to the DHDS (for ASIST Users)
	How to connect to the FEDS/DHDS (for non-ASIST based IGSE Users)
	Connecting to the telemetry ports
	Logging on to the system

	FEDS/DHDS Main User Interface Window
	Quitting the FEDS/DHDS
	Playback of telemetry data from the FEDS/DHDS
	Example One–A closed interval playback
	Example two (‘now and forever’ playback):

	Viewing the Current Distribution File

	Editing the Distribution File
	Playing current data from the S/C
	Playing decoupled current data from the S/C
	Index of telemetry data files

	FEDS Internals
	FEDS Telemetry Processing Displays
	AOS Activity Display
	AOS Use Display
	Reed-Solomon Display
	Exp(erimenter) Activity Displays
	Telemetry Frame Processing Display

	FEDS Setup Utility
	Changing telemetry processing parameters:
	Using Default Configuration Files:
	Changing the Commanding Configuration
	How to Change the APID selection for packet distribution
	Starting and Stopping only the Command Handling Portion of the FEDS

	Index

